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Nitric oxide (NO) protects the heart against ischemic injury; however, NO- and superoxide-dependent S-nitrosylation (S-NO) of
cysteines can affect function of target proteins and play a role in disease outcome. We employed 2D-GE with thiol-labeling FL-
maleimide dye and MALDI-TOF MS/MS to capture the quantitative changes in abundance and S-NO proteome of HF patients
(versus healthy controls, n = 30/group). We identified 93 differentially abundant (59-increased/34-decreased) and 111 S-NO-
modified (63-increased/48-decreased) protein spots, respectively, in HF subjects (versus controls, fold-change |>1.5], p < 0.05).
Ingenuity pathway analysis of proteome datasets suggested that the pathways involved in phagocytes’ migration, free radical
production, and cell death were activated and fatty acid metabolism was decreased in HF subjects. Multivariate adaptive regression
splines modeling of datasets identified a panel of proteins that will provide >90% prediction success in classifying HF subjects.
Proteomic profiling identified ATP-synthase, thrombospondin-1 (THBSI), and vinculin (VCL) as top differentially abundant and S-
NO-modified proteins, and these proteins were verified by Western blotting and ELISA in different set of HF subjects. We conclude
that differential abundance and S-NO modification of proteins serve as a mechanism in regulating cell viability and free radical
production, and THBSI and VCL evaluation will potentially be useful in the prediction of heart failure.

understanding of the molecular mechanisms underlying HF
is not available. Some studies have identified HF-associated

Of the 57 million global deaths annually, 17.3 million (~30%)
are due to cardiovascular diseases [1, 2]. Heart failure (HF)
is a clinical syndrome that manifests as a consequence of
the diverse factors including myocardial infarction, hyperten-
sion, cardiomyopathies, and atrial fibrillation. The intimate
relationship of the micro- and macroenvironment with the
cardiomyocytes results in cellular events that may be impor-
tant to the initiation and propagation of HE though a clear

alterations in Ca** handling, energy metabolism, and con-
tractile function in experimental models (reviewed in [3]);
however, how these processes promote HF pathophysiology
and if these processes are relevant to human HF remain
unclear.

Nitric oxide (NO) protects the heart against ischemic
injury, and NO-based therapy is part of the standard of care
in patients with heart failure [4]. The classic view holds that
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NO acts primarily as a vasodilator; however, it is not known
how NO protects the ischemic heart. There has been grow-
ing appreciation that endogenous nitrosylating compounds
called S-nitrosothiols are involved in ischemic cardioprotec-
tion [5]. An alternative view is that NO present in conjunction
with ROS results in the formation of peroxynitrite (H,O, +
NO,” — ONOO™ + H,O0) that is highly stable and soluble
and can induce S-nitrosylation (S-NO) of cysteine residues on
target proteins [6], potentially altering their function. Thus,
protein S-NO modification may ameliorate cardiac injury or
cause protein dysfunction.

Currently there are a limited number of clinically
approved biomarkers available for the management of the
entire spectrum of cardiovascular diseases [7]. These markers
include serum cholesterol total/LDL, creatine kinase myocar-
dial isoform (CK-MB), cardiac troponins (cTnl and ¢TnT),
and brain natriuretic peptide (BNP) or its precursor N-
terminus isoform (NT-proBNP). Of these only BNP/NT-
proBNP has been validated for heart failure patients [8].
These biomarkers, though useful, provide a limited view of
the disease status, and there is a need for the identification of
new biomarkers of HE.

Peripheral blood mononuclear cells (i.e., PBMCs) carry
the inherent genetic signature of the host and serve as an
accessible and useful tissue capable of detecting and respond-
ing to stimuli, similar to what may be induced in the body
[9-12]. Recent studies have distinguished the gene expression
profile in peripheral blood leukocytes of stroke patients [13,
14]. Yet, proteomics, which incorporates the comprehensive
characterization of all facets of protein biology, including the
determination of protein localization, modifications, interac-
tions, activities, and ultimately their function, is particularly
well suited for advancing our understanding of complex
disease mechanisms like HF. Importantly, the proteome is
highly dynamic owing to a large range of protein expression
and presence of a myriad of protein forms or “proteoforms”
[15] that may arise from mutations, truncations, alternative
splicing events, and the addition of posttranslational modifi-
cations (PTMs).

In this study, we aimed to identify the networks of
proteins that are disturbed in abundance or posttranslational
S-NO modifications and determine the evolution of chronic
HF in human patients. Peripheral blood cells are shown
to produce nitric oxide in various clinical situations, and a
significant increase in the expression and activity of inducible
nitric oxide synthase is noted in PBMCs of chronic heart
failure patients [16]. We utilized saturation thiol-labeling
maleimide dye that exhibits stable, specific, quantitative label-
ing of cysteine residues in conjunction with 2D-GE approach
and mass spectrometry [17-19] for developing the PBMCs
proteome of the normal healthy (NH) and HF subjects (n
= 30/group). Importantly, our approach included steps that
allowed simultaneous discovery of protein abundance and S-
NO modifications for evaluating the PBMC’s proteome [20-
22]. This approach combines the resolving power of two-
dimension gel electrophoresis (2D-GE) [23, 24] with the
highly quantitative nature of saturation fluorescence [25] to
permit S-NO and abundance change quantification with min-
imal processing steps that lead to major losses experienced

International Journal of Proteomics

by other S-NO technology (e.g., biotin-switch technique).
Proteome datasets were submitted to modeling analysis for
(a) identifying the potential pathways that were disturbed
and (b) top molecules that were altered in abundance or
S-NO levels in HF subjects. We have employed traditional
ELISA, Western blotting, and biotin-switch assay for targeted
analysis of a new batch of PBMC samples (n = 15/group)
and verified the differential abundance and S-NO levels of
THBSI polypeptide and VCL in HF (versusNH) subjects. We
discuss the molecular mechanisms that might be disturbed in
progression of HE

2. Materials and Methods

2.1. Ethics Statement for the Use of Human Samples. All
procedures were approved by the Institutional Review Boards
at the UTMB, Galveston. Samples were decoded and dei-
dentified before they were utilized for research purposes.
Blood samples (10 mL) were collected with K;EDTA (L.5-
mg/mL blood). Subjects with a degree of systolic dysfunction
(ejection fraction: <54%), left ventricular dilatation (end
diastolic diameter >57 mm), and blood levels of NT-proBNP
>1000 ng/L that reflects NYHA classification II-III of cardiac
involvement were identified as those at risk of heart failure.
Subjects with no signs of systolic dysfunction (ejection
fraction: >55) or ventricular dilation and blood levels of NT-
proBNP <400 ng/L were included as healthy controls. For
the proteomic studies, blood samples were obtained from HF
subjects (n = 30, 56% males, age range: 58-71 years, average:
62 years) and NH controls (n = 30, 60% males, age range:
28-65 years, average: 59.5 years).

