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Abstract

Metformin is the first-line antidiabetic drug with over 100 million users worldwide, yet its 

mechanism of action remains unclear1. Here the Metformin Genetics (MetGen) Consortium 

reports a three-stage genome-wide association study (GWAS), consisting of 13,123 participants of 

different ancestries. The C allele of rs8192675 in the intron of SLC2A2, which encodes the 

facilitated glucose transporter GLUT2, was associated with a 0.17% (p=6.6×10−14) greater 

metformin-induced in haemoglobin A1c (HbA1c) in 10,577 participants of European ancestry. 

rs8192675 is the top cis expression quantitative trait locus (cis-eQTL) for SLC2A2 in 1,226 

human liver samples, suggesting a key role for hepatic GLUT2 in regulation of metformin action. 

Among obese individuals, C-allele homozygotes at rs8192675 had a 0.33% (3.6 mmol/mol) 

greater absolute HbA1c reduction than T-allele homozygotes. This was about half the effect seen 

with the addition of a DPP-4 inhibitor, and equated to a dose difference of 550mg of metformin, 

suggesting rs8192675 as a potential biomarker for stratified medicine.

Metformin was commercialized before the modern era of target-based drug discovery. It 

typically reduces HbA1c by 1-1.5% (11-16mmol/mol) and has an excellent safety record, 

but considerable variation exists in how well patients respond to metformin2,3. We have 

recently established that genetic factors influence glycaemic response to metformin, with 

many common variants across the genome together explaining a substantial proportion of 

the variation, ranging from 21% to 34%, depending on how glycaemic response was 

measured4. Hypothesis-driven studies of pharmacokinetic variants have shown no consistent 
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results5-10. The only GWAS published to date showed an association with rs11212617 near 

the ATM locus, which has been further replicated11,12.

Here we extended the previous GWAS by an additional 345 samples to a screening set of 

1,373 participants. As in our previous report12, rs11212617 remained the top signal with no 

other genome-wide significant hit (Supplementary Figure 1). We undertook a systematic 

three-stage replication, with the work flow shown in Supplementary Figure 2. Only 

rs8192675 in the intron of SLC2A2 was replicated through the first two stages with a 

combined p=1×10−7 derived from a linear regression meta-analysis of 3,456 participants 

(Supplementary Data and Supplementary Table 1).

The MetGen Consortium performed the final replication of rs8192675 as a meta-analysis. 

Measures of glycaemic response to metformin were aligned across the cohorts as the 

absolute HbA1c reduction (expressed as reduction in percentage of HbA1c). Within each 

cohort, we tested associations with rs8192675 using two multiple linear models with or 

without the adjustment of baseline HbA1c, in addition to other available clinical covariates 

(Supplementary Table 2). In the meta-analysis of 10,557 participants of European ancestry 

(Figure 1), each copy of the C-allele was associated with a greater HbA1c reduction of 

0.07% (p=2×10−8, P value (Phet) =0.35) when adjusting for baseline HbA1c; without 

adjustment the allelic effect of C-allele was 0.17% (p=6.6×10−14, Phet =0.52). There was no 

effect of rs8192675 on the efficacy of metformin in delaying progression to diabetes, or on 

metformin efficacy in a small insulin treated cohort (Supplementary Table 3).

We tested the pharmacogenetic effect of rs8192675 in 2,566 participants of non-European 

ancestries (Supplementary Table 4). The meta-analysis showed the C-allele was associated 

with a 0.08% greater HbA1c reduction (p=0.006, Phet =0.63) when adjusting for baseline 

HbA1c, and without the baseline adjustment the allelic effect of the C allele was 0.15% 

(p=0.005, Phet =0.95) without the baseline adjustment. In the meta-analysis of 13,123 

participants of any ancestry (data not shown), we observed no genetic heterogeneity (Phet 

>0.29) between different ethnic groups despite the frequency of the C allele ranging from 

24% in Latino populations to around 70% in African American populations.

