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Abstract

Robust lung segmentation is challenging, especially when tens of thousands of lung CT scans need 

to be processed, as required by large multi-center studies. The goal of this work was to develop 

and assess a method for the fusion of segmentation results from two different methods to generate 

lung segmentations that have a lower failure rate than individual input segmentations. As basis for 

the fusion approach, lung segmentations generated with a region growing and model-based 

approach were utilized. The fusion result was generated by comparing input segmentations and 

selectively combining them using a trained classification system. The method was evaluated on a 

diverse set of 204 CT scans of normal and diseased lungs. The fusion approach resulted in a Dice 

coefficient of 0.9855 ± 0.0106 and showed a statistically significant improvement compared to 

both input segmentation methods. In addition, the failure rate at different segmentation accuracy 

levels was assessed. For example, when requiring that lung segmentations must have a Dice 

coefficient of better than 0.97, the fusion approach had a failure rate of 6.13%. In contrast, the 

failure rate for region growing and model-based methods was 18.14% and 15.69%, respectively. 

Therefore, the proposed method improves the quality of the lung segmentations, which is 

important for subsequent quantitative analysis of lungs. Also, to enable a comparison with other 

methods, results on the LOLA11 challenge test set are reported.
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1. Introduction

Lung segmentation is one of the first processing steps in computer-aided quantitative lung 

image analysis. For high throughput applications with tens of thousands of data sets to be 

analyzed—as required by large multi-center trials—fully automated lung segmentation 
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approaches with high robustness and low error rate are imperative to minimize the need for 

human intervention (i.e., manual correction). This is especially important when segmenting 

lungs with lung disease.

A number of papers describing lung segmentation algorithms have been published, and a 

comprehensive review can be found in [1]. Basically, methods developed can be grouped 

into three categories given below.

a. Simple, low complexity methods like region growing [2, 3], which are 

based on simple assumptions (e.g., density range of lung tissue). These 

methods typically work well for normal lungs, but may fail in the case of 

diseased lungs or imaging artefacts. An advantage of such methods is the 

low computational complexity.

b. Advanced, more robust algorithms that try to overcome the problems of 

category a) and typically show higher computational complexity. 

Examples in this category include approaches based on registration [4], 

lung shape models [5, 6] and advanced threshold-based segmentations 

utilizing adaptive border matching [7] or texture features [8].

c. Hybrid approaches that try to use a method in category b) only if a result 

produced with method in category a) is classified as failed based on some 

heuristics (e.g., assumptions about lung volume). Representatives in this 

category are the work of Rikxoort et al. [9] and Mansoor et al. [10]. The 

main motivation behind such approaches is to take advantage of the low 

computational complexity of methods in category a), but with the optional 

performance of more advanced methods in category b). The behavior of 

methods in group c) depends on whether the heuristics for switching to a 

method in category b) work or not. Furthermore, with increasing 

computing power combined with lower hardware costs, hybrid methods 

may become less attractive, because as computational costs become less 

important, more advanced methods can be utilized routinely.

All methods in these categories have different pros and cons and are based on different 

design assumptions that might or might not hold. In the case of pathological lungs, it is 

expected that the likelihood of failure of methods in category b) is lower than for the ones in 

a), but despite all the efforts, they can (locally) fail too. For example, Fig. 1(a) depicts a 

coronal CT cross-section of a lung with idiopathic pulmonary fibrosis (IPF). Corresponding 

segmentations of a region growing and model-based [6] method are shown in Figs. 1(b) and 

1(c), respectively. As can be seen in the difference image of both segmentations (Fig. 1(d)), 

both methods show local segmentation errors due to different reasons like a violation of the 

assumption of a specific lung density range (Fig. 1(b)) or problems with model initialization 

(Fig. 1(c)).

In this paper, we propose a segmentation fusion approach based on a classification 

framework, which selectively combines (components of) two independently generated lung 

segmentations to form a new segmentation result with no or reduced errors. The idea behind 

this approach is to take advantage of the strength of both methods, but without including 
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their errors. In our case, the two segmentations are generated by a region growing and robust 

active shape model (RASM) based method [6] (Section 2). Compared to other lung 

segmentation approaches, it does not rely on a fallback method [9, 10] where a more 

complex segmentation approach is chosen if the output of a simple region growing method 

is classified as being incorrect, nor does it simply combine segmentation results with a logic 

OR operation [8, 10]. Instead, our approach follows a more flexible approach that can 

selectively combine components of both lung segmentation results, as demonstrated in Fig 

1(e). We assess fusion performance on a diverse set of 204 lung CT scans and provide a 

comparison to the performance of both input lung segmentations. Also, the fusion method 

can be easily adapted to different input segmentation methods by retraining of the 

classification system.

