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Abstract

Computational prediction of side-chain conformation is an important component of protein 

structure prediction. Accurate side-chain prediction is crucial for practical applications of protein 

structure models that need atomic detailed resolution such as protein and ligand design. We 

evaluated the accuracy of eight side-chain prediction methods in reproducing the side-chain 

conformations of experimentally solved structures deposited to the Protein Data Bank. Prediction 

accuracy was evaluated for a total of four different structural environments (buried, surface, 

interface, and membrane-spanning) in three different protein types (monomeric, multimeric, and 

membrane). Overall, the highest accuracy was observed for buried residues in monomeric and 

multimeric proteins. Notably, side-chains at protein interfaces and membrane-spanning regions 

were better predicted than surface residues even though the methods did not all use multimeric and 

membrane proteins for training. Thus, we conclude that the current methods are as practically 

useful for modeling protein docking interfaces and membrane-spanning regions as for modeling 

monomers.
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Introduction

Proteins perform a wide variety of vital biological tasks, including catalysis, signaling, and 

maintenance of cellular structures. Protein tertiary structure provides crucial information for 

understanding the atomic details of these tasks. However, experimental methods for structure 

determination are resource-intensive and to date fewer than 0.1% of protein sequences have 

a solved structure1. Furthermore, integral membrane proteins present difficulties in many 

steps of structural determination; consequently, structures of membrane proteins are 

underrepresented by an order of magnitude2 in the Protein Data Bank (PDB)3. In part to 

improve structural coverage of sequence data, much effort has been dedicated to the 

development of accurate computational protein structure prediction methods4. In the protein 
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structure prediction field, the accuracy of models has been mainly evaluated in terms of 

main-chain conformation as it has been done in the Critical Assessment of Structure 

Prediction (CASP), a biennial evaluation of the field1;5. Although structure models with the 

correct fold but lacking atomic detail have several useful applications, including fitting 

structures to an electron microscopy map6, predicting function from structure7, and guiding 

and interpreting site-directed mutagenesis, full atom models are needed for many important 

applications of computational models. Notable examples include artificial design of 

proteins8 that fold into desired folds9;10 or bind specifically to molecules such as 

proteins11;12 and DNA13 as well as design of molecules that bind specifically to a protein14. 

Additionally, atomic-level accuracy is needed for using computational models for molecular 

replacement in X-ray crystallography15. Accurate side-chain prediction is becoming 

critically important for computational models used in recent applications, which are 

expanding the biological usefulness of modeled structures.

Side-chain prediction also has applications with structures that have already been solved, 

such as determining the docking conformation of a protein complex where the subunit 

structures were solved separately16–18. Residues at a protein-protein interface exhibit a 

different conformation than the same residue in solution19;20; thus, predicting the interface 

side-chain conformation of the complex improves the accuracy of the docked structure.

In the past decades, dozens of side-chain conformation prediction algorithms have been 

developed. Works from the 1970s investigated the distribution of side-chain conformations 

in known structures21;22. Observation of side-chain distributions led to the idea of 

rotamers23–26 and conformers27, which are discrete sets of side-chain conformations for 

each amino acid often used by prediction programs. An advantage of using a library of 

rotamers is that the side-chain conformation prediction problem can be addressed as a 

combinatorial optimization problem, to which various optimization algorithms can be 

applied. Such algorithms include dead-end elimination28, neural networks29;30, the A* 

algorithm31, an evolutionary method32, an iterative optimization applying a mean field 

theory33, and a graph decomposition of side-chain clusters34;35. Alternatively, energy 

minimization may be applied without using a rotamer library36–38.

In this work, we benchmarked eight available side-chain conformation prediction programs. 

Unlike previous works that have classified residues by environment but only as buried or 

non-buried39;40, in our benchmark we further classify non-buried residues as protein 

interacting interface (protein-exposed), membrane-spanning (lipid-exposed), and surface 

(aqueous-exposed) for a total of four environments. Many methods were trained using only 

soluble monomeric proteins35;38;39 and as a result are not necessarily expected to predict 

with high accuracy in protein interface and intramembrane environments. Nevertheless, 

given the particular importance of protein structure prediction for membrane proteins and 

protein-protein docking, we wanted to determine whether these methods retain high 

prediction accuracy for membrane and multimeric proteins. This would serve both to 

evaluate the validity of using monomer-trained side-chain prediction methods on non-

monomer proteins and to highlight potential areas of improvement for these methods. It is 

also worth noting that almost all previous benchmarks have been performed by developers of 
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side-chain conformation prediction methods; in contrast, we have no vested interest in the 

accuracy of any particular method.