We examined whether rs8192675 had an impact on baseline HbA1c, because the effect sizes 

of its association with glycaemic response to metformin differed depending on whether there 

was adjustment for the baseline HbA1c. In the 10,557 participants of European ancestry, the 

C allele was associated with a 0.13% (p=2.6×10−8) higher baseline HbA1c but a 0.04% 

(p=0.007) lower on-treatment HbA1c, which together contributed to the observed 0.17% 

(p=6.6×10−14) pharmacogenetic impact on HbA1c reduction in the model without baseline 

adjustment (Supplementary Figure 3).

Given the association of rs8192675 with HbA1c before treatment with metformin, we 

assessed whether this variant was marking a general ability to respond to any 

antihyperglycaemic treatment. Therefore we studied the pharmacogenetic impact of 

rs8192675 in 2,654 participants treated with sulfonylureas (Supplementary Table 5), another 

commonly used class of antidiabetic drug13,14. As in metformin users, the C allele was also 

associated with a higher baseline HbA1c in these users of sulfonylureas (beta=0.15%, P = 
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3.1×10−4). However, in contrast to the case for users of metformin, the C allele remained 

associated with a higher on-treatment HbA1c (beta=0.09%, p=0.006) in the users of 

sulfonylureas, which resulted in no net pharmacogenetic impact (beta=0.04%, p=0.44) on 

sulfonylurea-induced HbA1c reduction. These data suggest that rs8192675 is marking a 

genetic defect in glucose metabolism in type 2 diabetes that is ameliorated by metformin 

treatment but not by sulfonylurea treatment. The fact that rs8192675 is not associated with 

sulfonylurea response strongly supports a specific role for this variant on glycaemic 

response to metformin, rather than simply reflecting the higher pretreatment (baseline) 

HbA1c seen within carriers of this C-allele. In addition, the association with metformin-

induced HbA1c reduction remained significant (P = 2×10−8; Figure 1) after adjustment for 

baseline HbA1c, corroborating a specific effect on response beyond its effect on baseline 

glycaemia.

Metformin is particularly recommended for the treatment of diabetes in obese individuals 

owing to its beneficial effect on body weight15-17. Therefore, we explored whether the 

pharmacogenetic impact of rs8192675 varied by body mass index (BMI) in the MetGen 

cohorts (n=7,581 participants). BMI was associated with HbA1c reduction (beta = −0.01%; 

P = 1.7×10−4) but not rs8192675 genotype (p=0.52). Adjusting for BMI did not attenuate the 

observed pharmacogenetic effect of rs8192675 (Supplementary Table 6). When we stratified 

participants into nonobese (BMI<30 kg/m2) and obese groups (BMI≥30kg/m2) groups, there 

was a significant (P = 0.02) gene by BMI group interaction (Figure 2). The pharmacogenetic 

effect size of the C allele was 0.13% (s.e.m. = 0.04%, P = 0.001) in the non-obese 

participants as compared to that of 0.24% (s.e.m. =0.04%, P =5.0×10−11) in the obese 

participants.

We performed a locus-wise meta-analysis to narrow down the candidate causal gene and 

variant list. Variant rs8192675 and its proxies showed the strongest association with HbA1c 

reduction (Figure 3). The linkage disequilibrium (LD) block covered three genes, of which 

SLC2A2 encodes the facilitated glucose transporter GLUT2, and EIF5A2 and RPL22L1 
have little known functionality. Previous GWAS showed the nonsynonymous rs5400 in 

SLC2A2 is the main variant associated with glycaemic traits such as fasting glucose and 

HbA1c18,19. Because rs8192675 and rs5400 are in partial LD (D'=1; r2=0.35), here rs5400 

was also associated with metformin response (beta=0.13%, p=5.2×10−4). However, when 

conditioning on rs5400, rs8192675 remains strongly associated with metformin response 

(beta=0.21%, s.e.m. =0.04%, P = 2.3×10−9); when conditioning on rs8192675, rs5400 is 

non-significant (P = 0.29). These results suggest the pharmacogenetic impact of rs8192675 

is unlikely to be via the amino acid change of GLUT2 at rs5400.