2. Selecting Suitable Input Segmentation Methods and Prior Work

In this section, we discuss the general requirements for selecting suitable input methods for 

our segmentation fusion approach and introduce the two segmentation approaches utilized in 

this paper.

2.1. Considerations and requirements

The overarching assumption of deploying a fusion approach is that existing lung 

segmentation methods are–to a certain degree–imperfect. Thus, algorithms can and will fail, 

especially when applied to a large number of medical data sets, as is the case in large multi-

site studies (e.g., COPDGene1). The aim of the presented framework is to improve 

segmentation accuracy and reduce the failure rate by utilizing a segmentation fusion 

approach on two base segmentations. We assume that the base algorithms A and B are suited 

for lung segmentation and show already good performance, but will still fail in a number of 

cases. We note that such segmentation methods rarely produce complete failures (e.g., 

segmenting the air surrounding the patient instead of the lung). Typically, failures occur 

locally and are limited (e.g, leakage into colon, including the trachea, excluding a tumor, 

etc.). Instead of selecting method A or B, and having to deal with frequent occurring errors 

by time-consuming manual editing, the idea is to use both segmentation results selectively to 

produce a new segmentation C with no or reduced errors (i.e., lower error rate at a required 

accuracy level).

The ideal set of candidates for producing input segmentations A and B have non-overlapping 

weaknesses and strengths, resulting in (local) disagreement between methods. Fig. 2 

provides several examples for a region growing and model-based lung segmentation 

approach that will be utilized in this paper. Differences in generated lung masks result in 

local volume components of disagreement (Fig. 2d), which can have many causes. Typically, 

they are caused by assumptions that methods make. As can be seen in Fig. 2, both input 

segmentation methods show non-overlapping weaknesses, and thus, are suited for a fusion 

approach.

1http://www.copdgene.org
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Given the results of two lung segmentation algorithms A and B, we assume that if both 

methods label a voxel as lung tissue, then the likelihood of the voxel representing lung is 

high. Therefore, it will be labeled as lung by our fusion method. For components of 

disagreement, a trained classifier is utilized to individually decide which components should 

be added to the volume of mutual agreement between both methods, resulting in the final 

output segmentation of the algorithm. Note that classification is performed on components 

of disagreement (i.e., volume chunk). Therefore, all voxels of the volume chunk will receive 

the same label by the classifier.

2.2. Method A - region growing based segmentation

The region growing segmentation RG is obtained using a threshold of −500 HU. The seeds 

for region growing are identified automatically as follows. Let sx, sy, and sz denote the size 

of a CT data set in x-, y-, and z-direction, respectively. First, initial seeds are placed. For the 

left lung, two initial seeds are generated at  and . For the 

right lung, two initial seeds are placedat  and . Second, 

near each initial seed, the voxel with the lowest density on a 70 voxel long search line along 

the x-direction is identified. The search lines start at each seed location and go in distal 

direction. Also, to avoid leakage into airways, a pre-processing step is performed to exclude 

major airways from being added to the lung mask. For this purpose, the trachea and main 

bronchi are first found by utilizing a modified version of an airway tree segmentation 

method described by Bauer et al. [11]. The identified airways are dilated using a spherical 

form element with a radius of 2 voxels and the resulting mask is used to assign a value of 50 

HU to corresponding voxels in the CT data set. To close gaps due to vessels and airways in 

the thresholding result, a morphological closing operation is applied. Subsequently, a 

marker-based watershed algorithm [3] is used to separate the result into left and right lungs.

2.3. Method B - model-based segmentation (RASM)

To generate the model-based segmentation, a point distribution model (PDM) is generated as 

described by Gill et al. [12], which captures the variation of lung shapes. The PDM is built 

separately for left and right lungs, and the following segmentation steps are done separately 

as well. The segmentation procedure begins with initializing the PDM by utilizing a feature-

based alignment system [13]. This is followed by a robust active shape model (RASM) 

matching step [6] to align the PDM with the CT volume, resulting in the segmentation 

RASM. Subsequently, this segmentation is further refined using a graph-based optimal 

surface finding (OSF) approach [6], which allows finding a surface related to the shape prior, 

resulting in the final segmentation OSF. Note that large airways were identified as outlined 

in Section 2.2 to make them unattractive for RASM and OSF segmentations. In addition, 

instead of using original CT volume to compute RASM and OSF segmentations, we modify 

the CT volume using a Total Variation L1 based texture analysis approach [14]. The 

modification improves the segmentation performance for lungs with interstitial lung disease 

(ILD), but does not affect the segmentation of normal lungs [14].
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3. Methods

An overview of our method is given in Fig. 3. It is based on fusion of region-growing and 

model-based segmentation results. The segmentations are divided into two volumes: the 

common segmentation volume C = RG ∩ OSF (all voxels that belong to both 

segmentation volumes) and the difference segmentation volume D (all voxels that are in 

one of the segmentations but not in the other). Our fusion approach identifies components of 

the difference segmentation volume D (Section 3.1), employs a classification system 

(Section 3.2) to determine which components belong to lung volume, and combines them 

with the common segmentation volume (Section 3.3) to form a segmentation mask F. The 

resulting volume is post-processed to yield the final segmentation Fusion (Section 3.4).