For all methods except one, overall χ1 angle accuracy exceeded 80%. Buried residues were 

best predicted. Contrary to expectation, side-chains at protein interfaces and membrane-

spanning regions were better predicted than surface residues even though most of the 

methods did not use multimeric or membrane proteins for parameter optimization. Thus, we 

conclude that the current methods are as practically useful for modeling protein docking 

interfaces and membrane-spanning regions as for modeling monomers. Accuracies of each 

amino acid type relative to accessible surface area and conformational entropy are also 

discussed.

Materials and Methods

Selection of Software

Our search for software programs to predict side-chain conformations from backbones found 

nine options: FoldX38, IRECS41, OPUS-Rota42, OSCAR40;43, RASP44, Rosetta-fixbb45, 

Scap46, Sccomp39, and SCWRL435. Of these nine programs, we were unable to use three: 

IRECS, OPUS-Rota, and Scap. Neither IRECS nor Scap ran and while OPUS-Rota ran 

using complete PDB files, it produced invalid results given backbone coordinates only. This 

left six programs, two of which had slow and fast versions. In total, we compared eight 

algorithms for predicting side-chain conformations from backbones: FoldX, OSCAR-o and 

OSCAR-star, RASP, Rosetta-fixbb, Sccomp-S and Sccomp-I, and SCWRL4. The algorithms 

differ in three primary ways: rotamer library, scoring function, and search procedure.

FoldX

FoldX38 is designed to predict the free energy change caused by single residue mutation. 

Thus, its primary purpose is not side-chain conformation but it models side-chains in the 

course of energy computation. FoldX models side-chains using the mutate function of 

WHAT IF47. The FoldX scoring function is a linear combination of the following terms: 

solvent exposure, van der Waals, solvation, hydrogen bonds, electrostatics, backbone and 

side-chain entropy, and water bridges.

OSCAR

OSCAR40;43 uses the backbone-dependent rotamer library by Dunbrack and Cohen48. The 

OSCAR scoring function includes the following terms: backbone dependency, contact 

surface, overlapped volume, electrostatic interactions, and desolvation energy. OSCAR has 

two algorithm versions: OSCAR-o40 (slow) and OSCAR-star43 (fast). OSCAR-star is a 

speed-optimized version of OSCAR-o that uses a rigid rather than flexible rotamer model. 

For both versions, the distance-dependent energy function is represented as a power series 

and the side-chain dihedral angle potential energy function is represented as a Fourier series. 

Finally, the distance-dependent energy function is multiplied by an orientation-dependent 

function. To predict a protein conformation, twenty structures with random rotamers are 

initialized. Then, low energy side-chain conformations are exchanged using a genetic 

algorithm. Next, all twenty structures are optimized using Monte Carlo simulation. These 
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two steps are repeated thirty times with decreasing temperature (simulated annealing), and 

the lowest energy structure is kept.

RASP

RASP44 uses the backbone-dependent rotamer library by Dunbrack and Cohen48. In 

addition to rotamer probability, the RASP scoring function calculates backbone/side-chain 

and side-chain/side-chain interaction energy with the following terms: attractive and 

repulsive van der Waals potential, disulfide bond energy, and hydrogen bond energy. The 

search function begins by reducing the search space with dead-end elimination. An 

interaction graph is then constructed. Interaction energies are only calculated between 

residues with Cβ atoms within 5 Å. An edge is created between residues if the difference 

between the highest and lowest energy rotamer pair combinations is greater than 3 kcal/mol. 

Small graphs are solved with branch-and-terminate and large graphs are solved with Monte 

Carlo simulated annealing. Finally, residues in clash are relaxed.

Rosetta

Rosetta-fixbb45 uses the backbone-dependent rotamer library by Dunbrack and Cohen48. 

The scoring function uses the attractive and repulsive portions of the Lennard-Jones van der 

Waals energy, statistical energy of backbone-dependent rotamers, Lazaridis-Karplus 

solvation energy49, distance-dependent residue pair potential, and energy of side-chain/

backbone hydrogen bonds. The search function uses multiple Monte Carlo runs initialized 

with a different random structure.

Sccomp

Sccomp39 uses a modified version of the backbone-dependent rotamer library by Dunbrack 

and Cohen48 such that each rotamer of histidine, glutamic acid, and asparagine are split into 

two: one with the original values and the other with the terminal bond flipped 180°. The 

scoring function is based on surface complementarity (which reflects contact surface and 

binary chemical similarity), excluded volume, intra-residue energy (rotamer probability and 

residue size), and solvation (solvent-accessible surface area and atomic solvation). Sccomp 

has two algorithm versions, iterative (fast) and stochastic (slow). The iterative algorithm 

(Sccomp-I) builds the side-chains in descending order of neighbor count. Each side-chain is 

modeled one by one while holding the other side-chains fixed. After each iteration, the 

modeling order is reversed. The iterative algorithm stops when the side-chain conformation 

is the same in two successive runs or the maximum iteration number is reached. The 

stochastic algorithm (Sccomp-S) initializes all residues to a random rotamer, then chooses a 

given residue’s rotamer according to the Boltzmann distribution. Modeling starts with the 

residue having the most neighbors and on subsequent steps proceeds to a random neighbor. 

