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Summary

An enigma of modern medicine has persisted for over 150 years. The mechanisms by which 

volatile anesthetics (VAs) produce their effects (loss of consciousness, analgesia, amnesia, 

immobility) remain an unsolved mystery. Many attractive putative molecular targets have failed to 

produce a significant effect when genetically tested in whole animal models [1–3]. However, 

mitochondrial defects increase VA sensitivity in diverse organisms from nematodes to humans [4–

6]. Ndufs4 knock-out (KO) mice lack a subunit of mitochondrial complex I and are strikingly 

hypersensitive to VAs, yet resistant to the intravenous anesthetic ketamine [7]. The change in VA 

sensitivity is the largest reported for a mammal. Limiting NDUFS4 loss to a subset of 

glutamatergic neurons recapitulates the VA hypersensitivity of Ndufs4(KO) mice, while loss in 

GABAergic or cholinergic neurons does not. Baseline electrophysiologic function of CA1 

pyramidal neurons does not differ between Ndufs4(KO) and controls. Isoflurane concentrations 

that anesthetize only Ndufs4(KO) mice (0.6%) decreased the frequency of spontaneous excitatory 

postsynaptic currents (sEPSCs) only in Ndufs4(KO) CA1 neurons, while concentrations effective 

in control mice (1.2%) decreased sEPSC frequencies in both control and Ndufs4(KO) CA1 

pyramidal cells. Spontaneous inhibitory postsynaptic frequencies (sIPSCs) were not differentially 

affected between genotypes. The effects of isoflurane were similar on evoked field excitatory 
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postsynaptic potentials (fEPSPs) and paired pulse facilitation (PPF) in KO and control 

hippocampal slices. We propose that CA1 pre-synaptic excitatory neurotransmission is 

hypersensitive to isoflurane in Ndufs4(KO) due to inhibition of pre-existing reduced complex I 

function, reaching a critical reduction that can no longer meet metabolic demands.

eTOC blurb

Ndufs4(KO) mice are very hypersensitive to volatile anesthetics. Zimin et al show that VGLUT-2 

specific Ndufs4(KO) recapitulated the phenotype while GABAergic and cholinergic Ndufs4(KO) 
did not. Isoflurane selectively inhibited excitatory neurotransmission in the CA1 of the 

hippocampus of Ndufs4(KO) at a dose that did not affect controls.

Results and Discussion

Complex I dysfunction in VGLUT2-expressing neurons recapitulates hypersensitivity to 
isoflurane and halothane observed in the total KO mice

To understand the cell specificity of mitochondrial complex I dysfunction and anesthetic 

hypersensitivity, we investigated the sensitivity to isoflurane and halothane of control mice 

with that of mice with Ndufs4 knocked out selectively in GABAergic neurons (GABA-

specific KO mice), VGLUT2-positive glutamatergic neurons (VGLUT2-specific KO mice) 

or cholinergic neurons (CHAT-specific KO mice). VGLUT2-specific KO mice were 

markedly hypersensitive to isoflurane and halothane, similar to the total KO mice. GABA-

specific and CHAT-specific KO mice were not hypersensitive to either halothane or 

isoflurane, except for a small increase in sensitivity of CHAT-specific KO mice to halothane 

(Figure 1). These results support the hypothesis that excitatory glutamatergic transmission is 

the major contributor to volatile anesthetic hypersensitivity of KO mice.

Complex I dysfunction does not affect intrinsic membrane properties and synaptic 
baseline activity in hippocampal CA1 pyramidal neurons

To understand the link between mitochondrial complex I dysfunction and anesthetic 

hypersensitivity, we investigated intrinsic and synaptic properties of hippocampal CA1 

pyramidal neurons in KO animals at baseline and following exposure to isoflurane. The CA1 

region is a well-characterized region whose response to a multitude of anesthetics has been 

extensively studied, and which also has been implicated in the function of VAs [8–12]. We 

found no significant differences in the intrinsic membrane properties of hippocampal CA1 

pyramidal neurons in slices obtained from control and KO mice. The resting membrane 

potential was −61.03 ± 1.24 mV and −62.33 ± 1.05 mV for control and KO cells, 

respectively. Cellular input resistance was 152.39 ± 6.25 MΩ and 148.28 ± 5.58 MΩ for 

control and KO cells, respectively.