3.1. Components of the difference segmentation volume

The volume D is divided into three sets of spatially distinct volume components: boundary 

bias region volumes, large chunks, and small chunks. The rationale behind this approach is 

as follows. First, consider the segmentations depicted in Figs. 4(a) and 4(b), respectively. 

Due to bias in boundary delineation between segmentations, the difference volume D may 

include a thin layer of voxels along the lung boundary, as shown in Fig. 4(c). The boundary 

voxels in volume B are induced by a bias of the utilized segmentation methods. With bias 

we refer to the preference of an algorithm where it places the lung boundary. Since this is a 

systematic error, this can be addressed by adjusting the base segmentation algorithm (e.g., 

change threshold for region growing). Therefore, voxels in B are not considered as a major 

segmentation error and are processed separately by the classification system. Second, 

calculating complex features for small chunks below a certain size ρ voxels will result in 

noisy, unpredictive features due to the low voxel count.

The following procedure is used to divide the difference volume D into the three subsets. 

First, a morphological opening operation is performed using a spherical form element with a 

radius of 1 mm to differentiate between chunks and boundary bias differences. Second, a 

connected component analysis is applied, resulting in a set of chunks ΩC and a set of surface 

bias volumes ΩB. Third, chunks in ΩC that are smaller thanρ voxels are put into ΩCsmall and 

the rest into ΩClarge so that classification system can process them separately. Note that in 

the above outlined procedure, the source (i.e., RG or OSF) of difference voxels in volume 

D is taken into account. Consequently, adjacent difference volume components that were 

caused by region growing and model-based segmentation will not be merged, and thus, 

result in separate elements in above defined sets.

The selection of ρ was performed empirically by utilizing the training data set Strain (Section 

4.1), which was split into two sets StrainA and StrainB by means of random sampling. For ρ ∈ 
{100,200,300,400,500} voxels, the following procedure was performed. First, the fusion 

system was trained on StrainA. Second, the classification performance of the fusion system 

was evaluated on StrainB. Third, the value for ρ with the best performance was selected, 

yielding ρ = 200 voxels. This value was subsequently utilized in all experiments.
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3.2. Classification system

The classification system (Fig. 3) comprises of two classifiers, one for classifying large 

chunks in set ΩClarge (Section 3.2.1) and one for classifying small chunks in set ΩCsmall as 

well as boundary bias regions in set ΩB (Section 3.2.3). Details are given below.

3.2.1. Classifying large chunks—A classifier is learned from a set of training CT 

volumes and corresponding reference lung segmentations in Strain (Section 4.1) to 

distinguish between chunks belonging to the lung and those not belonging to the lung. The 

chunks ΩClarge are generated by first producing region growing and model-based 

segmentations on the training data, followed by the processing steps given in Section 3.1. 

Then, a feature descriptor fω is computed for each chunk ω ∈ ΩClarge . The descriptor 

considers different properties that are captured by calculating the following feature volumes 

on the input CT scan.

i. Density: This feature volume is used to distinguish between chunks 

belonging to different structures in a CT volume such as air, lung tissue, 

fat, bones, etc. based on their Hounsfield units (HU). Density is measured 

after removing noise from the CT scan using a TV-L1 filter based on the 

implementation proposed by Pock et al. [15] with λ=1.5.

ii. Gradient magnitude: This feature volume aims to distinguish between 

homogeneous and non-homogeneous chunks based on density. The 

gradient is computed on the filtered CT volume described in i) by using a 

symmetric first-order derivative operator.

iii. Curvature: To characterize the local shape of low density structures (e.g., 

lung tissue), a curvature volume, which represents the curvature in a 

neighborhood around each voxel, is generated. First, a threshold of −300 

HU is applied to the CT volume to identify target structures. Second, the 

trace of the Hessian matrix is computed on this binary volume, resulting in 

the curvature volume. The Hessian is calculated at scale of 2 mm to 

produce high responses near the costophrenic angle.

iv. Distance from lung boundary: This feature volume is computed to 

estimate how close the chunk is to the lung boundary. Also, it is used for 

distinguishing chunks inside the lung, such as tumors, from chunks outside 

the lung, such as a leak into colon. Since the model segmentation RASM 

has shown to be successful in including lung tumors [6], it is utilized to 

compute a signed distance transform. To compare distances across CT 

volumes, they are normalized by the maximum boundary distance found 

inside the lung.

v. Texture: This feature volume indicates which chunks are affected by ILD. 