The probability a rotamer will be accepted at each step follows the Boltzmann distribution.

SCWRL4

SCWRL435 uses a backbone-dependent rotamer library that gives the rotamer probabilities, 

mean angles, and variances as a smooth, continuous function of Φ and Ψ main-chain angles 

using kernel density estimates50. The scoring function consists of single rotamer and 

Peterson et al. Page 4

Proteins. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pairwise rotamer energies which use attractive and repulsive van der Waals and hydrogen 

bonding terms. Interactions of rotamers in a protein are represented as a graph. After 

removing edges that have virtually no interactions and applying dead-end elimination to 

remove rotamers from consideration, the graph is decomposed into subgraphs for final 

rotamer optimization.

Training Sets of the Methods

As the protein datasets used to derive the rotamer libraries and to train the algorithms are 

expected to impact the accuracy of side-chain conformation prediction, we summarized the 

types of proteins present in these datasets in Table II. The first two rows of Table II describe 

the protein datasets used by the rotamer libraries. OSCAR, RASP, Rosetta, and Sccomp used 

the rotamer library by Dunbrack and Cohen48. SCWRL4 used the rotamer library by 

Shapovalov and Dunbrack50. The Dunbrack and Cohen rotamer library has been superseded 

by the Shapovalov and Dunbrack rotamer library, so the details of the former are no longer 

available. However, as both rotamer library protein datasets were compiled with the PISCES 

server51 and no removal of multimeric or membrane proteins was described, it is likely that 

the datasets show similar composition (49% multimeric proteins and 0.3% membrane 

proteins).

For the method training datasets, many papers do not list the exact PDB codes in the dataset. 

However, almost all groups used the PISCES server51 to compile non-redundant lists of 

PDB files. RASP used a dataset from PISCES that contained 48% multimeric proteins and 

0.3% membrane proteins (Table II). OSCAR also used a PISCES dataset without removing 

multimers or membrane proteins. By inference to the datasets used by RASP and the 

rotamer library by Shapovalov and Dunbrack, it is likely that the OSCAR dataset consists of 

half multimeric proteins and a small number of membrane proteins. Three methods were 

trained using only soluble monomeric proteins: FoldX, Sccomp, and SCWRL4. Importantly, 

none of the methods divided the training sets by protein type or residue environment.

Selection of Benchmark Proteins

In order to compare the accuracy of protein side-chain conformation prediction for different 

environments, we chose sets of proteins from three categories: monomeric, multimeric, and 

membrane. Proteins that did not run on all software methods were removed from the dataset. 

A total of ten proteins were removed for this reason. OSCAR-o, Sccomp-I, and Sccomp-S 

did not complete 1vtz or 1yce. OSCAR-o and OSCAR-star did not complete 2xfr. Sccomp-I 

and Sccomp-S did not complete 1yn3, 2qap, 3mjo, or 4ery. RASP did not complete 2wwx, 

3ivv, or 4ate. Counts of the protein types in the datasets can be found in Table I. A full list of 

the proteins in the dataset can be found in Supplemental Table S1.

For monomers and multimers, we started with a non-redundant subset of the PDB from the 

PISCES51 server: resolution 1.6 Å or lower, maximum sequence identity 20%, and 

maximum R-factor 0.25 (2089 protein chains). As an additional quality control step, we 

removed all PDB files meeting any of the following criteria: missing main chain atoms, 

internal residue numbering skips, or residues other than the twenty canonical amino acids. 

We eliminated from the dataset PDB files with any ligand larger than five heavy atoms. This 
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was to remove side-chains with conformations primarily influenced by large ligands. 

Proteins were classified as monomeric or multimeric using the biological unit annotation in 

the PDB, favoring author annotation over software annotation. Multimeric proteins with 

only one chain in the PDB file were removed to avoid applying crystallographic 

transformations, which can introduce atomic clashes as discussed by Krivov et al.35. For any 

PDB file with more chains than the size of the biological unit, we checked if the duplicated 

chains in the file had sufficiently similar conformations. Such PDB files were included only 

if the copies had the same number of atoms and an RMSD of 1.5 Å or less.

Integral membrane proteins were poorly represented in the PISCES protein set. Therefore, 

we started with a list of crystallized membrane proteins compiled by Stephen White (http://

blanco. biomol.uci.edu/mpstruc/; 766 PDB codes) and filtered the structures with the 

PISCES server. Very few membrane structures have resolution of 2 Å or lower2; therefore, 

we included structures up to 2.8 Å resolution. We also allowed ligands with more than five 

heavy atoms due to the frequent presence of lipid or lipid-analogue molecules. To finalize 

the dataset, each membrane structure was visually inspected to confirm the presence of 

membrane-embedded residues. The membrane protein dataset represents proteins with α-

helical and β-barrel secondary structure, polytopic and monotopic proteins, and monomeric 

and multimeric proteins.