No differences were found in sEPSC frequency, amplitude or decay time between genotypes 

(Figure 2A). There were no significant differences between KO and control neurons in 

miniature excitatory post-synaptic current mEPSC frequency, amplitude, or decay time at 

baseline (Figure 2B).
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There were no differences in sIPSC frequency, amplitude and decay time between KO and 

control neurons (Figure 2C). Finally, there were no differences in miniature inhibitory post-

synaptic current (mIPSC) frequency, amplitude and decay time between KO and control 

neurons (Figure 2D).

These results indicate that neuronal function in CA1 hippocampal pyramidal cells was not 

different between control and KO mice in the absence of anesthetic. Thus, hypersensitivity 

to isoflurane in KO mice is not due to a generalized metabolic deficiency in basic neuronal 

function. The specific resistance of the mutant to ketamine also supports the conclusion that 

a general metabolic deficiency is unlikely the explanation for the hypersensitivity to volatile 

anesthetics [7].

Our recordings were made before any symptoms or histopathologic changes develop in the 

mutant, and from a region that is relatively spared from degeneration. The fact that most 

parameters studied failed to show differences between control and KO cells at baseline is 

consistent with the fact that ATP concentrations in muscle and blood are not decreased in the 

mutant [13]. In fact, the respiratory capacity of intact mitochondria in the KO is 50 – 100 % 

of the wild-type depending on the complex I substrate [14]. Additional sources of ATP such 

as glycolysis could also compensate to some degree in order to maintain network activity at 

baseline.

CA1 sEPSC frequency is hypersensitive to 0.6% isoflurane in KO neurons

We next studied the effects of mitochondrial dysfunction on synaptic activity with isoflurane 

exposure. Exposure to 0.6% isoflurane significantly decreased the sEPSC frequency of KO 

cells without changing the sEPSC frequency of control neurons (Figure 3A,B). Moreover, 

sEPSC frequency in KO neurons did not fully revert to pre-exposure levels after 15 min of 

wash with artificial cerebrospinal fluid (ACSF). Interestingly, sEPSC amplitudes and decay 

times were not affected by 0.6% isoflurane exposure in either control or KO neurons (Figure 

3C,D). In the presence of 1.2% isoflurane sEPSC frequency was significantly reduced in 

both KO and control neurons (Figure 3A,B). As was the case for 0.6% isoflurane, sEPSC 

frequency did not fully recover after 15 min of wash in KO cells while sEPSC frequency of 

control neurons returned to the level prior to exposure (Figure 3B). In order to rule-out a 

possible isoflurane-independent run-down, control experiments were performed in which 

KO cells were voltage-clamped and sEPSC frequency was monitored for the duration of the 

isoflurane treatment experiment. No significant change in sEPSC frequency was observed 

(data not shown). Exposure to 1.2% isoflurane did not affect sEPSC amplitude or decay time 

in either control or KO cells (Figure 3C,D). Application of 0.6% isoflurane did not cause 

any changes in mEPSC frequency, amplitude or decay time in either genotype (Figure 3E–

H).

Isoflurane caused a specific inhibition of sEPSC frequency only in mutant cells at a dose 

that anesthetized mutant animals but not controls. Control cells showed an identical response 

at a dose that approximated the EC50 of isoflurane in vivo for control animals. This implies 

that the same phenomenon underlies the effect of isoflurane on synaptic transmission in both 

genotypes, and determines the in vivo response.
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Interestingly, sEPSC frequency in KO cells did not return to baseline following exposure to 

isoflurane. It is unlikely that isoflurane irreversibly binds to its target since anesthetized KO 

mice awaken within 5–10 minutes after removal from 0.4% isoflurane. Additionally, 

membrane potential was maintained throughout cellular recordings supporting the 

conclusion that cell death is not the cause of irreversibility of isoflurane-induced sEPSC 

frequency decrease. Since isoflurane is non-detectable in the superfusion-recording chamber 

after 15 minutes of wash as measured by gas chromatography, our results could be explained 

by inability of mitochondria to recover ATP levels within the time frame of experiment. 