It is constructed using the TV-L1 based texture processing [14], which 

responds to texture patterns caused by ILD.

vi. Location: To capture the relative location of chunks, two feature volumes 

are used to store the location of each voxel in y- (anterior-posterior axis) 
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and z-direction (superior-inferior axis). Since the image dimensions are 

different across CT volumes, the location needs to be normalized so that it 

can be correctly compared across CT volumes. The bounding box around 

the model-based segmentation RASM is used for this purpose. The 

location is normalized such that it varies from 0 to 1 within the bounding 

box.

Histograms are computed for all chunks and all of the above described feature volumes. The 

number of bins for each feature histogram is determined automatically by an algorithm 

described in Section 3.2.2, which is applied to the the training set Strain (Section 4.1). Table 

1 summarizes the number of resulting bins per feature type. All the bins of a histogram form 

the components of the corresponding feature vector. The resulting seven vectors are 

concatenated to a single feature vector per chunk. In addition, the mean and standard 

deviation of the density and gradient magnitude are computed for voxels inside each chunk 

and appended, resulting in a 37-dimensional feature descriptor fω for each chunk ω.

For each chunk ω ∈ ΩClarge generated on the training data set Strain, a class label Yω is 

required to train the classification algorithm. We derive Yω from the corresponding 

reference segmentation. Because a chunk can consist of a number of voxels with different 

lung labels, Yω is computed by taking the majority class label of the chunk. We use Yω = 1 

to indicate that the chunk belongs to the lung and Yω = 0 if the chunk does not. In addition, 

out of the pool of all chunks available for training, only the ones with 90% voxel label purity 

are utilized for training the classifier. While this reduces the number of utilized training 

examples, it also increases the quality of the trained classifier, because it can better learn the 

characteristics of lung and background regions.

For classification, a k-nearest neighbor (kNN) approach  with k = 3 is utilized. The value 

of k=3 was determined by means of a ten-fold cross validation experiment on the training set 

Strain. Once trained, the following steps are performed for classifying a previously unseen 

large chunk. First, its feature descriptor is calculated. Second, the classifier  is applied, 

resulting in a single class label for the chunk, which is assigned to all its voxels.

3.2.2. Determining histogram bins—The number of bins of the histogram determine 

the dimensionality of the feature descriptor. If the bins are too coarsely spaced, a potential 

loss of discrimination between lung and background can result. On the other hand, if the 

bins are finely spaced, the length of the feature descriptor increases, which can adversely 

impact classification performance due to the curse of dimensionality. Thus, to define the 

bins, we utilize the output of a decision tree classifier [16] that was trained to separate 

chunks in the training data according to their class labels. The rationale behind this approach 

is as follows. In the training phase of a decision tree classifier, a tree structure is build. In the 

tree, branch nodes represent simple queries regarding the value of a single feature. Each 

branch node has two child nodes, one for true and one for false queries, which lead to a new 

branch node or a leave node with an associated class label. The goal of classifier training is 

to build a decision tree structure such that the labels of training samples at leaves are as 

homogeneous as possible. Therefore, assigning the majority class label to a leave node will 

minimize the classification error on the training set. For our application, this means that the 
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rules at nodes represent discriminative feature bin boundaries for use in conjunction with the 

kNN classifier (Section 3.2.1).

The above outlined approach was performed for each of the features separately. In addition, 

to better capture the preference/properties of segmentation methods that cause chunks, a 

more fine grain class label is used instead of the one described in Section 3.2.1. This is 

accomplished by also encoding the source of a chunk in addition to information whether a 

chunk belongs to the lung or not, resulting in four potential class labels: Ỹω ∈ {0RG, 0OSF, 

1RG, 1OSF}. The depth of the decision tree is limited to 5 levels to restrict the maximum 

number of bins. The decision rules (branches) of the decision tree directly provide the 

boundaries of the bins. Table 1 summarizes the resulting histogram bins and corresponding 

number of feature descriptor components for each of the features.

3.2.3. Classifying small chunks and boundary bias regions—As mentioned in 

Section 3.1, calculating complex features for small or thin chunks will result in noisy, 

unpredictive features due to the low voxel count. Consequently, a different classification 

approach is needed. Radiologists frequently use information about tissue density acquired 

with CT for decision making. For example, it is well established that normal lung tissue has 

a density range between −500 and −900 HU. We utilize this knowledge in form of a simple 

classification rule. However, because lung diseases (e.g., interstitial lung disease) can 

increase lung tissue density, we use a more relaxed threshold of −300 HU. Thus, to classify a 

chunk ω in ΩB or ΩCsmall, the average density µω of chunk ω is computed, and the following 

rule-based classifier is utilized to determine the class label Y, indicating whether the 

component belongs to the lung or not:

(1)

3.3. Selectively combining segmentations

Given a new CT volume, the region growing based segmentation result RG and model-

based segmentation segmentation OSF are computed, and the component sets ΩClarge, 

ΩCsmall, and ΩB are derived as described in Section 3.1. Based on the output of the classifiers 

 (Section 3.2.1) and ℛ (Section 3.2.3), several sub-masks are generated with ω1 = {ω ∈ 
ΩClarge | (fω) = 1}, ω2 = {ω ∈ ΩCsmall | ℛ(μω) = 1}, and ω3 = {ω ∈ ΩB | ℛ(μω) = 1}. 