Environmental Classification of Residues

Residues in the three sets, monomeric, multimeric, and membrane proteins, were further 

classified into one of four environments: buried, surface, interface, or membrane-spanning. 

Protein and residue counts of the datasets are in Table I. Residues in monomeric proteins 

were classified as buried or surface. We calculated relative accessible surface area (ASA) of 

each residue by dividing ASA from DSSP52 by the theoretical maximum ASA of that 

residue in the tripeptide GXG53. A residue with relative ASA was less than 10% was 

classified as buried. Other residues were classified as surface.

Residues in multimeric proteins were classified as buried, interface, or surface. Each 

multimer PDB file was separated into single chain files before the DSSP ASA calculation 

described previously. Interface regions were determined by finding residues with any heavy 

atom within 5 Å of a heavy atom in a different protein chain. Buried residues were classified 

as described above. A non-buried residue in an interface region was classified as interface. 

Other residues were classified as surface.

Residues in membrane proteins were classified as buried, membrane-spanning, or surface. 

Membrane PDB files were not separated by chain before DSSP ASA calculation. When 

available, transmembrane region information was obtained first from the MPtopo membrane 

topology database54 or secondarily as determined by the depositor. Proteins lacking 

transmembrane region annotation were visually inspected, guided by topology images found 

in the structure references and anchoring aromatic residues (considered part of the 

membrane-spanning region). Buried residues were classified as described above. A non-

buried residue in a membrane-spanning region was classified as membrane-spanning. Other 

residues were classified as surface.
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Prediction Procedure

Prior to predicting side-chain conformations, each PDB file was reduced to backbone 

coordinates by removing side-chain and ligand atoms with PHENIX55. While some of the 

software is able to use water and other ligand information as input, we removed all ligands 

in order to provide the same amount of input information to each algorithm.

Evaluating Prediction Accuracy

Prediction accuracy was evaluated in terms of predicted χ1 and χ2 side-chain torsion angles. 

χ1 and χ2 torsion angles were calculated for each residue using the PDB module56 of the 

Biopython package57. The χ1 angle is the dihedral angle between the planes defined by the 

atoms N, Cα, Cβ, and Cγ; the χ2 angle is defined by Cα, Cβ, Cγ, and Cδ. Each predicted 

torsion value was subtracted from the corresponding torsion value from the PDB file to 

obtain the torsion error. A predicted angle was considered correct if the torsion error was in 

the range of ±40°, as in previous works35;39;40;44. This large window is due to the clustering 

of χ angles at −60°, 60°, and 180°58. Some residues have symmetry at χ1 (valine) or χ2 

(aspartic acid, leucine, phenylalanine, and tyrosine). For example, the δ position of aspartic 

acid has two different atoms (denoted in a PDB file as OD1 and OD2). In these cases, both 

possible predicted χ2 angles were compared to the angle from the PDB file and the smallest 

error was kept. Mean χ1&2 accuracy was defined as the proportion of residues with a 

defined χ2 angle that were correctly predicted for both χ1 and χ2. Accuracy was averaged 

per protein chain to prevent large proteins from disproportionately influencing the results. 

For multimeric proteins, only the chain listed in the PISCES database was checked for 

accuracy.

Entropy of Rotamers

We used Shannon entropy (SE)59;60 to characterize the distribution of rotamers in the 

experimentally solved structures in the dataset. An even distribution has a high SE while an 

uneven distribution (i.e. with a dominant state) has a low SE. SE was calculated using 

Equation 1. To apply SE to side-chains of amino acids in PDB files, we used a maximum 

likelihood estimator on the χ angle distribution binned by 10° (Equation 2, where ci is the 

count in any bin)61.

(1)

(2)

Results

We tested the side-chain prediction accuracy of eight software methods on a dataset of 408 

proteins. The dataset includes monomeric, multimeric, and membrane proteins (Table I). 
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The modeled proteins and raw accuracy data are made available at http://www.kiharalab.org/

Side-Chain_Dataset1/.

Overall Accuracy

First, we examined overall accuracy for each method (Figure 1). Median per-protein χ1 

accuracy was above 80% for all methods except FoldX, which showed accuracy about 10 

percentage points lower than other methods. OSCAR showed median accuracy close to 

90%. χ1&2 accuracies were 10–20 percentage points lower than χ1 accuracies, with 

methods following the same rank as χ1 accuracy. The observed χ1 and χ1&2 accuracies 

were consistent with previous benchmark studies35;39;40;43;44. The lower accuracy for FoldX 

is likely because the original purpose of FoldX is not rotamer prediction but detailed 

energetic analysis of single residue mutation. Comparing the two versions of OSCAR, the 

median accuracy was similar but OSCAR-star had a higher minimum accuracy than 

OSCAR-o. Comparing the two versions of Sccomp, Sccomp-S showed median accuracy 

slightly higher than Sccomp-I for both χ1 and χ1&2. To compute average accuracy over 

different methods in subsequent discussion, we excluded FoldX due to its lower accuracy 

than the other methods as well as OSCAR-o and Sccomp-I because these versions had 

accuracy similar to their counterparts.