Additional studies are required to provide mechanistic insights for this phenomenon.

Studies of the effects of isoflurane on sEPSC parameters on slices from GABAergic and 

cholinergic specific KO mice did not show differences between mutant and control slices. 

Although frequencies decreased in both mutant and control lines, this change did not reach 

significance (Figure S1). Additional effectors may exist for synaptic responses to isoflurane.

Isoflurane increases CA1 sIPSC decay time similarly in KO and in control neurons

sIPSC frequency was not affected by 0.6% isoflurane in either KO or control genotypes 

(Figure S2A,B). Exposure to 0.6% isoflurane slightly decreased sIPSC amplitude in control 

cells without an effect on sIPSC amplitude in KO cells (Figure S2C). Application of 0.6% 

isoflurane increased sIPSC decay time similarly in control and KO neurons, which returned 

to pre-exposure levels after 15 minutes of wash with ACSF (Figure S2D). Application of 

1.2% isoflurane did not affect sIPSC frequency and amplitude of either genotype tested 

(Figure S2A–C). Exposure to 1.2% isoflurane increased sIPSC decay time equally in control 

and KO neurons (Figure S2D), which returned to pre-exposure levels with 15 minutes of 

wash.

mIPSC frequency was not affected by 0.6% isoflurane exposure in either control or KO cells 

(Figure S2E,F). mIPSC amplitude decreased slightly, but statistically significantly, following 

exposure to 0.6% isoflurane (Figure S2G). mIPSC amplitude after wash was not 

significantly different from pre-exposure levels. mIPSC decay time increased after 0.6% 

isoflurane exposure in both genotypes similarly and returned to pre-exposure level after 

wash (Figure S2H).

An anesthetic induced increase in sIPSC decay time is consistent with previous reports [15], 

interpreted to be a result of isoflurane interacting with GABAA receptors directly. 

Mitochondrial complex I dysfunction did not affect sIPSC parameters at baseline. sIPSC 

amplitude demonstrated a small decrease after 0.6% isoflurane exposure in control, but not 

in KO cells. Since mIPSC data did not show any differential effect after 0.6% isoflurane 

exposure, the differential effect of 0.6% isoflurane on sIPSC amplitude could be due to 

differences in GABAergic neuronal spiking. However, the magnitude of the effect makes it 

unlikely to be of biological significance. These results indicate that hippocampal inhibitory 

circuitry is not affected by mitochondrial complex I dysfunction, and that the differential 

signaling in CA1 neurons between mutant and control cells is not the result of increased 

upstream inhibitory signaling. The lack of effect of the loss of NDUFS4 in GABAergic 

neurons on sensitivity to isoflurane and halothane as measured by tail clamp also supports 

this conclusion.
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Isoflurane-induced depression of field excitatory postsynaptic potentials is larger in KO 
slices than in control slices

We next studied the effects of isoflurane on evoked field excitatory postsynaptic potentials 

(fEPSPs) and paired pulse facilitation (PPF) in KO and control hippocampal slices (Figure 

4A). At baseline PPF ratios were similar for KO and control slices (Figure 4B–D). The PPF 

ratios were not significantly different at various inter-pulse intervals ranging from 10–100 

ms between control and KO slices (Figure S3).

Application of 0.6% isoflurane increased the PPF ratio of both control and KO slices 

similarly (Figure 4B,F). In addition, 0.6% isoflurane reversibly decreased the amplitudes of 

first and second fEPSP similarly for control and KO slices (Figure 4B,D). Application of 

1.2% isoflurane increased the PPF ratio of both control and KO slices similarly (Figure 

4C,F). In addition, 1.2% isoflurane depressed both first and second fEPSPs to a greater 

extent than 0.6% isoflurane and depressed fEPSPs in KO slices more than in control slices 

(Figure 4C–E).

An increase in PPF ratio concurrent with a depression of fEPSP amplitude after exposure to 

VAs has been reported [16, 17], and has been interpreted as evidence for presynaptic 

depression of calcium-dependent glutamate release. In this report we observed a larger 

depression of fEPSP amplitude in KO neurons following the exposure to 1.2% isoflurane. 