The 3D fusion segmentation mask F is then given by

(2)

3.4. Postprocessing

The classification process may lead to small holes in the segmentation mask F or boundary 

voxels may get disconnected if adjacent chunks are classified as not belonging to the lung. 

Holes are filled using a morphological closing operation with a spherical element of radius 1 

mm. To separate potentially connected left and right lungs, a marker based watershed 
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approach[3] is employed, and subsequently a connected component analysis is performed to 

ensure a maximum of two components, resulting in lung masks for left and right lungs in the 

final fusion output Fusion.

4. Image data and independent reference standard

For training and evaluation of our segmentation fusion approach, 344 multidetector 

computed tomography (MDCT) thorax scans of lungs were available that consisted of five 

cohorts, including 65 scans with no significant abnormalities (normals), 61 scans of asthma 

(both severe and non-severe) patients, 61 scans of lungs with chronic obstructive pulmonary 

disease (COPD, GOLD1 to GOLD4), 95 scans with different lung diseases, and 62 scans 

with idiopathic pulmonary fibro-sis (IPF). All CT images had a matrix size of 512 × 512 

elements. The number of slices varied from 205 to 781 (mean: 555.9). The in-plane 

resolution ranged from 0.4883 × 0.4883 to 0.9082 × 0.9082 mm (mean: 0.6508 × 0.6508 

mm). The slice thickness of images ranged from 0.500 to 1.250 mm (mean: 0.5563 mm). 

Specifically, the unique values for slice thickness were 0.500, 0.600, 0.625, 0.630, 0.700, 

1.000, and 1.250 mm, and the corresponding number of scans with these values was 234, 8, 

67, 3, 24, 4, and 4, respectively.

The data was split into two disjoint sets; one for classifier training (Strain) and one for 

evaluation (Stest). Table 2 shows the composition of sets with respect to cohorts, and further 

details are given in Sections 4.1 and 4.2.

4.1. Training data

The utilized training data set Strain consists of the 140 CT scans (Table 2) with 

corresponding volumetric (3D) lung masks.

4.2. Test data

An independence reference standard was generated by an expert for all the test CT images in 

set Stest. First, an initial 3D segmentation was generated by using a commercial lung image 

analysis software package Apollo (VIDA Diagnostics Inc., Coralville, IA). Second, all 

segmentations were inspected and segmentation errors were manually corrected. Due to the 

large number of 204 test CT scans, we utilize a sampling approach to reduce the effort 

required for generating the reference segmentation. Thus, for every tenth axial slice, a 

reference segmentation was generated, resulting in a dense sampling of lung volumes. In the 

following sections, the different cohorts of test set Stest will be denoted by Snormal, Sasthma, 
SCOPD, Smix, and SIPF, respectively.

5. Evaluation

All reported validation experiments are performed on the complete test set Stest with 204 CT 

scans (Table 2), unless otherwise noted. To assess overall segmentation accuracy, the dice 

coefficient D [17] was utilized. Because a reference was available for every tenth axial CT 

slice (Section 4.2), the same sampling approach was applied to the segmentation result to be 

evaluated. Based on the sampled volumes, the Dice coefficient was calculated. Similarly, to 

enable comparison with other methods (Section 7.2), we also calculated segmentation 
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overlap scores O (Jaccard index) [18]. For comparison, we also provide an assessment of the 

input segmentations generated with methods RG and OSF. All measurements are reported in 

mean + standard deviation format. To assess statistical significance, a paired permutation 

test [19] was performed.

The proposed method was designed to avoid or reduce failures. To adequately assess this 

ability, the failure rate F(γ) is calculated. F indicates the percentage of cases in Stest that do 

not meet a given quality criteria (γ) and need manual postprocessing to correct errors. For 

this purpose, a case is counted as a failure if its Dice coefficient is at or below the limit γ. 

Because selecting a suitable γ is highly application dependent, we investigated practically 

relevant γ values in a range from 0.92 to 0.99.

6. Results

6.1. Segmentation performance

Table 3 summarizes the Dice coefficient achieved with our fusion approach as well as 

region-growing and model-based input methods. On all test sets, the fusion approach 

delivered statistically significant improvements when compared to region-growing and 

model-based segmentations with p-values much smaller than 1e-03. Table 4 summarizes the 

failure rate F( γ) for OSF, RG, and Fusion segmentation approaches. In addition, it also 

provides the change in failure rate ΔF of the proposed fusion approach compared to OSF and 

RG, respectively. Note that an ideal method would produce a failure rate of 0%. Also, as γ 
approaches one, the failure rate converges to 100%, because none of the three segmentation 

methods produces results that are exactly the same as the reference standard.