2.2. PBMC Isolation, BODIPY Labeling, and 2D-GE. All
chemicals and reagents were of molecular grade (>99.5%
purity). Heparinized Vacutainer CPT Cell Preparation Tubes
(Becton Dickinson, Franklin Lakes, NJ) containing <8 mL
of whole blood samples were centrifuged following man-
ufacturer’s instruction. The PBMCs were harvested using
a FICOLL™ Hypaque™ density gradient (GE Healthcare,
Piscataway, NJ) and centrifuged again at 300 xg for 10 min
at room temperature to pellet the cells. The cell pellets
consisting of 8-10-million PBMCs were washed with RPMI-
1640 medium and stored at —80°C until analysis.

PBMC pellets from individual study subjects were lysed
in 7M urea, 2M thiourea, 2% CHAPS, and 50 mM Tris
(pH 7.5), containing benzonase nuclease (300-units/mL) [24].
Protein concentrations were determined with the Lowry
method and cysteines (cysteic acid) determined by amino
acid analysis (Model L8800, Hitachi High Technologies
America, Pleasanton, CA) [18, 20]. Samples thus analyzed
yielded ~200 pmol of Cys/ug of protein. At least 92% of all
human proteins contain at least one cysteine residue [26]
and thus can be detected using the thiol-labeling maleimide
dye [18, 20]. To detect the changes in abundance and S-
NO modification levels, each sample was split into two
fractions (each fraction containing 100 ug of protein) [27].
Because some cysteine thiols are hyperreactive that can be
oxidized under aerobic conditions in few minutes if without
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any protection [28], we immediately treated one fraction
with copper chelator neocuproine (100 yuM for 1h) that is
shown to prevent S-NO reduction and stabilize S-NO during
further processing of samples. The second protein fraction
was incubated for 1h with 6 mM ascorbate to ensure all
cysteine residues were reduced and available for dye-binding.
Both fractions were dialyzed against the urea buffer in the
cold to remove ascorbate or to serve as a process control and
then labeled with BODIPY® FL N-(2-aminoethyl) maleimide
(BD from Life Technologies, Grand Island, NY) at 60-fold
excess to cysteine that ensured sufficient dye was available
to label all available cysteine residues [20], thereby ensuring
reproducibility and accuracy. The mixtures were incubated
for 2h; then the reactions were stopped with a 10-fold
molar excess of 2-mercaptoethanol (2-ME) over dye. All
incubations were carried out at room temperature in the
dark in 200 uL reaction volume. As we utilized 100 ug protein
sample labeled with 60-fold molar excess dye over thiol all
within a volume of 200 uL, we used 6 yumol/mL of BD per
sample, and 60 ygmol/mL of 2-ME.

All BD-labeled, Asc* and Asc™ PBMC lysates (100 g
protein) were separated by 2-dimensional gel electrophoresis
(2D-GE), employing an IPGphor multiple sample isoelectric
focusing (IEF) device (GE Healthcare) in the first dimension
and the Criterion Dodeca cell (Bio-Rad, Hercules, CA)
in the second dimension [29, 30]. Sample aliquots were
first loaded onto 11 cm dehydrated precast immobilized pH
gradient (IPG) strips (pH range 3-11, from GE Healthcare)
and rehydrated overnight. IEF was performed at 20°C with
the following parameters: 50 V, 11 hours; 250 V, 1 hour; 500V,
1 hour; 1,000 V, 1 hour; 8,000 V, 2 hours; 8,000V, 48,000 V/hr.
The IPG strips were then incubated in 10 mL of equilibration
buffer (6 M urea, 2% sodium dodecyl sulfate (SDS), and
50 mM Tris-HCI, pH 8.8, 20% glycerol) for 30 minutes at 22°C
with shaking [29, 30]. Electrophoresis was performed at 150 V
for 2.25 hours, 4°C with precast 8-16% polyacrylamide gels
in Tris-glycine-SDS buffer (25 mM Tris-HCI, 192 mM glycine,
0.1% SDS, pH 8.3) [29, 30].

2.3. Image Processing and Analysis. In total, 120 BODIPY-
stained 2D-GE gels (2 gels with either Asc™ or Asc™ protein
lysates per sample for the HF (n = 30) and NH (n = 30)
subjects) were run by us. After electrophoresis, gels were fixed
in 20% methanol, 7% acetic acid, and 10% acetonitrile for 1h
and washed with 20% ethanol and 10% acetonitrile to reduce
background. The gels were imaged at 100 ym resolution using
the Typhoon Trio Variable Mode Imager (GE Healthcare) to
quantify BD-labeled proteins (Ex,gg nm/EMs0 nm)-

All gels were analyzed using the SameSpots™ software.
The current version of Totallab Ltd. SameSpots software
(formerly Nonlinear Dynamics, Ltd., Newcastle, UK), unlike
traditional analysis, does not rely on propagating and match-
ing spots to an arbitrary reference. Instead, it relies on
geometric correction of the scans themselves and projecting
them all into the same reference space, performing pixel-to-
pixel matching before spot detection. This approach ensures
that spot boundaries are the same for all gels, eliminating
errors that accumulate in the reference gel(s) as the number
of gels within one experiment increases. The software selects

one reference gel according to several criteria including
quality and number of spots with the intent on selecting
the gel that best represents all the gels. The reference gel
containing the most common features was selected from the
pool of gels. To ensure that maximum number of proteins
were detected, the reference gel was stained with SyproRuby
(from Life Technologies, Grand Island, NY) and scanned at
Exyg8 nm/EMsgqn to ensure that all proteins (irrespective of
presence or absence of cysteine residue) were detected. The
exposure time for both dyes was adjusted to achieve a value
of ~55,000-63,000 pixel intensity (16-bit saturation) from the
most intense protein spots on the gel [29, 30].

For identifying the differential proteome, all the 2D
gel images were assessed for quality control by SameSpots
software and then aligned both manually and automatically
against the reference gel. After manual and automated pixel-
to-pixel alignment, spot boundaries were detected and the
fluorescence intensity of each protein spot was normalized
by using a bias factor calculated assuming most spots did
not change across the experiment. The SyproRuby stained
reference gel was used to define spot boundaries; however,
the gel images taken under the BD-specific filters were used
to obtain the quantitative spot data. This strategy ensured that
spot numbers and outlines were identical across all gels in
the experiment, eliminating problems with unmatched spots
[30] as well as ensuring that the greatest number of protein
spots and their spot volumes were accurately detected and
quantified.