This result, coupled with data in Figure 1, further suggests that glutamatergic synapses are 

affected by the mitochondrial complex I dysfunction, probably due to their high energetic 

demand upon stimulation. This finding is consistent with the study by Pathak et al. that 

reported that electrical stimulation-induced depression of ATP concentration in synaptic 

boutons is larger in KO cells than in WT cells [18]. The fiber volleys – a measure of a 

number of action potentials arriving to nerve terminals – were not affected by isoflurane at 

either concentration tested (data not shown). This result indicates that the fEPSP depression 

could not be explained by attenuation of action potential conduction in KO slices.

Depression of first and second fEPSP amplitudes after isoflurane exposure appears to 

contradict whole-cell patch-clamp data, where we did not see any changes to sEPSC 

amplitudes. This finding could be explained by increased energetic demand of nearly 

synchronous recruitment of a large number of fibers in extracellular recordings.

Conclusions

We have discovered that the VA hypersensitivity of KO mice is recapitulated when the gene 

is lost in the distribution of the Vglut2 promoter. Electrophysiologic studies reveal that the 

characteristics of the CA1 of the hippocampus are not changed in the mutant, except when 

exposed to isoflurane. A low concentration of isoflurane decreased the frequency of sEPSCs 

only in the mutant.

Since mEPSCs of KO neurons were not affected by 0.6% isoflurane, it is possible that 

isoflurane reduced the network input into CA1 pyramidal cells, rather than synaptic 

transmission within the CA1 region. Our results with sIPSCs and with field potentials make 

this explanation unlikely. Isoflurane has also been demonstrated to inhibit vesicle exocytosis 
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through reduced Ca2+ influx specifically in excitatory synapses [19]. Ca2+ influx could be 

differentially affected in KO neurons in response to isoflurane, thereby explaining specific 

inhibition of sEPSC frequency following 0.6% isoflurane exposure. Alternatively, KO 

excitatory synapses, when exposed to isoflurane, may lack the ability to meet the increased 

energetic demands of spontaneous firing compared to the resting state of mEPSCs. It will 

therefore be useful to explore the electrophysiological effects of Ndufs4 mutation under 

states of high energetic demand.

There are several energy-demanding processes of neuronal signaling, including reversal of 

Na+ entry for action potentials, reversal of Na+ entry at resting potential, reversal of ion 

fluxes through postsynaptic receptors, glutamate recycling, and reversal of presynaptic Ca2+ 

entry [20]. Since the fiber volley amplitude was not affected after 0.6% or 1.2% isoflurane 

exposure in KO slices, it is unlikely that inhibition of reversal of Na+ entry for action 

potentials is the mechanism explaining hypersensitivity of KO animals to volatile 

anesthetics. Inhibition of any remaining energy-demanding processes could explain the 

hypersensitivity of KO animals.

Mitochondria are increasingly appreciated by a broad audience as key regulators of neuronal 

activity, yet their role in the state of anesthesia is not clear. It has long been known that VAs 

specifically inhibit complex I function in isolated mitochondria from worms and mammals 

[21, 22]. Our work in worms, mice and children corroborated these in vitro findings 

implicating complex I, compared to other mitochondrial components, as uniquely 

controlling anesthetic sensitivity [6, 7, 23]. Taken together, these data link a very novel 

target of VAs to a specific facet of normal neuronal function and suggest that glutamatergic 

neurotransmission is selectively sensitive to isoflurane in the mutant. We hypothesize that 

VA inhibition of complex I in a mutant with compromised complex I function may deplete 

ATP levels such that presynaptic function is limited in the CA1 and perhaps elsewhere, as 

glutamatergic cells no longer match energetic demand with supply. This same pathway could 

exist in animals with normal complex I function, but require higher concentrations of 

isoflurane to achieve limiting amounts of ATP.