Given that liver is the most established site of metformin action, we examined whether 

rs8192675 is an eQTL in 1,226 liver samples of European ancestry. In Figure 3 we show 

rs8192675 as the top cis-eQTL for SLC2A2, with the C allele associated with decreased (P 
= 4.2×10−12) expression. In the 48 tissues examined by Genotype-Tissue Expression (GTEx) 

Project, SLC2A2 was sufficiently expressed in seven tissues (Supplementary Table 7). 

rs8192675 showed a significant (p=5.7 ×10−4) impact on SLC2A2 expression in the 271 

samples of transformed fibroblasts, but no other significant associations20. Beyond GTEx, 

we sought additional eQTL evidence for other tissues that have been implicated in 
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metformin action or glucose homeostasis. We found directionally consistent and supportive 

evidence of rs8192675 or its proxies being SLC2A2 cis-eQTLs in 118 islets (rs8192675, p = 

0.0025)21, 173 intestinal samples (rs5398, p = 0.007)22, and 44 kidney samples (rs1905505, 

p = 0.04) (Supplementary Table 7).

Patients with Fanconi-Bickel Syndrome (Online Mendelian Inheritance in Man (OMIM), 

227810), who carry rare loss-of-function variants of GLUT2, can provide useful insight into 

the role of GLUT2 in glucose homeostasis and into the differing impact of common GLUT2 

variants in various physiological states (Figure 4). Patients with Fanconi-Bickel syndrome 

exhibit low fasting glucose but high postprandial glucose23,24. In parallel, the C allele of 

rs8192675 that is associated with reduced SLC2A2 expression is associated with lower 

fasting glucose and HbA1c among individuals of normal glycemia18,19. We found that, in 

patients with type 2 diabetes, the expression-decreasing C allele of rs8192675 was 

associated with a higher HbA1c before treatment with either metformin or sulfonylureas. 

This deleterious genetic effect of rs8192675 on HbA1c was reversed with metformin 

treatment (C allele associated with lower on-treatment HbA1c and therefore better response 

to metformin), but not by sulfonylurea treatment.

In humans, GLUT2 is a facilitative glucose transporter that is highly produced in the liver, 

kidney, small intestine and islets, and to a lesser extent in certain brain regions and other 

tissues. Defects in GLUT2-encoding gene could potentially alter glucose homeostasis at any 

or all of these sites4. Metformin's main site of action is widely believed to be the liver, where 

it primarily act to suppress hepatic glucose production1,25-27. In mice with Glut2 
inactivation, glucose and glucose-6-phosphate accumulated in the cytoplasm owing to 

reduced glucose efflux, resulting in increased expression of nuclear ChREBP, L-pyruvate 

kinase and lipogenic genes29. Our eQTL data in liver samples (Figure 3) and corresponding 

reporter assays (Supplementary Figure 4) showed that the C allele at rs8192675 was 

associated with lower expression of SLC2A2. This suggests that the variant may lead to 

similar effects on hepatic gene expression in humans, which will be potentially modulated 

by metformin's well-described effect on hepatic glucose production and lipogenesis29,30. An 

alternative explanation could be that reduced SLC2A2 expression owing to rs8192675 is 

associated with reduced glucose-mediated glucose clearance (glucose effectiveness) owing 

to a decreased ability for glucose to enter the liver. This is seen in mice lacking Glut2 in the 

liver, and is an effect that is improved by metformin treatment31, although the mechanism 

for this is not understood.