The detailed protocol for quantification of protein abun-
dance and cysteinyl-S-nitrosylation by BD labeling is recently
described by us [20]. Briefly, protein spot abundance ratios
were calculated from normalized spot volumes from Asc* HF
sample versus the matched normal spot volumes (Aprotein
abundance = Asct HF/Asc™ NH). Spot volumes were nor-
malized for each sample using a software-calculated bias
value assuming that the great majority of spot volumes did
not change in abundance (log (abundance ratio) = 0). The
scatter of the log (abundance ratios) for each spot in a gel
(sample) is distributed around a mean value that represents
the systematic factors that govern the experimental variation.
Thus, a gain factor is calculated to adjust the mean spot ratios
of a given gel to 0 (log (abundance ratio) = 0) and applied
to each spot volume [23]. The S-NO modification levels were
quantified by calculation of the ratio of fluorescence units
from Asc™ aliquots (AS-NO = Asc™ HF/Asc™ NH). Finally,
the ratio of ratios, that is, AS-NO/Aprotein abundance =
[Asc” HF/Asc™ NH]/[Asct HF/Asc* NH], was calculated
to obtain the change in S-NO levels normalized for protein
abundance [20, 21]. As S-NO modification inhibits the Cys-
BODIPY fluorescence; a negative RoR value would indicate
an increase in S-NO level (and vice versa) in the sample.

For the purpose of selecting differentially abundant and
S-NO-modified protein spots for mass spectrometry, normal-
ized spot volumes were subjected to statistical analysis using
in-built tools in Totallab SameSpots software. Spot volumes
were log2 transformed and spot-wise standard deviation,
arithmetic mean, and coefficient of variation (CoV) values
of the standard abundance (and S-NO) were calculated for
each spot [31]. Student’s t-test with Welch’s correction for



unequal variances was used to test for differential protein
abundance and S-NO level between NH controls and HF
subjects. Benjamini-Hochberg multiple hypothesis testing
correction was applied to account for the false discovery rate
and significance was accepted at p < 0.05. The protein spots
identified to be differentially abundant or differentially S-NO
modified (fold change |>1.5], p < 0.05) in HF subjects were
submitted for mass spectrometry identification.

2.4. Mass Spectrometry and Protein Identification. Selected
2D-GE spots that exhibited significant differential prevalence
in HF group were picked robotically (ProPick I, Digilab, Ann
Arbor, MI) [16]. Gel spots were incubated at 37°C for 30 min
in 50 mM NH,HCO;, dehydrated twice for 5min each in
100 4L acetonitrile, and dried, and proteins were digested
in-gel at 37°C overnight with 10 yL of trypsin solution (1%
trypsin in 25 mM ammonium bicarbonate). Peptide mixtures
(I-uL) obtained after tryptic digestion were purified with a
ZipTip C,5 column (Millipore) and reconstituted with 0.4%
acetic acid. A 1:1 dilution of peptide solution with MALDI
matrix solution (5 mg alpha-cyano-4-hydroxycinnamic acid
per mL in 50% acetonitrile) was spotted on to the target plate
and analyzed by matrix assisted laser desorption ionization-
time of flight (MALDI-TOF) mass spectrometry (MS) using
a MALDI-TOF/TOF ABI 4800 Proteomics Analyzer (AB
Sciex, Foster City, CA). The Applied Biosystems software
package included the 4000 Series Explorer (v.3.6 RC1) with
Oracle Database Schema (v.3.19.0) and Data Version (3.80.0)
to acquire and analyze MS and MS/MS spectral data. The
instrument was operated in a positive ion reflectron mode
with the focus mass set at 1700 Da (mass range: 850-
3000 Da). For MS data, 1000-2000 laser shots were acquired
and averaged from each protein spot. Automatic exter-
nal calibration was performed by using a peptide mixture
with the reference masses 904.468, 1296.685, 1570.677, and
2465.199. Following MALDI MS analysis, MALDI MS/MS
was performed on several (5-10) abundant ions from each
protein spot. A 1-kV positive ion MS/MS method was used
to acquire data under postsource decay (PSD) conditions.
The instrument precursor selection window was +3 Da. Auto-
matic external calibration was performed by using reference
fragment masses 175.120, 480.257, 684.347, 1056.475, and
1441.635 (from precursor mass 1570.700) [32, 33].

AB Sciex GPS Explorer™ (v.3.6) software was employed in
conjunction with MASCOT (v.2.2.07) to search the UniProt
human protein database (last accessed: June 7, 2015; 87,656
sequences 35,208,664 residues) by using both MS and MS/MS
spectral data for protein identification [33]. Protein match
probabilities were determined by using expectation values
and/or MASCOT protein scores. The MS peak filtering
included the following parameters: a mass range of 800 Da
to 3000 Da, minimum S/N filter = 10, mass exclusion
list tolerance = 0.5Da, and mass exclusion list for some
trypsin and keratin-containing compounds included masses
(Da) 842.51, 870.45, 1045.56, 1179.60, 1277.71, 1475.79, and
2211.1. The MS/MS peak filtering included the following
parameters: minimum S/N filter = 10, maximum missed
cleavages = 1, fixed modification of carbamidomethyl (C),
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variable modifications due to oxidation (M), precursor tol-
erance = 0.2 Da, MS/MS fragment tolerance = 0.3 Da, mass =
monoisotopic, and peptide charges = +1. The significance of a
protein match, based on the peptide mass fingerprint (PMF)
in the MS and the MS/MS data from several precursor ions,
is presented as expectation values (p < 0.001).

Protein spots (|>2| fold change) identified with low confi-
dence by MALDI MS/MS (protein score <62) were submitted
for analysis by LTQ OrbiTrap Velos (ThermoFisher, Waltham,
MA).

2.5. Functional Analysis and Multivariate Adaptive Regres-
sion Splines (MARS) Modeling. The protein datasets were
assessed by using ingenuity pathway analysis (IPA, Ingenuity
Systems®). IPA retrieves biological information from the
literature—such as gene name, subcellular location, tissue
specificity, function, and association with disease—and then
integrates the identified proteins into networks and signaling
pathways with biological interpretation and significance [34].
An “e-value” was calculated by estimating the probability of
a random set of proteins having a frequency of annotation
for that term greater than the frequency obtained in the real
set, and a significance threshold of 10~ was used to identify
significant molecular functions and biological processes [33].
With these parameters, we were able to highlight the most
informative and significantly over-represented gene ontology
terms in the dataset [35].