Examples of segmentation results for OSF, RG, and Fusion are given in Fig. 5. To enable a 

comparison with other published methods (Section 7.2), the overlap error O of the proposed 

fusion method is given in Table 5.

6.2. Computational complexity

Generating a segmentation with our fusion approach takes 18.17 ± 3.55 minutes. This 

includes 3.41 ± 0.84 minutes for region growing segmentation, 4.34 ± 0.65 minutes for 

model-based segmentation, and 10.41 ± 2.55 minutes for calculating features and 

subsequent fusion of segmentations. All experiments were performed on a PC with a 2.70 

GHz CPU. Note that kNN training and classification was performed in MAT-LAB (The 

MathWorks, Inc., MA) and the code was not optimized for speed.

7. Discussion

7.1. Fusion performance

Each lung segmentation algorithm needs to build on certain assumptions. For example, a 

region growing based lung segmentation assumes that lungs have low density and a fairly 

homogeneous appearance, whereas a model-based approach assumes that lungs have similar 

shapes, which allows to build a lung model that can be used for segmentation by matching it 

to new image data. In practice, the assumptions of a particular segmentation method might 
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or might not hold, and therefore, lay the groundwork for achievable segmentation accuracy 

as well as success in some cases and (local) failure in other cases.

The goal of this work was to develop a Fusion framework for combining the strengths of two 

different segmentation methods to yield a lung segmentation approach that is less likely to 

produce segmentation failures than its base input segmentation methods. As the analysis of 

the failure rate in dependence of the desired segmentation accuracy (i.e., Dice coefficient) 

illustrates, the fusion approach showed considerably better performance than OSF and RG 

approaches over all investigated accuracy levels (Table 4). For example, if segmentations 

with an accuracy of larger than 0.97 was required, which represents a good performance 

level for lung segmentation, then OSF and RG methods resulted in a failure rate of 15.69% 

and 18.14%, respectively (Table 4). In contrast, our fusion approach that utilizes OSF and 

RG as input achieved a lower failure rate of 6.13%. When compared to the performance of 

OSF and RG, this represents a relative reduction of 60.94% and 66.22%, respectively (Table 

4). Such reductions of failures are especially relevant for applications that require computer-

aided analysis of several thousand lung CT scans due to the reduced need for subsequent 

manual editing. The impact of our approach can be clearly seen from the examples provided 

in Fig. 5.

As demonstrated by the results presented in Section 6, the fusion system was found to 

produce statistically significant more accurate segmentations on all cohorts investigated 

(Table 3), showing that the fusion method doesn’t degrade overall performance. While 

differences were significant, the rather small change in average Dice coefficients is expected, 

because not all of the 204 test cases cause segmentation errors when processed with input 

segmentation methods OSF or RG. Consequently, the failure rate F(γ) is more relevant for 

assessing whether or not the fusion approach manages to reduce failures/errors, which is the 

main goal of our work. As Table 3 shows, the largest improvements in Dice coefficient 

values were achieved by the fusion approach on test sets Smix and SIPF, which are the most 

challenging to segment.

In terms of computing time, a fusion approach is more expensive than any of the input 

segmentation algorithms due to the need for additional processing. Despite the fact that we 

did not optimize the implementation of the algorithm, the increase in computational cost is 

manageable and opportunities for parallel implementation to run on multi-core processors 

exist. For many applications, the increase in automated segmentation accuracy outweighs the 

increase in computing time.

7.2. Comparison with other methods

To enable a comparison with other methods, we applied our fusion approach to the LObe 

and Lung Analysis 2011 (LOLA11) challenge data set. However, we note that the LOLA11 

test set includes cases with pleural effusion, but pleural effusion cases were not present in 

the available training set Strain. Clearly, utilizing a fusion approach that was not properly 

trained is not recommended and can lead to suboptimal results. To enable a fair comparison 

and, at the same time, demonstrate the impact of a well adapted classification system, we 

processed the LOLA11 test set with two variants of our algorithm: FusionST and FusionPE. 

FusionST represents the standard algorithm as described in Section 3. For FusionPE, the 
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following classification rule was added to the system to enable it to deal with pleural 

effusion cases, that could not be learned from our training data set Strain . The idea behind 

this rule is to reject large chunks that mainly consist of pleural fluid and constitute a large 

area of a lung. Therefore, a chunk ω ∈ ΩClarge is rejected if it’s volume is at least 20% of the 

volume of the model-based lung segmentation and the relative amount of pleural fluid is at 

or exceeds 50% of the volume of ω. Pleural fluid voxels are identified with a range-bound 

threshold operation, and the range [−21 32] HU was selected by combining the ranges for 

exudate pleural effusions and transudate effusions that were previously reported by 

Abramowitz et al. [20]. We note, that adding this rule had no impact on the results that were 

reported in Section 6 (i.e., Fusion ST and FusionPE deliver the same results on Stest), 

confirming the selective behavior.