We also examined the proteins that were predicted poorly in Figure 1 by analyzing the lower 

outliers (more than 1.5 times the interquartile range below the 1st quartile). We compared 

the protein chain length distribution of the outliers and the whole set (Figure 2). The outlier 

distribution peaked at a shorter length (30–40 residues) than the whole set (70 to 90 

residues). The outliers included a 27 residue short protein, fragment of rat tropomyosin 

(PDB ID: 3azd), which was below 63% accuracy for all methods.

Next, we compared accuracy divided by method and protein type. We performed statistical 

analysis on prediction accuracy, treating differences between software methods as the 

variable of interest and differences between proteins as secondary variability (blocks). 

Examination of the distributions of each method suggested possible deviations from 

normality, so we checked differences between methods using the nonparametric Friedman 

test and performed pairwise comparison using the Wilcoxon–Nemenyi–McDonald–

Thompson test, both available in the R package coin62. OSCAR-star and OSCAR-o were not 

significantly different in any group, but they were more accurate than the other six methods 

for χ1 accuracy in soluble proteins (Table III). FoldX was significantly less accurate than the 

other seven methods except for membrane χ1&2 accuracy. The average accuracy did not 

drop substantially from monomer to multimer proteins (a mean difference in χ1 accuracy of 

−0.9 percentage points). Thus, the absence of multimeric proteins in an algorithm’s training 

dataset did not have a sizable impact on prediction accuracy for multimeric proteins. A 

slightly larger difference was observed between monomer and membrane proteins (a mean 

difference in χ1 accuracy of −2.5 percentage points). Both Sccomp algorithms showed 

relatively less variation by protein group. In contrast, the decreased accuracy for membrane 

proteins was more than 3 percentage points for RASP, Rosetta, and OSCAR-star.
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Accuracy by Environment

We further compared the difference in accuracy by the residue environments in the three 

protein types (Figure 3). Residue environments showed larger differences than protein types. 

Median accuracy was highest for buried residues (90–95% for χ1), lowest for surface 

residues (78–82% for χ1), and intermediate for interface (87% for χ1) and membrane-

spanning (82% for χ1). This order was consistent across protein types. χ1&2 accuracy was 

about 8 percentage points lower than χ1 for buried residues but over 16 percentage points 

lower for surface residues. Buried and surface residues showed very similar accuracy 

between monomeric and multimeric proteins. In contrast, buried and surface residues in 

membrane proteins had median χ1 accuracy 4 to 5 percentage points lower. Therefore, the 

lower accuracy for membrane proteins compared to monomer proteins (Table III) was not 

solely due to the membrane-spanning residues. Surface and buried residues are expected to 

be in a similar environment regardless of protein type, so the lower accuracy in membrane 

proteins may have been due to the presence of lipid molecules in the input files. In general, 

surface residues have the fewest steric constraints; therefore, they can take on more 

conformations and are more difficult to predict35;46. Furthermore, residues in an X-ray 

crystal structure that seem to be on the surface may exhibit a conformation influenced by 

crystal contacts that are not present in the raw PDB file63.

Accuracy by Residue Type

Next, we examined the prediction accuracy for each residue type (Figure 4). We combined 

monomeric and multimeric proteins in Figure 4a as they showed similar trends in Table III 

and Figure 3. Membrane proteins were analyzed separately in Figure 4b.

For monomeric and multimeric proteins, serine was the least accurate while valine and 

isoleucine were the most accurate (Figure 4a), agreeing with the overall trend of previous 

works35;39;40. While accuracy was lower for interface residues compared to buried in most 

cases, seven residue types showed interface accuracy similar to buried accuracy (arginine, 

histidine, isoleucine, leucine, proline, tryptophan, and tyrosine). Two residue types had χ1 

and χ1&2 accuracy within 5 percentage points (leucine and proline) while three showed 

differences of 20–40 percentage points (asparagine, glutamine, and histidine). The high 

accuracy of proline χ2 is most likely due to its unique side-chain to backbone connection 

and consequent limited conformational space. The high accuracy of valine can also be 

attributed to its χ1 symmetry. Rotamers only account for rotation around single bonds 

between sp3 hybridized atoms (e.g. a carbon with four single bonds). Rotations around 

single bonds with an sp2 hybridized atom (e.g. a carbon with two single bonds and one 

double bond) are non-rotameric degrees of freedom and show broader distribution compared 

to rotamer angles50. Among canonical amino acids, sp2 atoms include Cγ of asparagine, 

aspartic acid, histidine, phenylalanine, tryptophan, and tyrosine as well as Cδ of glutamine 

and glutamic acid. Thus, the relatively larger drop in prediction accuracy from χ1 to χ1&2 of 

asparagine and histidine may be due in part to the non-rotameric degrees of freedom at the 

χ2 position.