For MARS modeling, log2-transformed values of normal-
ized spot volumes for all spots from 120 gels were exported
from SameSpots in to Excel and analyzed by using R and
SPSS ver.20 software. For modeling the disease state spe-
cific response, a stringent cut-oft was applied; differentially
abundant protein spots were first screened by t-test/Welch’s
correction and then Benjamini-Hochberg test was employed
at p < 0.001 (|>1.5] fold change). MARS was employed
to model changes in multiple variables for distinguishing
between infection and disease status [31]. To avoid overfitting
the data, we employed two approaches: (1) 10-fold cross-
validation (CV), allowing the same number of maximum
basis functions as were the differentially abundant protein
spots at p < 0.001 (with 1 max interaction term), and
(2) testing/training approach in which 80% of the data was
utilized for creating the model and the 20% of the remaining
data was used to assess the fit of the model for testing dataset.
The sensitivity and specificity of the identified models were
validated by receiver operator characteristics (ROC) curves
[31].

2.6. Enzyme-Linked Immunosorbent Assay (ELISA) and
Biotin-Switch Assay. A new batch of PBMC samples from
HF and NH subjects (n = 15 per group) were lysed by
sonication in cold PBS and the protein concentrations were
evaluated by the Bradford method (Bio-Rad). A sandwich
ELISA kit was used to quantify the vinculin (VCL) abun-
dance, following the manufacturer’s instructions (Cloud-
Clone Corp, Houston TX; sensitivity: >30-pg/mL). Briefly,
PBMC lysates (5-4g/100 uL/well) were loaded onto 96-well
plates precoated with VCL-specific antibody. After overnight
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incubation at 4°C, plates were aspirated and sequentially
incubated with biotin-conjugated anti-VCL 2nd antibody
(1:100 dilution), avidin-conjugated horseradish peroxidase
(HRP) (1:100 dilution), and TMB substrate. The change in
absorbance was measured at 450 nm by using a Spectramax
190 spectrophotometer (Molecular Devices, Sunnyvale, CA).
The plates were washed between each reagent addition and
a standard curve was prepared by using recombinant VCL
protein (0-5000 pg/mL).

THBSI1 abundance in PBMC lysates was quantified by
using a sandwich ELISA kit (R&D Systems, Minneapo-
lis, MN; sensitivity: >350-pg/mL). In brief, PBMC lysates
(5 ug/50 uL/well) were loaded with 100 L of the provided
assay diluent onto 96-well plates precoated with THBSI-
specific monoclonal antibody and incubated overnight at
4°C. The plates were washed and incubated with HRP-
conjugated THBSI polyclonal antibody before addition of
the TMB substrate. Absorbance was measured at 450 nm,
and a standard curve was prepared by using 0-1000 ng/mL
recombinant THBSI protein.

The levels of S-NO modified VCL and THBSI in PBMC
lysates were determined by performing a biotin-switch assay
followed by ELISA. Briefly, PBMC lysates were made as
above, free SH (thiol) groups were blocked, protein S-NO
bonds were present in the sample cleaved, and the newly
formed SH groups were biotinylated using an S-Nitrosylated
Protein Detection Assay Kit (Cayman Chemicals, Ann Arbor,
MI) according to instructions provided by the manufacturer.
The 96-well plates were coated for 2h at room temperature
with anti-VCL (Cloud-Clone Corp) or anti-THBS1 (R&D
Systems) antibody (1:1000 dilution in Tris-buffered saline,
TBS). Plates were then blocked for 2h at room temperature
with 5% BSA in TBS, washed three times with TBS, and
incubated for overnight at 4°C with biotin-derivatized pro-
tein lysates (5 g/100 uL/well). Plates were washed to remove
the unbound proteins and then incubated for 30 minutes at
room temperature with streptavidin-HRP conjugate (1: 3000
dilution; BioLegend, San Diego, CA). Color was developed
using the TMB substrate, and the change in absorbance
reflecting the levels of biotin-bound S-NO modified VCL or
THBS1 was measured by spectrophotometry.

2.7. Western Blotting. A 5 ug aliquot of each protein sample
was resolved on 10% acrylamide gels and wet-transferred
to PVDF membranes by using a vertical Criterion Blotter
(Bio-Rad). Membranes were blocked for 1 hour with 5%
nonfat dry milk (Lab Scientific, Highlands, NJ) in 20 mM
Tris Base (pH 7.4) containing 150 mM NaCl and 0.1% Tween-
20 (TBST). All antibody dilutions were made in 3% bovine
serum albumin (Fisher Scientific, Pittsburgh, PA) in TBST.
Membranes were sequentially incubated overnight at 4°C
with polyclonal rabbit anti-THBSI antibody (0.5 ug/mL dilu-
tion, Abcam, Cambridge, MA) and goat anti-rabbit HRP-
conjugated secondary antibody (1:10,000 dilution, Southern
Biotech, Birmingham, AL), and the signal was developed by
using the Amersham™ ECL Plus system (GE Healthcare).
Images were visualized and digitized by using the Image-
Quant system (GE Healthcare).

3. Results

3.1. 2D-GE/MALDI MS Identification of Changes in PBMC
Proteome in Heart Failure. A schematic of work flow is
presented in Figure 1(a). We employed a saturation fluores-
cence approach using BODIPY FL-maleimide (BD, dye to
protein thiol ratio of >60:1) that specifically labels protein
thiols to give an uncharged product with no nonspecific
labeling [17, 18]. BD-labeled protein isoelectric points were
unchanged and mobilities were identical to those in the
unlabeled state. The Typhoon Trio Variable Mode Imager
has a linear dynamic range of over four orders of magnitude
and was capable of detecting 5fmol of BD-labeled protein
in a gel spot at a signal-to-noise ratio of 2:1 [17-19]. To
ensure saturation labeling, protein extracts were analyzed for
cysteine content and sufficient dye was added to achieve the
desired excess of dye to thiol. This saturation fluorescence
labeling method yielded high accuracy (>91%) in quantifying
blinded protein samples [30] and, in a study that detected
>1000 proteins across 6 experimental treatments, exhibited
<9% CVs across triplicate runs.

The BD-labeled Asc™ and Asc™ PBMC lysates of NH
controls (n = 30) and HF subjects (n = 30) were resolved
by 2D-GE to obtain a disease-specific protein abundance and
S-NO modification signature. Representative Asc” and Asc™
gel images from each group are shown in Figure 1(b)((A)-
(D)). All protein spots within the relative molecular sizes of
10 to 250 kDa after reduction and denaturation were detected.
Some proteins may fall outside this size range and may
have been missed; however, since all proteins were denatured
and eventually reduced, we feel this is a minor limitation,
no more so than the limited acetonitrile elution range and
data dependent modes typically used in mass spec-centric
approaches.