Metformin is also increasingly believed to exert some of its beneficial effects by acting on 

the intestines to increase gut glucose uptake and non-oxidative glucose disposal, as well as 

increasing bile acid reabsorption, GLP-1 secretion and altering the microbiome33. In leptin-

deficient (ob/ob) mice, metformin has been shown to increase translocation of Glut2 to the 

apical surface resulting in improved glucose homeostasis33. In light of the interaction we 

report between rs8192675 and BMI on metformin response, obese humans are reported to 

have altered GLUT2 localisation in the fasting state compared to nonobese humans33, 

suggestive of dysregulation of glucose sensing and transport in obese individuals. If reduced 

SLC2A2 expression owing to rs819265 were to result in reduced apical GLUT2, metformin 
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could potentially overcome this by restoring GLUT2 transport in the enterocytes and 

improving glucose homeostasis.

Finally, given that metformin is transported into different tissues by several organic cation 

transporters, including OCTs, MATEs and THTR234, we examined whether GLUT2 can 

transport metformin in Xenopus laevis oocytes. Our results suggested that metformin was 

not a substrate or an inhibitor of GLUT2 (Supplementary Figure 5). Detailed human 

physiological studies, as well as functional exploration in animal and cellular model 

systems, are required to fully elucidate the role of GLUT2 in metformin response, and 

whether this is mediated via a hepatic, intestinal or other mechanism.

We examined the potential clinical impact of rs8192675. An unbiased (from the 

nondiscovery cohorts) estimate of its allelic effect was a 0.15% absolute reduction in 

percentage of HbA1c. This is equivalent to the pharmacological impact of taking 250 mg 

extra metformin per day, which is 26% of the average daily dose. We saw more clinical 

potential in obese patients as the honozygote carriers of the C allele had a 0.33% (s.e.m. = 

0.09%, P = 6.6×10−4) greater reduction in percentage of HbA1c than those carrying the T 

allele; this equates to 24% of the average glycaemic reduction seen with metformin 

treatment in the MetGen cohorts and is equivalent to the impact of 550mg extra metformin. 

Given that newer agents such as DPP-4 inhibitors only reduce HbA1c by 0.6-0.8% on 

average36, this genetic effect is large and has potential to be of clinical utility. C-allele 

homozygotes could be treated with lower doses, and be exposed to fewer side effects; 

conversely T-allele carriers could be treated with doses higher than normally recommended 

to achieve a response. This may be of particular importance in African Americans where 

49% of the population are C-allele homozygotes, in contrast to only 9% in European 

Americans. Stratified clinical trials, in different ethnic groups, are required to evaluate the 

potential for this pharmacogenetic variant to influence clinical care.

In conclusion, we have established a robust association between rs8192675 and metformin-

induced HbA1c reduction with a large multiethnic cohort. rs8192675 was the top cis-eQTL 

for SLC2A2 in the liver and potentially islets, kidney and intestine. Reduced SLC2A2 
expression resulted in a defect in glucose homeostasis in type 2 diabetes before initiation of 

therapy, which could be ameliorated by metformin treatment. The clinically appreciable 

impact in obese patients suggests rs8192675 has the potential to be a biomarker for stratified 

medicine.

METHODS

Data access

The three liver eQTL data sets published previously are available with Gene Expression 

Ombibus (GEO) accession numbers: GSE39036, GSE25935 and GSE9588.

Studies and Samples

Both GWAS screening and the first-stage replication analyzed participants with type 2 

diabetes of European ancestry from the GoDARTS cohort. The current GWAS screening 

used 1,373 participants, which included data from 345 samples released after our initial 
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GWAS report on 1,028 participants12. The first-stage replication included up to 1,473 

samples from the remaining GoDARTS participants depending on the call rate and 

genotyping assay. The second-stage replication consisted of 1,223 participants of European 

ancestry from the UKPDS study. The final replication and meta-analysis was conducted 

within the MetGen Consortium which included an extra 6,488 participants of European 

ancestry and 2,566 participants of non-European ancestry. Detailed information on the 

MetGen participants is provided in Supplementary Table 2. Of note, about 50% of the 

MetGen cohort is from PMT, which represents ethnically diverse U.S. populations. These 

cohorts were used extensively in our multi-ethnic analysis for replication purposes. 