For membrane proteins, in general buried residues were predicted best, followed by surface 

and membrane-spanning; only histidine, methionine, and tryptophan showed membrane-
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spanning accuracy higher than surface (Figure 4b). It is surprising that membrane-spanning 

residues were not predicted more accurately than surface residues, as surface residues are 

less physically constrained than membrane-spanning residues, which is considered to be the 

primary reason for poor surface residue prediction accuracy46. Compared to soluble 

proteins, lower accuracy was observed for all cases except buried histidine. The relative 

accuracy rank of residues was very similar between membrane and soluble proteins. In 

soluble proteins, tryptophan median χ1 accuracy was above 90% for all environments; 

however, in membrane proteins, tryptophan surface residue accuracy decreased to 70%.

Correlation between Accessible Surface Area and Accuracy

We investigated the prediction accuracy of each amino acid relative to accessible surface 

area (Figure 5). We found an overall decrease in accuracy of about 17 percentage points 

from completely buried to completely exposed residues (the subplot “all”). This trend was 

consistent across all environments: buried, surface, interface, and membrane-spanning. 

However, the observed negative correlation was not as large as has been previously 

reported35. At the residue level, leucine, isoleucine, threonine, serine, valine, and tyrosine 

showed only a marginal decrease of about 10 percentage points. In contrast, methionine 

showed a decrease of 40 percentage points. In most cases, interface residues have slightly 

higher accuracy than a surface residue at the same ASA.

Correlation between Rotamer Entropy and Accuracy

We further examined correlation of prediction accuracy to rotamer entropy. The rotamer 

entropy computed here quantified the randomness of rotamer distributions in specific protein 

environments. It has been observed that entropy does not correlate with solvent accessibility 

of residues33. In this analysis, three environments (buried, surface, and interface) in soluble 

monomeric and multimeric proteins were used (Figure 6).

Contrary to our expectations, surface positions did not always have the highest entropy of 

the three environments. In fact, surface had the largest entropy for only eight residue types 

(serine, lysine, methionine, phenylalanine, isoleucine, cysteine, glutamic acid, and arginine). 

There were very small differences in entropy between residue environments for five residue 

types, all of which are hydrophobic (leucine, phenylalanine, proline, tyrosine, and valine). 

Comparing buried and interface environments, interface has lower entropy in eleven residue 

types. Buried residues had higher entropy than surface residues in four residue types 

(asparagine, aspartic acid, histidine, and threonine). Again unexpectedly, only three residue 

types showed negative correlation between entropy and prediction accuracy. Clear negative 

correlation was observed only for lysine, glutamic acid, and arginine, all of which are 

charged.

Consensus Accuracy

We explored whether the consensus prediction between methods increased accuracy. To 

create a consensus, the rotamer angles were divided into 10° bins. For each residue, the 

mode (most frequently predicted angle bin) was determined. If there were multiple modes 

and the range of the modes was greater than 40°, the residue was classified as having no 

consensus. However, if a residue had multiple modes but the range of the modes was less 
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than 40°, the consensus was considered accurate if all modes were within 40° of the PDB 

torsion angle. Figure 7 shows cumulative accuracy and coverage at various consensus 

strength cutoffs. The consensus rotamer was more accurate than the best single method 

(OSCAR-star) with a consensus strength cutoff of 4 or higher at the expense of reduced 

coverage. The accuracy increased as the consensus strength grew. Particularly, accuracy of 

surface, interface, and membrane residues increased to approximately 10 percentage points 

higher than OSCAR-star.

Computational Time

Finally, we compared the computational time of the methods. For this test, we chose proteins 

between 36 and 341 residues in length (Supplemental Table S2), a range covering most of 

the proteins in the whole dataset (Figure 2). All times were measured on a machine with an 

Intel Core i7-3820 3.6 GHz processor and 24 GB RAM running Ubuntu Linux.

We can classify the eight methods into three groups according to computational time needed 

(Figure 8). OSCAR-o, FoldX, and Sccomp-S spent on the order of 100 to 1000 seconds; 

OSCAR-star, Sccomp-I, SCWRL4 and Rosetta-fixbb required on the order of 1 to 10 

seconds; and RASP was the fastest, completing all proteins on the order of 0.01 to 1 second. 

Thus, considering the comparable accuracy shown by RASP, its algorithm is efficient. 