We identified 93 differentially abundant protein spots (59
upregulated, 34 downregulated, and fold change: |>L5|, p <
0.05) and 111 differentially S-NO modified protein spots (63
low RoR, 48 high RoR, and fold change: [>L5|, p < 0.05) in
HF (versus NH) subjects with high confidence (Table 1). The
changes in abundance and Cys-S-NO modification frequency
of the protein spots in HF subjects ranged from 3.00-
fold to —3.61-fold and —5.05-fold to 3.76-fold, respectively
(Figure 3(a)). Further, 71 protein spots were changed in
both abundance and Cys-S-NO levels, while 22 and 36
protein spots were uniquely changed in abundance or S-NO
modification levels, respectively, in HF subjects (Figure 3(b)).
The protein spots that were changed in abundance or in
Cys-S-NO levels were predicted to be localized mostly in
the cytoplasm (71%), with the rest distributed to the nucleus
(5%), plasma membrane (10%), or extracellular space (7%)
(Figure 3(c)). Top differentially expressed (Figure 3(d)) and
S-NO-modified (Figure 3(e)) protein spots in HF subjects,
which were identified by ingenuity pathway analysis (IPA),
are presented. Note that KRT1, THBSI1, ATP5A1, and MYO9A
were increased in abundance as well as S-NO modification
levels, while VCL, HBB, and ATP5B were decreased in
abundance and S-NO modification levels in HF subjects.

3.2. Pathway Network Analysis of the Disease-Associated
Proteome Signature. The protein abundance and S-NO
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FIGURE 1: (a) Schematic work flow. PBMCs were obtained from heart failure subjects (HE, n = 30) and normal healthy (NH, n = 30) subjects.
Each sample was divided into two fractions, and S-NO cysteines were reduced with ascorbate (Asc”) in one fraction and stabilized with
neocuproine in 2nd fraction (Asc™). All fractions were labeled with BODIPY FL N-(2-aminoethyl) maleimide (binding to reduced cysteine)
and resolved by 2-dimensional gel electrophoresis. Gel images were normalized against a reference gel. Ratiometric calculation of differential
protein abundance from BODIPY-fluorescence units in Asc” aliquots (normal versus experimental) was calculated for all the protein spots
(Aprotein abundance = Asc* HF/Asc" NH). The S-NO modification levels were quantified by calculation of the ratio of fluorescence units
from Asc™ aliquots (AS-NO = Asc” HF/Asc™ NH). The ratio of ratios (RoR), that is, AS-NO/Aprotein abundance = [Asc” HF/Asc™ NH]/[Asc”
HF/Asc” NH], was calculated to obtain the change in S-NO levels normalized for protein abundance. The fold changes in abundance and
S-NO-modification of the protein spots in all gels were log transformed and subjected to statistical analysis as described in Materials and
Methods. Protein spots that changed in abundance or S-NO modification by [>1.5-fold| at p < 0.05 were submitted to mass spectrometry
analysis for protein identification. The protein datasets were analyzed by ingenuity pathway analysis and MARS modeling, and selected
proteins were confirmed for differential abundance and S-NO modification levels by multiple assays. (b) Two-dimensional gel images of
protein spots in PBMCs of heart failure (HF) subjects and normal healthy controls. BD-labeled PBMC lysates were separated in the 1st-
dimension by isoelectric focusing on 11 cm nonlinear pH 3-11 immobilized pH gradient strips and in the 2nd-dimension by sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on an 8-16% gradient gel. Gel images were obtained at 100 ym resolution using the
Typhoon Trio Variable Mode Imager (GE Healthcare) to quantify BD-labeled proteins (Ex,gg p /EMgy0.150m)- Shown are representative gel
images of Asc™ ((A) and (B)) and Asc™ ((C) and (D)) PBMCs from NH ((A) and (C)) controls and HF ((B) and (D)) subjects and approximate
size (vertical) and pI (horizontal) ranges.

modification datasets from HF versus NH controls (Table 1)
were submitted to IPA to determine molecular and bio-
logical functions, as well as the important pathways and
networks involved in HF risk. IPA analysis of the differentially
abundant proteome dataset predicted a putative increase
in platelet aggregation (z score: 1.432), phagocyte chemo-
taxis/migration (z score: 1.091, p value 3.84E — 09), and

cell survival and cell viability (z score: —0.809, 11 molecules,
and p value 2.39E - 03) in HF subjects (Figure S2).

IPA analysis of the differential S-NO proteome dataset
showed increased S-NO-modification of several molecules
predicted to be involved in migration of phagocytes (Fig-
ure S3). However, increased S-NO-modification of other
molecules was predicted to inhibit cell spreading and devel-

free radical production (z score: 1.491, p value 2.23E —
03) with a decline in leukocyte/neutrophil activation and
fatty acid metabolism in HF development (Figures SIA
and SIB in Supplementary Material available online at
http://dx.doi.org/10.1155/2016/1384523). The molecular and
cellular function annotation of the differentially abundant
proteome dataset predicted an increase in cell death (z score:
1.989, 21 molecules, and p value 5.41E — 05) and a decline in

opment of blood vessels in HF subjects (Figure S3). Likewise,
we noted increased S-NO-modification of several molecules
predicted to be involved in inhibition of apoptosis and
activation of organismal death and free radical production in
HEF subjects (Figure S4). These data suggested that changes
in abundance and S-NO modification serve as an important
mechanism in regulating inflammation and cellular survival
in HE
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FIGURE 2: Identification of differentially abundant and S-NO-
modified protein spots in PBMCs of HF subjects. Protein spots that
exhibited significant change in abundance or S-NO-modification in
HF subjects with respect to NH controls (p < 0.05) are marked on
the reference gel and were submitted for protein identification by
MALDI-TOF MS analysis (listed in Table 1).

3.3. MARS Modeling Identifies Proteins Predictive of HF.
We performed MARS analysis on our proteome dataset to
develop a classification model (Figures 4 and 5). MARS is
a nonparametric regression procedure that creates models
based on piecewise linear regressions. It searches through all
predictors to find those most useful for predicting outcomes
and then creates an optimal model by a series of regression
splines called basis functions [36, 37]. For this, MARS uses
a two-stage process; the first half of the process involves
creating an overly large model by adding basis functions that
represent either single variable transformations or multivari-
ate interaction terms. In the second stage, MARS successively
deletes basis functions, starting with the lowest contributor in
order of least contribution to the model until the optimum
model is reached. The end result is a classification model
based on single variables and interaction terms that will
optimally determine class identity [36, 37].

