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Abstract
This article reviews possible ways that traumatic brain injury (TBI) can induce
migraine-type post-traumatic headaches (PTHs) in children, adults, civilians,
and military personnel. Several cerebral alterations resulting from TBI can
foster the development of PTH, including neuroinflammation that can activate
neural systems associated with migraine. TBI can also compromise the intrinsic
pain modulation system and this would increase the level of perceived pain
associated with PTH. Depression and anxiety disorders, especially
post-traumatic stress disorder (PTSD), are associated with TBI and these
psychological conditions can directly intensify PTH. Additionally, depression
and PTSD alter sleep and this will increase headache severity and foster the
genesis of PTH. This article also reviews the anatomic loci of injury associated
with TBI and notes the overlap between areas of injury associated with TBI and
PTSD.
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Introduction
The second International Classification of Headaches (ICHD-2) 
defines post-traumatic headaches (PTHs) as secondary headaches 
following traumatic brain injury (TBI)1. No symptom-based crite-
ria define PTH in the ICHD-2 criteria. PTH is more frequent after 
mild TBI (mTBI) compared with moderate or severe TBI2 and can 
resemble one or more primary headache disorders3–9. The most 
common PTH patterns resemble two primary headache disorders—
migraine or probable migraine and tension-type headaches—and 
migraine-type headaches are more prevalent3–5,8,10,11. In one prospec-
tive study of adult civilian TBI associated with motor vehicle acci-
dents, 58% of subjects continued to have PTH one year after their 
TBI12. Migraine-like PTHs usually resemble migraine without  
aura5,7,8,13,14. Neck injury in conjunction with TBI can result in 
cervicogenic headaches or pain that may resemble occipital  
neuralgia11,15. PTH can impair quality of life. Among veter-
ans returning from Iraq or Afghanistan, the presence of PTH, 
especially if combined with one of the frequent TBI-associated  
psychological conditions of post-traumatic stress disorder (PTSD) 
or depression, diminishes the success of returning to work and other  
aspects of community reintegration16.

Cervicogenic pain and tension-type PTH following TBI are often 
attributed to musculoskeletal injury caused by the trauma that  
produced TBI11,15. However, musculoskeletal trauma does not 
explain migraine-type PTH. This review describes possible  
mechanistic links between TBI and migraine to suggest how TBI 
can induce migraine-type PTH.

Traumatic brain injury-induced neuroinflammation
Many brain tissue responses following TBI enhance the likelihood 
of, and perhaps directly cause, migraine-type PTH. For example, 
cellular injury increases the concentration of extracellular potas-
sium, which will trigger neuronal depolarization and release of 
neurotransmitters that promote headaches17. In addition, TBI 
triggers neuroinflammation, which enhances neuronal death and 
impairs recovery of function, but can also alter central nervous 
system (CNS) pain processing to induce migraine. Neuroinflam-
mation is characterized by the activation of microglia; the release 
of pro-inflammatory chemicals, including chemokines, specific  
interleukins, and tumor necrosis factor-alpha (TNF-α); and pos-
sibly the invasion of the CNS by inflammatory lymphocytes and 
phagocytic white cells coming through cerebral blood vessels. 
Neuroinflammation is a central element in the development of 
chronic traumatic encephalopathy (CTE) associated with repeated 
sports-associated TBI events18–22 and includes headache as part of 
the symptom spectrum18. Non-hemorrhagic, closed-head TBI acti-
vates microglia, leading to the production of inflammatory and pro-
inflammatory molecules20,23–28, and even minor experimental TBI 
induces neuroinflammation by activating microglia29. Moderate and 
severe TBI can disrupt the blood-brain barrier, allowing invasion 
of neutrophils from leaky blood vessels23,24,28. Neuroinflammation 
develops quickly after TBI as shown by a post-mortem study of 
civilians in which the brains analyzed after death associated with 
acute TBI demonstrated elevated mRNA levels of interleukin-1 
beta (IL-1β), IL-6, and IL-8 and TNF-α within minutes of TBI30.

Neuroinflammation can be modulated in several ways. Microglial 
activation is regulated by several factors, including poly (ADP-
ribose) polymerase-1 (PARP-1) and the metabotropic glutamate 
receptor 5 (mGluR5). PARP-1 is present in neurons and glia. It 
is the most abundant member of a family of enzymes that attach 
ADP-ribose polymers onto proteins. PARP-1 resides in the nucleus 
and is activated by DNA strand breaks31,32. At low levels of activa-
tion, PARP-1 facilitates DNA base excision repair by poly-ADP-
ribosylation of proteins involved in DNA repair. PARP-1 recruits 
DNA repair proteins to DNA break sites to restore DNA integrity. 
However, PARP-1 activation can damage neurons and glia after 
TBI33,34. PARP-1-mediated neuronal cell death may be partially 
due to PARP-1 activation depleting NAD+ and ATP31. Addition-
ally, PARP-1 may initiate neuronal death through the release of 
apoptosis-inducing factor and impairing mitochondrial function 
and glycolytic metabolism32,35,36. PARP-1-dependent nuclear factor- 
kappa-B activation induces the expression of pro-inflammatory 
genes and activates microglia37,38. Activated microglia release  
multiple types of neurotoxic molecules. Therefore, strong activa-
tion of PARP-1 due to TBI may convert PARP-1 from being an 
agent of DNA repair to a trigger of neuronal injury and neuroin-
flammation. In support of PARP-1 contributing to CNS damage  
in TBI, PARP-1 inhibition reduces microglial activation and  
functional impairment and increases neuron survival in experi-
mental models of TBI38–40. The activation of mGluR5 decreases  
microglial activation and reduces microglial release of pro- 
inflammatory factors, which reduces neuronal loss and improves 
functional recovery after experimental TBI41.