OSCAR-o showed the highest accuracy (Figure 1, Table III) but the computational time 

required grew quickly as the protein length increased. RASP and Rosetta had the smallest 

increase in computational time (1.4 and 2.0 seconds, respectively) for the proteins we tested.

Discussion

Accurate side-chain prediction is crucial for constructing protein models with atomic detail. 

The importance has been highlighted recently as more and more computational models are 

applied to protein design and drug development, where atomic level accuracy is essential. To 

understand the performance of current side-chain conformation prediction software, we 

benchmarked eight programs on a large dataset of 408 proteins and complexes, including 

231 monomeric proteins, 132 chains from protein complexes, and 45 chains from membrane 

proteins. This is the first large scale benchmark study of side-chain prediction performed by 

a third party not involved in developing any of the methods tested. It is important to note that 

it is impossible to perform a completely fair performance comparison as each method is 

trained with a different dataset. Thus, this work is to be considered as a practical evaluation 

of the methods rather than a rigorous, competitive comparison between the methods.

To expand the usefulness of this benchmark study, we tested the methods on four residue 

environments (buried, surface, protein interaction surface, and membrane-spanning) from 

three protein types (monomeric, multimeric, and membrane). While none of the tested 

methods were specifically trained on membrane or multimeric proteins, we still wanted to 

test their accuracy on residues in different environments because protein-protein interfaces 

(docking) and membrane proteins have recently become important targets of structure 

modeling. Among the environments considered, protein surfaces were included as in many 

previous works. Residues at protein surfaces change their conformation in molecular 

dynamics simulations; thus, one might wonder if reproducing the conformations seen in 
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crystal structures is meaningful. However, studies have shown that side-chains on surfaces 

adopt unambiguous conformations, often through salt bridges and hydrogen bonds64;65. In 

Figure 6 we showed that surface residues did not always have higher conformational entropy 

than buried or interface residues. Therefore, prediction of surface side-chains is relevant.

To summarize the main conclusions of this work: (1) overall, monomeric and multimeric 

proteins had similar high accuracy of over 80% (Table III). (2) As expected, buried residues 

had the highest overall prediction accuracy. In multimeric proteins, interface residues were 

better predicted than surface residues (Figure 3). (3) Accuracy for membrane proteins was 

lower than for monomeric and multimeric proteins but still over 80% (Table III). Thus, very 

importantly, current methods predicted side-chain conformations of protein-protein 

interfaces and membrane proteins to a practically useful level. (4) Membrane proteins 

showed lower accuracy not solely due to low accuracy of membrane-spanning residues; 

buried and surface residues in membrane proteins also showed lower accuracy. (5) Small, 

hydrophobic residues showed higher accuracy than large, polar, and/or charged residues. (6) 

For all methods, χ2 prediction accuracy left room for improvement.

In this work, we have focused on evaluating prediction accuracy given the correct main-

chain conformation. However, in a practical structure prediction procedure, the main-chain 

would also be predicted and have a range of errors. Therefore, it is useful to analyze side-

chain prediction accuracy in the case that the main-chain conformation is predicted with 

varying levels of accuracy. It should also be noted that the accuracy required of side-chain 

prediction depends on the application of the computational models, e.g. ligand-protein 

docking or protein-protein docking prediction. Ultimately, the practical usefulness of side-

chain prediction and its required accuracy must be discussed in terms of the resulting 

accuracy of the applications of the structure models, which is left for future works.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Prediction accuracy by method. Lower and upper hinges: 1st and 3rd quartile. Whisker 

length: 1.5 times the interquartile range. Dark grey: χ1, Light grey: χ1&2.
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Figure 2. 
Protein chain length distribution of the entire dataset (gray) and low outliers in Figure 1 

(black). The outliers are the protein chains with χ1 and/or χ1&2 prediction accuracy less 

than 1.5 times the interquartile range below the 1st quartile of the accuracy for each method. 

There are a total of 65 outliers.
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Figure 3. 
Prediction accuracy of proteins by protein type and environment. Values were averaged for 

OSCAR-star, RASP, Rosetta, Sccomp-S, and SCWRL4. B: buried, S: surface, I: interface, 

M: membrane-spanning; Dark grey: χ1, Light grey: χ1&2.
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Figure 4. 
Prediction accuracy of proteins for each residue type and environment. Values were 

averaged for OSCAR-star, RASP, Rosetta, Sccomp-S, and SCWRL4. B: buried, S: surface, 

I: interface, M: membrane-spanning; Dark grey: χ1, Light grey: χ1&2. Cysteine, serine, 

threonine, and valine do not have δ heavy atoms to calculate the χ2 angle. The dataset did 

not include any cysteine residues in an interface environment. (a): monomeric and 

multimeric proteins; (b): membrane proteins.
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Figure 5. 
Prediction accuracy as a function of relative accessible surface area (RASA). Monomeric 

and multimeric proteins were combined. Residues with RASA above unity were excluded. 