Inputs to the model were the log2-transformed values
for protein spots that were differentially abundant (31 spots)
or S-NO-modified (42 spots) in HF subjects with respect to
NH controls at p < 0.001 with B-H correction. We assessed
the model accuracy using the prediction success rate and
the ROC curves. The CV and 80/20 approaches identified
12 and 8 protein spots, respectively, with high importance
(score >20) for creating the MARS model that permits
detecting differences in abundance between the NH controls
and the HF subjects (Figures 4(a) and 4(b)). The prediction
success showed that the CV and 80/20 models fitted perfectly
(AUC/ROC: 1.00) on the training dataset. On the testing
dataset, the CV model exhibited higher prediction efficiency
(AUC/ROC: 0.917) than the 80/20 model (AUC/ROC: 0.828),
as is shown in Figures 4(c) and 4(d).

Likewise, the CV and 80/20 approaches identified 5 and
6 protein spots, respectively, detecting differences in S-NO
modification between NH controls and the HF subjects
with high importance (score >20) for creating the MARS

1

model (Figures 5(a) and 5(b)). The prediction success showed
the CV and 80/20 models fitted perfectly on the training
dataset (AUC/ROC: 1.00) and by >75% on the testing dataset
(AUC/ROC: 0.75 for CV and 0.857 for 80/20) (Figures 5(c)
and 5(d)). These analyses suggested that PBMC changes in
abundance and S-NO modification of the selected protein
spots will have high specificity and sensitivity in predicting
the risk of HE

3.4. Verification of BD-Labeling/2D-GE Results. Changes in
abundance of four proteins, ACTB, ATP5B, VCL, and THBS],
were predictive of the risk of HF with high efficacy by IPA
analysis as well as the CV and 80/20 MARS models; these
proteins were also noted to be differentially S-NO modified
in HF subjects (Table 1). We utilized a different set of PBMC
samples from NH and HF subjects (n > 15/group) and
employed ELISA/Western blotting and biotin-switch assay,
respectively, to verify the changes in abundance and S-NO
levels of two proteins in HF subjects (Figures 6 and 7).

Human vinculin is a 117kDa protein. Our BD/2D-GE
approach had identified six VCL polypeptides (spot # 52,
54, 57, 58, 59, and 63; pl: 6.39-7.53) that were close to full-
length protein in size (MW: 99-108 kDa) and decreased
in abundance as well as S-NO modification levels in HF
subjects (Table 1). ELISA and biotin-switch/ELISA showed
2.4-fold and 49% decline in VCL abundance (Figure 6(a),
p < 0.001) and S-NO modification level (Figure 6(b), p <
0.01), respectively, in PBMCs of HF subjects when compared
to that noted in NH controls. These data confirmed that
our approach of BD-labeling/2D-GE provided a sensitive
measure of proteomic changes in HE

Human thrombospondin 1 is a 130 kDa protein. Our
BD/2D-GE approach had identified five THBSI polypeptide
fragments (spot # 400, 491, 505, 509, and 732; pl: 4.72-8.72)
that were increased in abundance and S-NO modification
levels in HF subjects (Table 1). The 2D-GE image of one
of the five THBSI spots from representative Asc* and Asc”
NH (Figure 7(a), panels (A) and (C)) and HF (Figure 7(a),
panels (B) and (D)) PBMCs is shown. Thus, the BD/2D-
GE data suggested that fragmented THBSI was increased
in abundance and S-NO modification in HF subjects. The
representative Western blotting data for the 130 kDa THBSI
molecule in PBMCs of HF subjects versus NH controls
showed that the intact THBSI was indeed absent or present
at very low concentrations in HF subjects (Figure 7(b)).
The sandwich ELISA using a combination of antibodies that
preferably detect 130 kDa THBSI showed that the full-length
THBSI was significantly decreased in PBMCs of HF subjects
(Figure 7(c), p < 0.001). These data, thus, confirmed that
THBSI was fragmented (as noted by 2D-GE) in HF subjects.

Because biotin-switch assay was coupled with sandwich
ELISA for full-length THBSI, we did not detect the differ-
ences in S-NO levels of fragmented THBS1 between NH
versus HF subjects (Figure 7(d)). An ELISA specific for the
fragmented THBSI polypeptide will be useful to distinguish
the abundance and S-NO levels of functional versus cleaved
THBSI in the PBMCs of patients to predict the risk of heart
failure.
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FIGURE 3: (a) Frequency of changes in abundance of protein spots in HF subjects. Shown is the frequency of protein spots that were changed in
abundance or S-NO modification in HF subjects with respect to normal controls (p < 0.05). (b) Venn diagram. Shown is the number of protein
spots that were increased in abundance and/or S-NO modification levels in HF subjects. (c) Classification of differentially expressed proteins
from the proteomic analysis. Ontological classification of differentially regulated proteins in terms of cellular localization was performed by
ingenuity pathway analysis. The compositions of the protein categories are presented as percentages of all individually identified proteins. CP:
cytoplasmic, ES: extracellular/secreted, MT: mitochondrial, NP: nucleoplasm, PM: plasma membrane. ((d) and (e)) Fold change in abundance
(d) and S-NO modification (e) of top molecules identified to be of relevance in HF subjects. Ratio of ratio (RoR) is defined in legend of Figure 2.
A negative RoR indicates increased S-NO modification, while a positive RoR indicates increased reduction of protein thiols.

4. Discussion

In the present study, we have performed a high throughput
proteomic analysis of PBMCs from 30 heart failure patients
in comparison with 30 healthy subjects. We ran 120 2D gels
toresolve the protein samples and utilized BODIPY FL N-(2-
aminoethyl) maleimide labeling as a novel method to detect
changes in abundance and S-NO modification in PBMC
samples. Of the 635 protein spots that were detected on
2D-gels, 93 and 111 protein spots (|>1.5-fold|, p < 0.05)
were found to be consistently differentially abundant (range
3-fold to —3.6-fold) or S-NOmodified (range: 3.76-fold to
—5.05-fold) in HF subjects, and these protein spots were
identified by MALDI-TOF MS analysis (Table 1). The finding
that many of the differentially abundant protein spots were
S-NO modified suggested that S-NO serves as a mechanism
for regulating protein function and turnover in HE