Participants from the largest PMT cohort, PMT2, were selected from the Genetic 

Epidemiology Research on Adult Health and Aging (GERA) cohort, a subsample of the 

Kaiser Permanente Research Program on Genes, Environment, and Health (RPEGH) 36. 

Three MetGen cohorts, GoDARTS, UKPDS and DCS also provided data on response to 

sulfonylureas. All human research was approved by the relevant institutional review boards, 

and all participants provided written informed consent.

Genotyping and quality control

Genotyping for the GWAS screening and the first-stage CardioMetabochip replication in 

GoDARTS cohort has been described before by WTCCC2 and DIAGRAM12,37. Standard 

quality control procedures were applied to both data sets to filter SNPs with minor allele 

frequency (MAF)<1% or call rate <98% or Hardy-Weinberg Equilibrium (HWE) deviation 

(p<10−4). Samples with call rate <98% or extra heterozygosity (more than 3 standard 

deviation away from the mean) or correlated with another sample (identity by descent 

[IBD]>0.125) were filtered out. In-house genotyping of the GoDARTS samples in the first-

stage replication were performed with Sequenom MassArray for 66 SNPs and TaqMan 

based Allelic Discrimination assays for 9 SNPs. Details of the SNP selection procedure is 

described in Supplementary Data. All 75 SNPs had call rate >90% and no deviation from 

HWE (p>0.005). The second-stage genotyping of the UKPDS sample was carried out in 

duplicate runs using standard TaqMan assays. All the SNPs were in HWE (p>0.05) and only 

samples with concordant genotypes from both runs were analysed. The third-stage 

replication used high quality genotypes from either TaqMan assay or GWAS imputed data 

on rs8192675 (Supplementary Table 2).

Assessment of glycaemic response to metformin and sulfonylureas

As with our previous GWAS12, two correlated measures of glycaemic response to metformin 

were used in the current GWAS screening and the first-stage replication. A quantitative 

measure of HbA1c reduction (baseline minus on-treatment HbA1c) and a categorical 

measure of whether achieving a target of treatment HbA1c≤7% were used for genetic 

association tests. Therefore only participants with type 2 diabetes and a baseline HbA1c>7% 

were included. Baseline HbA1c was measured within 6 months prior to metformin start 

whilst on-treatment HbA1c was taken as the minimum achieved within 18 months after 

metformin start.

In the second-stage replication and the meta-analysis in the third-stage replication, we opted 

to maximize the sample size by synchronizing the measurement of metformin efficacy in a 
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wider spectrum of participants with type 2 diabetes (including those with baseline 

HbA1c<7%) across the MetGen. Therefore only the quantitative outcome of HbA1c 

reduction was used to assess the glycaemic response to metformin. To maintain relative 

clinical homogeneity, only participants with type 2 diabetes on metformin monotherapy or 

using metformin as an add-on therapy to another oral agent were included.

Data from two MetGen cohorts, which used alternative measures of glycaemic response, 

were not included in the current meta-analyses, but the results are shown in Supplementary 

Table 4. In the DPP cohort of pre-diabetes participants, Cox proportional hazards regression 

was used to evaluate the genetic impact on the time to diabetes incidence8. In the HOME 

cohort, a multiple linear regression was used to test the genetic association with the 

difference in daily dose of insulin because metformin was used in conjunction with insulin 

in these participants38.

Assessment of glycaemic response to sulfonylureas adopted a similar approach as the 

quantitative outcome of metformin response in the MetGen. Baseline HbA1c and on-

treatment HbA1c were captured in a similar manner as those in defining metformin 

response. Only participants with type 2 diabetes who were on sulfonylureas monotherapy or 

using sulfonylureas as an add-on therapy to metformin were included. All participants had a 

baseline HbA1c>7%.