The data were smoothed using local regression (loess). Values were averaged for OSCAR-

star, RASP, Rosetta, Sccomp-S, and SCWRL4. B: buried, S: surface, I: interface, M: 

membrane-spanning.
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Figure 6. 
Prediction accuracy as a function of rotamer entropy. Monomeric and multimeric proteins 

were combined. Rotamer entropy was computed for residues in three environments: buried, 

surface, and interface. Values were averaged for OSCAR-star, RASP, Rosetta, Sccomp-S, 

and SCWRL4.
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Figure 7. 
Cumulative mean χ1 accuracy and coverage by consensus of eight prediction methods. The 

eight methods are listed in Table III. The soluble group consists of the monomeric and 

multimeric proteins. The consensus rotamer for each residue was computed as the most 

common rotamer using 10° bins. The consensus strength was the number of methods that 

predicted the consensus rotamer. At each strength cutoff, the bars indicate the mean accuracy 

for residues with that consensus strength or higher and the line shows the fraction of 

residues covered. For comparison, accuracy of the best performing single method (OSCAR-

star) is shown.
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Figure 8. 
Computational time for proteins between 36 and 341 residues in length (Supplemental Table 

S2). The times were measured on a Linux machine with an Intel Core i7-3820 processor, 3.6 

GHz.
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Table II

Number and Types of Proteins in Rotamer Library and Method Training Datasets.

Software Source

Proteins

Total Multimer Membrane

Rotamer Library by Dunbrack and Cohen48 PISCES 2.0 Å 518 ? ?

Rotamer Library by Shapovalov and Dunbrack50 PISCES 1.8 Å 3985 1971 13

FoldX38 ProTherm66 9 0 0

OSCAR40 PISCES 2.0 Å 5279 ? ?

RASP44 PISCES 1.8 Å 300 145 1

Rosetta-fixbb45 ? 30 ? ?

Sccomp39 PISCES 1.8 Å 15 0 0

SCWRL435 PISCES 1.8 Å 100 0 0

A question mark indicates that the information could not be found in the original paper.

Proteins. Author manuscript; available in PMC 2016 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Peterson et al. Page 27

Ta
b

le
 II

I

M
ea

n 
pr

ed
ic

tio
n 

ac
cu

ra
cy

 (
pe

rc
en

t)
 b

y 
pr

ot
ei

n 
ty

pe
 a

nd
 m

et
ho

d.

M
on

om
er

M
ul

ti
m

er
M

em
br

an
e

χ
1

χ
1&

2
χ

1
χ

1&
2

χ
1

χ
1&

2

O
SC

A
R

-s
ta

r
88

.3
a

71
.7

a
87

.3
a

71
.5

a
85

.0
a

65
.9

ab

O
SC

A
R

-o
88

.1
a

71
.7

a
87

.4
a

71
.1

a
85

.4
a

66
.0

ab

SC
W

R
L

4
85

.2
b

72
.0

a
84

.6
b

72
.3

a
82

.2
b

68
.6

a

R
A

SP
85

.2
b

71
.0

a
84

.7
b

71
.5

a
81

.3
b

67
.4

a

R
os

et
ta

83
.3

c
68

.2
b

82
.4

c
68

.3
b

79
.9

b
63

.3
bc

Sc
co

m
p-

S
82

.3
c

59
.6

c
80

.6
c

59
.4

c
81

.3
b

59
.0

cd

Sc
co

m
p-

I
81

.3
c

57
.7

c
80

.2
c

58
.4

c
80

.0
b

57
.5

de

Fo
ld

X
70

.4
d

49
.7

d
69

.5
d

49
.3

d
68

.7
c

50
.2

e

W
ith

in
 e

ac
h 

co
lu

m
n,

 m
et

ho
ds

 th
at

 s
ha

re
 n

o 
le

tte
rs

 a
re

 s
ig

ni
fi

ca
nt

ly
 d

if
fe

re
nt

 w
ith

 p
 <

 0
.0

5.

Proteins. Author manuscript; available in PMC 2016 September 01.


	Abstract
	Introduction
	Materials and Methods
	Selection of Software
	FoldX
	OSCAR
	RASP
	Rosetta
	Sccomp
	SCWRL4
	Training Sets of the Methods
	Selection of Benchmark Proteins
	Environmental Classification of Residues
	Prediction Procedure
	Evaluating Prediction Accuracy
	Entropy of Rotamers

	Results
	Overall Accuracy
	Accuracy by Environment
	Accuracy by Residue Type
	Correlation between Accessible Surface Area and Accuracy
	Correlation between Rotamer Entropy and Accuracy
	Consensus Accuracy
	Computational Time

	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Table I
	Table II
	Table III