As the NIH/NIAID-funded Clinical Proteomics Center
for Infectious Diseases and the NIH/NHLBI-funded Pro-
teomics Center in the US, we have used the BODIPY FL-mal
saturation fluorescence method for differential proteomic
analysis of >2000 protein samples of diverse origin and found
the assay to yield highly reproducible and quantitative results.
Our protocol involved quantitation of cysteine content in
samples, ensuring that the dye to thiol ratio exceeds 50:1
to achieve saturation dye concentration [17, 18]. Further, by
using a panel of proteins including yeast enolase, bovine
alpha-lactalbumin A, bovine carbonic anhydrase II, and
horse myoglobulin that consist of 1, 8, 0, and 0 cysteine
residues, respectively, we showed that BODIPY FL-mal (a)
efficiently labels proteins in presence of thiourea at pH 7.2-
8.0, and (b) dye-binding is highly specific within dye to thiol
concentration ratio in the range if 5-200 : 1 and sensitive with
detection limit of 0.6 fmol per cysteine in a protein spot. No
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FIGURE 4: MARS analysis of differentially abundant protein spots in HF subjects. Inputs to the model were protein spots that were differentially
abundant at p < 0.05 with B-H correction in HF (31 spots, n = 30) subjects with respect to NH controls (n = 30). We employed 10-fold cross-
validation ((a) and (c)) and 80% testing/20% training ((c) and (d)) approaches to assess the fit of the model for testing dataset. Shown are the
protein spots identified with high ranking (score >20) by CV (a) and 80/20 (b) approaches for creating the MARS model for classifying HF
from NH subjects. Protein spots in panels (a) and (b) are identified as spot number-protein name, and fold changes (increase T, red; decrease
|, blue) are plotted. The ROC curves show the prediction success of the CV (c) and 80/20 (d) models. Blue curves: training data (AUC/ROC:
1.00), red curve: testing data (AUC/ROC: 0.97 for CV and 0.857 for 80/20).

detectable binding was observed with proteins containing no
cysteine. Moreover, the BD labeling was linear over 4 orders
of magnitude of concentration with high reproducibility in
replicates (CoV: 1.9-9.4% for replicates and multiple test
runs) and did not interfere with mobility of the proteins
on gels and identification by mass spectrometry [18]. The
protocol also employed precautions used by others in the
literature, namely, neocuproine added where appropriate,
sample prep (before covalent modification, locking in S-NO
status) in the dark and cold, and minimal time before S-
NO reduction and covalent modification of Cys-SH. The
latter precaution is an improvement over the conventional
approaches. Importantly, like biotin-switch assay, BODIPY
FL-Mal utilizes sulthydryl-based chemistry, requiring the
thiolate ion for reaction, and is, therefore, acutely sensitive

to the pH during alkylation. We precisely control the pH of
the alkylation reaction. Thus, we surmise that the BD FL-mal
labeling provides a powerful approach in quantification of
changes in protein abundance and cysteinyl-S-nitrosylation
in a variety of complex protein samples in diverse disease
processes.

IPA analysis of the differentially abundant proteome
dataset at the disease and functionallevel suggested the acti-
vation of phagocyte chemotaxis/migration and free radical
production alongside a decrease in fatty acid metabolism
(TACTB, | ALB, TAPOAL, TANXAL, TCPTAIL |GSN, |HBB,
|HSPAS, TLTE, TPRDX6, TS100A8, and TTHBSI) and an
increase in platelet aggregation (| ALB, TFGA, |FGB, | GSN,
TRAPIB, and TTHBSI) with HF development (Figure S1).
Disease and functional network analysis of the differential
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FIGURE 5: MARS analysis of differentially S-NO modified protein spots in HF subjects. Inputs to the model were protein spots that were
differentially S-NO modified at p < 0.05 with B-H correction in HF (42 spots, n = 30) subjects with respect to NH controls (n = 30). We
employed 10-fold cross-validation ((a) and (c)) and 80% testing/20% training ((c) and (d)) approaches to assess the fit of the model for testing
dataset. Shown are the protein spots identified with high ranking (score >20) by CV (a) and 80/20 (b) approaches for creating the MARS
model for classifying HF subjects from NH controls. Protein spots in panels (a) and (b) are identified as spot #-protein name, and RoR values
(increase T, red; decrease |, blue) are plotted. The ROC curves show the prediction success of the CV (c) and 80/20 models (d). Blue curves:
training data ((AUC/ROC: 1.00); red curve: testing data (AUC/ROC: 0.85 for CV and 0.714 for 80/20).

abundance proteome dataset also suggested increased cell
death response in HF patients (Figure S2). Interestingly,
several of the proteins involved in phagocytes’ migration
(e.g., ANXAIL THBSI, and S100A8), cell death (e.g., YYI,
RALB, RAPIB, and LTF), fatty acid metabolism (e.g., CPT1A,
PRDX6, LTE, and APOALI), or leukocyte/neutrophil activa-
tion were increased in abundance as well as in S-NO levels.
How increased S-NO modification contributes to activation
(phagocyte migration and cell death) and downregulation
(fatty acid metabolism) of specific pathways is not known.
Nevertheless, our observations allow us to propose that Cys-
S-nitrosylation serves an important function in regulating
immune responses and cell survival in HF development.
Further studies will delineate the processes of selective

targeting of proteins for S-NO modification and its effect on
functional activity of the proteins. It is intriguing to note
that (a) phagocytes activation and a decline in fatty acid
metabolism where both of which were not spared from S-
NO modification were differentially regulated in HF; (b)
recent studies have indicated that upregulation of glucose
metabolism promotes proliferation and activation of proin-
flammatory macrophages [38]. Our findings provide the first
indication that a metabolic shift potentially contributes to
proinflammatory state in progressive HE to be verified in
future studies.

Others have shown that S-NO formation results in a
decline in the bioavailability of nitric oxide required for
intracellular Ca** flux, the myofilament response to Ca**, and



International Journal of Proteomics

3 %k ok

6 — [ 1
o}
=
2 Oo
£ o S
2 O
E,] O o
3 o OO VOO0
> 5%06
O
0 ©<><>

Normal healthy Heart failure

(a)

15

* %

2.0 — , |
O

@ o)

d 1.0 —

>

% OOOOOO

& 0.5 O ‘%%

0.0 Sl
Normal healthy Heart failure

(b)

FIGURE 6: Validation of expression profile of vinculin (VCL) in HF subjects. PBMC protein lysates (5 yg) from NH controls (n = 12) and HF
subjects (1 = 22) were subjected to sandwich and biotin-switch ELISA, respectively, for the detection of VCL (a) and SNO-modified VCL (b)
levels. Mann Whitney U test was performed to evaluate the significance (**p < 0.01, ***p < 0.001).

thereby can influence the systolic and diastolic performance
of the myocardium [39]. It is suggested that NO/cGMP-
dependent cardiac homeostasis is adversely influenced by
phosphodiesterase 5 (PDE5) in the hypertrophied heart [40-
42]; S-NO of PDES5 promotes its degradation by ubiquitina-
tion pathway [42]. Thus, S-NO may have beneficial as well as
harmful role in the context of HF development.