Statistical Analysis

In the GWAS screening and first-stage replication, each SNP was tested for association with 

the continuous measure and categorical measure of glycaemic response to metformin 

separately with PLINK software using linear and logistic regression respectively39. Baseline 

HbA1c, adherence, metformin dose, creatinine clearance and treatment scheme (whether on 

metformin monotherapy or dual therapy of metformin add-on to sulfonylureas) and the first 

10 principle component from EIGENSTRAT were used as covariates40. Statistical evidence 

of the two associations at each SNP was averaged by taking the geometric mean of the two 

p-values in cases in which the direction of effect was consistent (for example more HbA1c 

reduction and more likely to achieve the treatment target both indicate better response).

In the second and third stage replications, association with HbA1c reduction was tested with 

multiple linear regression. Within each cohort, two linear models were fitted either with or 

without adjustment for baseline HbA1c. Baseline HbA1c has been shown as the strongest 

predictor of metformin induced HbA1c reduction in pharmaco-epidemiological studies41. 

Adjusting for baseline HbA1c could reduce the confounding of measurement error in 

baseline HbA1c and increase the statistical power for pharmacogenetic studies42. However, 

if a variant is associated with baseline HbA1c, adjusting for baseline HbA1c would lead to a 

reduced estimate of its pharmacogenetic effect compared to a model that did not adjust for 

the baseline HbA1c. Therefore we presented both models in the current study. Other clinical 

factors such as creatinine clearance (or other measurement of kidney function) and treatment 

scheme were included as covariates where available (Supplementary Table 2). Combining 

the association results from individual cohort was conducted by a fixed-effect inverse-

variance–weighted meta-analysis as applied in GWAMA43. Cochran's heterogeneity 

statistic's p-value was reported as Phet.
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For the genetic association tests with response to sulfonylureas, multiple linear regression 

was used to assess the association between rs8192675 and baseline HbA1c, on-treatment 

HbA1c, HbA1c reduction and baseline adjusted HbA1c reduction. Treatment scheme 

(whether on sulfonylureas monotherapy or using sulfonylureas as add-on treatment to 

metformin) was included as a covariate when modelling sulfonylureas induced HbA1c 

reduction. Association test results from the three cohorts were combined with fixed-effect 

inverse-variance–weighted meta-analysis in GWAMA.

Locus-wise association was performed with GWAS imputed data of 7,223 participants 

available in the GoDARTS and PMT2-EU. Software IMPUTE2 was used to impute the post 

quality control GWAS data at 1Mb flank of rs8192675 against the 1000 Genomes reference 

panel44. Only SNPs with high imputation quality (info>0.9 and MAF>0.02) in both cohorts 

were tested for association with SNPTEST 45. Summary statistics from GoDARTS and 

PMT2-EU were combined with fixed-effect inverse-variance–weighted meta-analysis in 

GWAMA.

To evaluate the translational potential of rs8192675, we derived an unbiased estimate of its 

allelic effect by excluding the discovery cohort in the meta-analysis. This effect size was 

aligned to the clinical impact observed in the PMT2-EU which was the biggest replication 

cohort and used the median average daily dose in the MetGen. The average daily dose and 

dosing impact in PMT2-EU were 962mg/day and an extra 0.6% HbA1c reduction per gram 

metformin respectively. The evaluation of rs8192675 genotype by BMI group interaction 

was performed with linear regression by adjusting for treatment group, sex and study cohort.

Expression quantitative trait locus (eQTL) analyses

We used four liver eQTL datasets comprising a total number of 1,226 livers samples from 

individuals of European ancestry (Supplementary Table 8). Tissue procurement, gene 

expression analysis, genotyping and eQTL analyses have been described previously for three 

of the datasets46-48. The fourth data set was contributed by E. Schadt (E. Schadt, C. Molony, 

E. Chudin, K. Hao, X. Yang et al., personal communication). Genotypes were imputed to the 

1000 Genome reference panel with IMPUTE2. Expression probe sequences were mapped to 

ENSEMBL genes and only the common genes across all datasets were included for 

subsequent analyses. Within each dataset, the genome-wide eQTL analysis was run with an 

additive genetic model including dataset specific covariates to examine cis-associations 

within a 100kb flanking window. Results from the four datasets were then combined with a 

modified meta test statistic which was calculated using the following approach: 

tmeta=(Σwiti)/√(Σwi
2), w=√(n−(#covariates)−1) where i=data sets 1-4 and n=sample size49. 