For performance assessment, all 55 test data sets were downloaded from the LOLA112 

website, segmented with both fusion variants, and submitted to the organizers, who in return 

provided quantitative evaluation results based on a comparison with their undisclosed 

reference standard. Results for FusionST and FusionPE on the LOLA11 test set are 

summarized in Table 6. In addition, the performance of an early version of our model-based 

(input) segmentation algorithm published by Sun et al. [23] and several other segmentation 

approaches is provided. By comparing the results, we can observe the following. First, both 

fusion methods are better performing than the early version of our model-based approach. 

Second, the average score of FusionPE is higher than the one for FusionST, which is expected 

due to the better adapted classifier in the case of FusionPE. The difference between the 

results for FusionST and FusionPE on LOLA11 test data demonstrates the importance of 

representative training data for a classification based fusion approach. Third, the proposed 

fusion approach is currently one of the top-performing methods (Table 6). For a quantitative 

comparison with results of other methods and latest results, we refer the reader to the 

LOLA11 website3.

Fig. 6 provides some examples of results on LOLA11 data sets. Row (a) in Fig. 6 shows a 

lung CT scan of patient with scoliosis of the spine, leading to an atypical lung shape. While 

region-growing manages to deal with this problem, the OSF approach, which is model-

based, fails to completely adapt to this abnormal lung shape. Both fusion variants correctly 

handle this situation. Row (b) in Fig. 6 depicts a case with a larger consolidation near the 

apex in one lung. As can be seen, this represents a challenge for the region-growing method, 

but the OSF approach includes the area of consolidation. Note that OSF produces a local 

segmentation error in the area of the costophrenic angle. Methods FusionST and FusionPE 

manage to avoid the errors of RG and OSF, respectively. Row (c) in Fig. 6 show 

segmentation results on a case with a large pleural effusion. While, the region growing 

segmentation contains only minor errors, the OSF segmentation includes large parts of the 

pleu-ral effusion. Since FusionST was not trained on such data, it mostly replicates the error 

of the OSF segmentation. In contrast, FusionPE better handles this difficult segmentation 

problem. Also, note the difference between OSF and FusionST in the area of the pleural 

2http://www.lola11.com
3http://www.lola11.com/Results/Overview
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effusion, which are caused by the postprocessing (marker-based watershed) described in 

Section 3.4.

When comparing our LOLA11 results (Table 6) with the evaluation provided in Section 6 

(Table 5), we can notice the following. The result for FusionPE is almost identical to our 

segmentation overlap results and well within the range of results reported on the different 

cohorts (Table 5). However, we note that our test set S test is almost five-fold larger and is 

more geared towards the requirements of large clinical trials (i.e., different inclusion 

criteria).

7.3. Current limitations and future work

For our fusion approach, it is desirable that the union of base segmentation results include 

the lungs. Given the fact that both utilized base segmentation methods are optimized for lung 

segmentation, we found that this is the case most of the time. However, even if this is not the 

case, the fusion approach can still produce an improved, less erroneous lung segmentation, 

which might be sufficiently accurate for a given problem or require less subsequent manual 

editing, and therefore, is still more desirable than any of the base segmentations. In this 

context, if a better lung segmentation method becomes available, it can be incorporated in 

our fusion approach by simply replacing one of the base (input) segmentation methods. Our 

fusion approach can be adapted to the new configuration by simply retraining the classifier.

The fusion method assumes that if both lung segmentations label the same region as lung, 

the region represents true lung tissue. It is conceivable that cases exist where both methods 

are wrong. This issue could be addressed in two ways. One option could be to generalize the 

fusion system so that three or more input segmentation can be processed, which would 

further reduce the likelihood that all segmentation methods miss a part of the lung, but 

require a more fine grain processing of differences between base segmentations. Another 

option to address this issue is to further partition the common segmentation volume into sub-

parts and develop a classification system for such “agreement” chunks.

Our fusion system computes volume chunks and accepts or rejects them based on image 

features. We note that in some cases a chunk might consist of a mixture of lung and other 

tissues. Thus, a possible future extension of the presented approach could be to further 

process volume chunks to split them into homogeneous volume elements (e.g., super voxels) 

and perform classification on them, which might help to further increase segmentation 

performance.

The fusion system is dependent on representative training data sets to build the classifier. 