MARS modeling by two different approaches indicated
14 abundant and 9 S-NO modified protein spots in the
PBMC dataset to be predictive of HF development. Of
these, ACTB, ATP5B, THBSI, and VCL were identified to be
differentially expressed by both CV and 80/20 MARS models
with high predictive efficacy. We validated the relative change
in abundance of VCL and THBSI in a second set of PBMCs
from HF patients, and these proteins merit further discussion
in the context of HE Thrombospondin family consists of
multimeric, multidomain calcium-binding glycoproteins that
act as regulators of cell-matrix associations as well as inter-
acting with other ECM molecules affecting their function
[43]. The expression of THBSI (and -2 and -4 isoforms) was
increased in hypertensive heart disease [43]. Studies using
a murine model of THBSI genetic deletion suggested that,
in cardiac remodeling after myocardial infarction, THBSI
limits the infarct expansion of the noninfarcted myocardium
[44] and these benefits were delivered via activation of TGF-
B, MMP inhibition, and CD47-mediated anti-inflammatory
actions [45]. THBS2 and THBS4 isoforms have been shown
to protect ECM adverse remodeling in ageing heart [46]
and viral myocarditis induced HF [47]. Others have shown
that THBSI peptide antagonist prevented the progression of
cardiac fibrosis and improved cardiac function by reducing
TGF- activity in a rat model of diabetic cardiomyopathy
[48]. Our observation of increased abundance of 11-26 kDa
fragments of THBSI that were also S-NO modified in HF
patients (Figure 7) suggested that THBSI expression and
catabolism was enhanced in HF patients. The finding of a
significant decrease in full-length THBSI (Figures 7(b) and

7(c)) was also in agreement with the observation of high rate
of degradation and secretion of THBSI1 during heart failure
[49, 50]. A direct relationship between THBSI secretion and
increase in inflammation in aortic aneurysm is also noted
[51]. These observations emphasize the context-dependent
functions of THBSs in signaling TGF-f3 activation versus car-
diac hypertrophy and heart failure. Yet, our observations of
an increase in the abundance of several indicators of inflam-
mation (discussed above), cardiac arteriopathy (TAPOAL,
TFGA, TTHBSL, 1TKT, |TUBBIL, p value 1.02E — 03), and
hypertrophy (TCPTIA, |GSN, TMYL9, 1S100A6, |TPMI,
p value 449E — 03), many of which (e.g., CPT1A, GRB2,
HSPA1A/HSPA1B, and S100A6) were also increased in S-
NO levels (p value 1.01E — 03) in HF subjects, suggested
that fragmented THBSI is potentially a signaling molecule in
cardiac remodeling/inflammatory processes in heart failure,
to be validated in future studies.

Vinculin, among others, is a component of subsarcolem-
mal structures, also known as costameres, in striated muscle
that circumferentially align with the Z-disk of the myofibrils,
and functions to allow muscle adhesion to the ECM [52].
A splice variant of VCL (termed metavinculin, MVCL) is
expressed in muscle and platelets. Several studies using
cellular models (e.g., cardiomyocytes, fibroblasts) have indi-
cated that VCL/MVCL mechanically couple the actin-based
cytoskeleton to the sarcolemma and regulate focal adhesion
turnover [53]. Our finding of a decline in VCL in PBMCs of
HF patients is in alignment with the observations made in
genetically modified mice depleted of VCL expression. The
VCL ™/~ mice displayed thin-walled myocardium [54] while
VCL'~ mice exhibited severe pressure overload induced
hypertrophy and progressive LV dysfunction associated with
abnormalities of Z-line structure in the myocardium [55]. The
cardiac-specific VCL knockdown resulted in early develop-
ment of ventricular tachycardia followed by cardiomyopathy
and all mice died before 6 months of age [56]. The absence of
cardiac VCL was associated with highly serrated intercalated
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FIGURE 7: Validation of expression profile of thrombospondin 1 (THBSI) in HF subjects. (a) The expanded view of the corresponding spot
for THBSI peptides (20 kDa) from representative 2D gel images of Asc* ((A) and (B)) and Asc™ ((C) and (D)) PBMCs from NH controls ((A)
and (C)) and HF ((B) and (D)) subjects is shown. (b) PBMC lysates (5 yg) of NH controls (1 = 6) and HF subjects (1 = 6) were subjected to
Western blotting for the detection of THBSI levels. GAPDH in (b) is shown as loading control. (c) ELISA was performed on 5 yg of PBMC
lysates for the detection of THBSI abundance (NH n = 13, HF n = 22) and S-NO modification status (NH n = 12 and HF n = 12). Mann
Whitney U test was performed to evaluate the significance *** P < 0.001. (d) Shown are the SNO-modified THBSI levels in PBMC lysates of

NH and HF subjects, determined by a biotin-switch ELISA.

disks that connect myocytes end-to-end and loosely arranged
and disorganized mitochondria in cardiomyocytes [56]. Oth-
ers have reported linkage of multiple mutations of VCL with
dilated and hypertrophic forms of human cardiomyopathy
[57, 58]. These studies show a clear linkage in alteration
of VCL expression with cardiomyopathy and heart failure,
emphasize the critical role of VCL/MVCL in maintenance
of cardiac function, and provide us with impetus to evaluate

peripheral VCL levels as a risk factor in heart failure develop-
ment.

In summary, current study was focused on the S-NO
modification and its impact on the pathophysiology in HF.
Future studies will be required to investigate the interplay
between protein nitrosylation and other cysteine-based PTM
in heart failure. A number of other posttranslational modifi-
cations (PTMs), for example, acetylation, O—GlcNAcylation,
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3-nitrotyrosine, and carbonyls, have also been implicated
in HF of diverse etiologies [59]. The pathophysiological
significance of PTMs with a potential impact on protein
misfolding, function, and ultimate disease outcomes in HF
is recently reviewed in excellent review article [60]. Our
proteome analysis of the PBMCs from HF patients showed
differential abundance and S-NO modification of proteins
involved in cell viability and production of reactive oxygen
species and indicated the potential of THBSI and VCL
evaluation to be useful in the prediction for risk of heart
failure.
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