Several questions remain. We cannot yet explain how our current data relate to the resistance 

of the animal to ketamine, although it is now clear that this drug has many possible targets 

[24]. Also, we have not ruled out that mitochondria may be a de novo target for VAs in the 

mutant, although the main electrophysiologic change we measure in isoflurane occurs at a 

dose that approximates the EC50 of the drug for the whole animal phenotype. We infer that 

the simplest model is that mitochondria are in fact a target of VAs, and that inhibition of 

specific circuit elements, energy dependent excitatory transmission, is a mechanism that 

underlies sensitivity to VAs in the KO.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• VGLUT2-specific loss of NDUFS4 causes whole animal anesthetic 

hypersensitivity

• Isoflurane depressed hippocampal sEPSC frequencies selectively in 

Ndufs4(KO)

• sIPSCs were not affected by NDUFS4 loss

• The Ndufs4 mutation selectively affects presynaptic function in 

excitatory neurons
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Figure 1. 
VGLUT2-specific KO mice show hypersensitivity for halothane and isoflurane similar to 

global KO mice. While GABA-specific KO and CHAT-specific KO mice show similar 

EC50s for isoflurane (ISO) and halothane (HAL) to control mice, VGLUT2-specific KO 

mice demonstrate hypersensitivity to both anesthetics. Data for the total KO mice was 

published before [7] and shown here for comparison. Anesthetic concentrations are 

expressed in % by volume. Graph bars represent mean, error bars represent standard 

deviation. EC50s for isoflurane and halothane were reduced in VGLUT2-specific KO mice 

(P < 0.001 for both isoflurane and halothane, global control: n = 10 mice for isoflurane, n = 

6 mice for halothane, global KO: n = 10 mice for isoflurane, n = 6 mice for halothane, 

VGLUT2-specific control: n = 5 mice for isoflurane, n = 7 mice for halothane, VGLUT2-

specific KO: n = 5 mice for isoflurane and for halothane). EC50s for isoflurane and 

halothane were not significantly different between GABA-specific KO mice and 

corresponding control mice (P = 0.176 for isoflurane, P = 0.585 for halothane. GABA-

specific control: n = 6 mice for isoflurane, n = 5 mice for halothane, GABA-specific KO: n = 

6 mice for isoflurane and halothane). While EC50s for isoflurane were not significantly 

different between CHAT-specific KO mice and their controls (P = 0.420. CHAT-specific 

control: n = 6 mice, CHAT-specific KO: n = 5 mice), there was a small statistically 

significant difference in EC50s for halothane (P = 0.034. CHAT-specific control: n = 10 

mice, CHAT-specific KO: n = 7 mice). See also Table S1.
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Figure 2. 
Effect of mitochondrial complex I dysfunction on excitatory and inhibitory synaptic function 

in hippocampal CA1 pyramidal neurons at baseline. (A1) Representative individual sEPSC 

event traces of control and KO neurons. (A2–A4) Quantification of absolute sEPSC 

frequency, amplitude, and decay time in control and KO cells (Control: n = 50 cells, KO: n = 

81 cells). No statistically significant changes were observed in frequency (P = 0.118), 

amplitude (P = 0.043) or decay time (P = 0.066) between control and KO cells. (B1) 

Representative individual mEPSC event traces of control and KO neurons. (B2–B4) 

Quantification of absolute mEPSC frequency, amplitude, and decay time in control and KO 

cells (Control: n = 10 cells, KO: n = 14 cells). No significant differences were observed in 

mEPSC frequency (P = 0.364), amplitude (P = 0.930) or decay time (P = 0.334) between 

control or KO cells. (C1) Representative individual sIPSC event traces of control and KO 

neurons. (C2–C4) Quantification of absolute sIPSC frequency, amplitude, and decay time in 

control and KO cells (Control: n = 21 cells, KO: n = 18 cells). No significant differences 

were observed in sIPSC frequency (P = 0.190), amplitude (P = 0.231) or decay time (P = 

0.811) between control or KO cells. (D1) Representative individual mIPSC event traces of 

control and KO neurons. (D2–D4) Quantification of absolute mIPSC frequency, amplitude, 

and decay time in control and KO cells (n = 7 cells). No significant differences were 

observed in mIPSC frequency (P = 0.209), amplitude (P = 0.383) or decay time (P = 1.000) 
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between control and KO cells. Graph bars here and in subsequent figures represent mean, 

error bars represent standard error of the mean.
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Figure 3. 
sEPSC frequency is more sensitive to isoflurane in hippocampal CA1 pyramidal neurons of 

mitochondrial complex I mutant. (A) Representative sEPSC traces before isoflurane 

exposure (Unexposed), during isoflurane exposure (Isoflurane), and after washout 

(Washout). Isoflurane concentration and genotype are shown on the left. (B–D) 