This method Generation of p-values was accomplished by assuming the meta test statistics 

were normally distributed; a Benjamini-Hochberg multiple testing correction was applied to 

the p-values. For the current study, we extended the cis-association tests to all SNPs within 

1Mb window of SLC2A2 and report the locus-wise p-values of the meta test statistic.

We investigated whether rs8192675 is a cis-QTL in other tissues in the GTEx data release 

V6. Due to the sample size limitation, rs8192675 is not a genomewide significant cis-eQTL 

for SLC2A2 in any of tissues examined. However, given the strong evidence of the variant 

being a cis-eQTL in the large liver samples reported in this study, we considered a 
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directionally consistent association with p<0.05 as supportive evidence. The eQTL data for 

islet and intestine were acquired through contacting the authors of the original 

publications21,22. The eQTL data for kidney were obtained by quantitative real-time PCR of 

44 kidney samples genotyped with the Affymetrix Axiom array. Sample acquirement and 

tissue preparation was described previously50. The transcript levels of SLC2A2 were 

determined using TaqMan probe (ID Hs01096908_m1). The relative expression level of 

SLC2A2 transcript was calculated by the comparative method (ΔΔCt) normalized to the 

housekeeping gene GAPDH, as described previously51.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Pharmacogenetic impact of rs8192675 on metformin response in participants of European 

ancestry. The forest plots show meta-analyses of association test results for metformin-

induced change in HbA1c in a total of 10,557 participants from 10 MetGen cohorts. Results 

from linear regression models with (left) and without (right) adjustment for baseline HbA1c 

are presented. The x axis represents the impact on metformin-induced HbA1c reduction of 

each copy of the C allele. HbA1c was measured in percentage.
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Figure 2. 
HbA1c reduction by BMI group and rs8192675 genotype. Participants were stratified into 

obese (BMI ≥ 30 kg/m2) and nonobese (BMI < 30 kg/m2) groups. The number of obese and 

nonobese individuals in each genotype group is noted along the x axis. Error bars, s.e.m.
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Figure 3. 
Regional plots of the SLC2A2 locus. SNPs are plotted by position on chromosome 3 against 

association with meta-analysis of HbA1c reduction without baseline adjustment (−log10 P) 

in 7,223 participants (left) and meta-analysis of SLC2A2 expression (−log10 P) in 1,226 

liver samples (right). In both plots rs8192675 (purple circle) and its proxies are the top 

signals. The nonsynonymous SNP rs5400 (arrow) was also nominally associated with 

HbA1c reduction. Estimated recombination rates (cM/Mb) are plotted in blue to reflect the 

local LD structure. The SNPs surrounding the most significant SNP, rs8192675, are color 

coded to reflect their LD with this SNP. This LD was taken from pairwise r2 values from the 

HapMap CEU data. Genes, the position of exons and the direction of transcription from the 

UCSC Genome Browser are noted.
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Figure 4. 
Genetic impact of GLUT2 variants on glucose homeostasis in different physiological and 

pharmacologic states. In patients with the monogenic Fanconi–Bickel syndrome (FBS), the 

loss-of-function variants led to lower fasting glucose but higher post-prandial glucose; the 

expression-reducing C allele at rs8192675 was associated with lower HbA1c in normal 

glycemia state but higher HbA1c in hyperglycemia state (before pharmacological treatment 

was indicated in patients with type 2 diabetes (T2D)); metformin but not sulfonylurea 

treatment reversed the genetic impact on HbA1c.
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