One option for getting relevant new learning examples would be to implement an online 

learning system within a production environment. Thus, if a lung in a CT scan is not 

segmented satisfactory, the data set is manually processed, integrated into the training set, 

and the fusion classifier is retrained with the expanded training set. In this context note that a 

new application domain might also require new features to reach the full potential of the 

fusion approach.
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8. Conclusions

We have presented a fusion approach to increase the robustness of automated lung 

segmentation by selectively combining the output of a region growing and a model-based 

lung segmentation method. Experiments on a diverse set of 204 CT scans have shown that 

the fusion method delivered statistically significant better results than the utilized individual 

lung segmentation algorithms, independent of the investigated cohort. In addition, the fusion 

approach did have a lower failure rate over a wide range of performance levels. The 

increased robustness make the fusion approach an attractive selection for applications 

requiring high volume processing like multi-site clinical trials. In addition, the algorithm can 

be generalized to other application domains.
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Figure 1. 
Comparison of lung segmentation methods applied to a CT scan of a lung with IPF. (a) 

Coronal slice of the CT scan. (b) Region growing segmentation result. (c) Model-based 

segmentation result. (d) Difference volume between the segmentations in (b) and (c); arrows 

indicate components corresponding to (A) leak into colon and (B) lung tissue affected by 

IPF. (e) Result of the fusion approach in which component (A) is rejected and component 

(B) is accepted.
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Figure 2. 
Example of the weaknesses and strengths of two different segmentation methods, leading to 

(local) volume components of disagreement. (a) Coronal CT slices of the lung. (b) Region 

growing based segmentation results. (c) Model-based segmentation results. (d) Volume 

components resulting from set-theoretic differences between both segmentation results. For 

cases 1 and 2, region-growing results without model-based results (RG \ OS F) are shown. 

The components of disagreement mainly represent trachea/airways and the region of the 

costophrenic angle, respectively. For cases 3 and 4, model-based results without region-

growing results (OS F \ RG) are shown. The components of disagreement mainly represent 

tumor and fat tissue, respectively. Note that, while some of these components belong to the 

lung, others do not.
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Figure 3. 
Flowchart showing the different components of our fusion system. The components of the 

difference segmentation volume and classification system are shown in detail.
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Figure 4. 
Example of a boundary bias region. (a) Region growing segmentation result. (b) OSF 

segmentation result. (c) Difference volume showing the segmentation bias in the boundary 

region.
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Figure 5. 
Comparison of segmentation results obtained by employing region growing, model-based 

and fusion methods. Each row contains a new example, and the first entry on the left gives 

the name of the dataset from which the CT scan is taken.
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Figure 6. 
Examples of results on the LOLA11 test set.
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Table 1

Histogram bins used for computing feature components (see Section 3.2.2 for details). The symbols -∞ and 

∞ are used to denote the lower and upper bounds of a particular feature, respectively.

Feature type Boundaries of histogram bins
Number of

resulting feature
components (bins)

Density [−∞, −916, −496, −157, −45, 1, 40, ∞] 7

Gradient Magnitude [0, 29, 110, 162, 542, ∞] 5

Curvature [0, 0.18, 1] 2

Boundary Distance [−1.0, −0.04, 0.03, 0.27, ∞] 4

Texture [0, 0.70, 0.94, 1, ∞] 4

Y-Location [−∞, 0.25, 0.43, 0.59, 0.79, 0.84, ∞] 6

Z-Location [−∞, −0.03, 0.07, 0.33, 0.74, ∞] 5
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Table 3

Dice coefficient D for input segmentations and fusion segmentation.

Set OSF RG Fusion

Snormal 0.9861 ± 0.0049 0.9882 ± 0.0052 0.9904 ± 0.0037

p≪1e-03* p≪1e-03* -

Sasthma 0.9815 ± 0.0083 0.9793 ± 0.0228 0.9865 ± 0.0069

p≪1e-03* p≪1e-03* -

SCOPD 0.9845 ± 0.0116 0.9890 ± 0.0048 0.9910 ± 0.0032

p≪1e-03* p≪1e-03* -

Smix 0.9724 ± 0.0215 0.9662 ± 0.0588 0.9809 ± 0.0153

p≪1e-03* p≪1e-03* -

SIPF 0.9744 ± 0.0106 0.9703 ± 0.0205 0.9805 ± 0.0098

p≪1e-03* p≪1e-03* -

Stest (ALL) 0.9792 ± 0.0147 0.9776 ± 0.0345 0.9855 ± 0.0106

p≪1e-03* p≪1e-03* -

The p-values of a paired permutation test between input segmentations and fusion segmentation is also provided. Statistically significant results are 
denoted by*.
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Table 5

Overlap O for different test sets for the fusion segmentation results Fusion.

Set Overlap O

Snormal 0.9811 ± 0.0072

Sasthma 0.9734 ± 0.0133

SCOPD 0.9822 ± 0.0062

Smix 0.9629 ± 0.0283

SIPF 0.9620 ± 0.0186

All 0.9716 ± 0.0200
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