Quantification of relative sEPSC frequency, relative amplitude, and relative decay time 

(1.2% isoflurane control n = 10 cells, KO n = 14 cells, 0.6% isoflurane control n = 13 cells, 

KO 14 cells). 1.2% isoflurane significantly decreased sEPSC frequency of both control cells 
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(P < 0.05) and KO cells (P < 0.05). 1.2% isoflurane exposure did not affect sEPSC decay 

time (Control: P = 0.569, KO: P = 0.057) or amplitude (Control: P = 0.569, KO: P = 0.685) 

of both control and KO cells. 0.6% isoflurane exposure did not affect sEPSC frequency 

recorded from control cells (P = 0.794), but significantly decreased sEPSC frequency 

recorded from KO cells (P < 0.01). 0.6% isoflurane exposure did not affect sEPSC decay 

time (Control: P = 0.199, KO: P = 0.071) or amplitude (Control: P = 0.146, KO: P = 0.062) 

of both control and KO cells. (E) Representative mEPSC traces before isoflurane exposure 

(Unexposed), during 0.6% isoflurane exposure (0.6% Isoflurane), and after washout 

(Washout). (F–H) Quantification of relative mEPSC frequency, relative amplitude, and 

relative decay time (Control: n = 10 cells, KO: n = 10 cells). 0.6% isoflurane exposure did 

not affect mEPSC frequency (Control: P = 0.301, KO: P = 0.598), amplitude (Control: P > 

0.05, KO: P = 0.670), or decay time (Control: P > 0.05, KO: P = 1.000) of both control and 

KO cells. Relative frequency, amplitude and decay time here and in subsequent figures were 

normalized to the average corresponding parameter prior to isoflurane exposure for each 

individual trace and expressed in %. Here and in subsequent figures u denotes unexposed, 

iso denotes isoflurane, wash denotes washout. * indicates statistically significant difference 

with P < 0.05, for 0.6% isoflurane sEPSC data * indicates P < 0.01 per Bonferroni 

correction. See also Figures S1 and S2.

Zimin et al. Page 14

Curr Biol. Author manuscript; available in PMC 2017 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Additional depression of 1st and 2nd fEPSP amplitude upon exposure to 1.2% isoflurane in 

mitochondrial complex I mutant recorded from Schaffer collateral – CA1 synapses. (A) 

Representative field recording traces before isoflurane exposure (Unexposed), during 

isoflurane exposure (Isoflurane), and after washout (Washout). Stimulation artefacts are 

truncated and shown in grey. (B1–B3) Time course of 0.6% isoflurane on 1st normalized 

fEPSP, 2nd normalized fEPSP, PPF ratio. (C1–C3) Time course of 1.2% isoflurane exposure 

on 1st normalized fEPSP amplitude, 2nd normalized fEPSP amplitude, PPF ratio. (D–F) 

Quantification of 1st normalized fEPSP amplitude, 2nd normalized fEPSP amplitude, PPF 
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ratio. Black horizontal bar represents isoflurane exposure. No difference was noted in PPF 

ratio between control and KO slices (P = 0.163, n = 20 and 21 slices). 0.6% isoflurane 

exposure decreased 1st fEPSP amplitude (Control: P < 0.05, KO: P < 0.05) and 2nd fEPSP 

amplitude (Control: P < 0.05, KO: P < 0.05), while increased PPF ratio (Control: P < 0.05, 

KO: P < 0.05) in both control and KO slices (Control: n = 10 slices, KO: n = 10 slices). 

1.2% isoflurane exposure decreased 1st fEPSP amplitude (Control: P < 0.05, KO: P < 0.05) 

and 2nd fEPSP amplitude (Control: P < 0.05, KO: P < 0.05), while increased PPF ratio 

(Control: P < 0.05, KO: P < 0.05) in both control and KO slices (Control: n = 11 slices, KO: 

n = 10 slices). 1.2% isoflurane exposure produced larger depression of 1st fEPSP amplitude 

(P = 0.005) and 2nd fEPSP amplitude (P = 0.002) in KO slices compared to control slices. 

See also Figure S3.
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