Peroxisome proliferator-activated receptors (PPARs) are ligand-
activated transcription factors that are members of the super family 
of nuclear hormone receptors42,43. PPARs control many physiologi-
cal functions, including glucose absorption, lipid balance, and cell 
growth and differentiation. Among the several PPAR isoforms, the 
activation of PPAR-α and PPAR-γ exerts neuroprotective actions 
in acute cerebral injury such as TBI44–47 and stroke48 and reduces 
neuronal injury in animal models of cerebral degenerative dis-
orders, including Parkinson’s disease49–52, amyotrophic lateral  
sclerosis53, and Alzheimer’s disease54. Treatment with a PPAR  
agonist after experimental TBI prevents microglial activation, 
reduces cognitive impairment, and reduces neuron death46.

The role of neuroinflammation in brain injury and recovery fol-
lowing TBI is complex. IL-6 is an inflammatory mediator. IL-6 
is one of the first cytokines produced after TBI. Chemically sup-
pressing IL-6, IL-1β, and TNF-α in mice reduces brain edema and 
apoptosis55. However, selective knockout of IL-6 in mice impaired 
functional recovery and enhanced the production of IL-1β fol-
lowing TBI compared with controls56. In children, IL-6 and nerve 
growth factor upregulation correlated with improved outcome after 
severe TBI57. Activation of adenosine 2A receptors can have pro- 
inflammatory or anti-inflammatory actions in the brain depend-
ing on the cell types containing the receptor and the degree of 
receptor activation58. Chemokines may have a complex role in 
brain response to TBI. Deletion of the chemokine ligand 2 recep-
tor (CCR2) resulted in reduced monocyte infiltration of the cortex  
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along with diminished neuronal death and axon injury in an animal  
model of TBI20. However, CCR2 deletion did not change  
microglia activation. Additionally, CCR2 deletion was associ-
ated with increased tau-protein mislocalization to the neuron cell  
bodies in the cortex and increased levels of phosphorylated tau 
in the hippocampus20. The changes in tau associated with CCR2  
deletion resemble findings described in CTE19,21.

Physical exercise before experimental TBI reduces neuroinflamma-
tion and improves functional recovery following fluid-percussion 
TBI in rats59. The protective effect of physical conditioning prior 
to TBI might influence recovery after TBI in athletes and active 
military personnel. The mechanisms of exercise reducing neuroin-
flammation are under investigation.

Possible links between neuroinflammation and 
migraine
Neuroinflammation alters the functions and sensitivities of menin-
geal and cerebrovascular structures60 that are involved in the 
development and progression of head pain and other features of 
migraine61. Additionally, inflammation and other responses to 
injury can enhance neuronal excitability62–64, which could potenti-
ate the genesis of cortical spreading depression (CSD). CSD is an  
important element in migraine, particularly migraine aura61. Thus, 
altering the properties of cerebral, meningeal, and cerebrovascular  
structures involved in migraine could be a link between TBI  
and PTH.

Neuroinflammation may play a role in brain recovery after TBI; 
however, exaggerated inflammation may lead to a state of hyperex-
citability involving structures that could potentiate the development 
of migraine and other headaches. The headache phase of migraine 
is associated with the release of vasoactive neuropeptides by the 
trigeminovascular system, vasodilation of the extracerebral intrac-
ranial arteries, and increased nociceptive transmission within the 
central trigeminocervical complex65. Cady proposed that migraine 
symptoms evolve as the pathology of inflammation and neural sen-
sitization progress66. Tension headache symptoms appeared early in 
the course of inflammation. As inflammation and neural hyperexcit-
ability advance, the pattern of headaches shifted from tension-like 
to migraneous headaches to classic migraine and other forms of 
migraine. This convergence model of headaches provides a con-
ceptual framework to consider how PTH can result from post-TBI 
neuroinflammation. Several reviews addressed the connections 
between neuroinflammation and migraine67–69.

Hyperexcitability of primary trigeminal afferent nociceptive neu-
rons can initiate or aggravate neuroinflammation involving menin-
geal blood vessels. Hyperexcitability resulting from inflammation 
of trigeminal nerve branches mediates the throbbing head pain 
of migraine61. The throbbing character of migraine may reflect 
pain signals carried by afferent pain fibers that innervate pulsat-
ing meningeal blood vessels. CSD is involved in the genesis of 
migraine aura and activation of meningeal pain receptors69. CSD 
may sensitize and activate meningeal nociceptors through the 
release of vasoactive pain-stimulating chemicals such as substance 
P, leading to the activation of mast cells and macrophages, which in 
turn release inflammatory mediators, including cytokines69. Another 

factor involved in migraine is the neuropeptide calcitonin gene-
related peptide (CGRP)70. CGRP modulates pain by peripheral and 
central mechanisms. Outside the brain, meningeal nociceptors are  
activated by CSD triggering the release of CGRP, which induces 
vasodilation and edema68. CGRP can also sensitize meningeal  
nociceptors producing positive feedback that increases the activ-
ity of meningeal nociceptors. Additionally, glia in the trigeminal  
ganglion release a CGRP-like peptide called procalcitonin, which 
also induces neuroinflammation68,70. The transient receptor potential 
V1 channel (TRPV1) potentiates the release of CGRP in nocicep-
tive trigeminal ganglia neurons and TBI activates TRPV171.

Traumatic brain injury can impair pain modulation
Pain intensity is based in part on the activity of intrinsic pain 
modulation systems that diminish pain transmission and alter the  
perceived intensity of painful stimuli72. Pain modulation is impaired 
in people with chronic PTH73. Diminished ability to reduce the  
perceived intensity of pain could prolong the duration and increase 
the intensity of PTH73. Impaired pain modulation in people with 
PTH results from disruption of the intrinsic pain modulation  
system and psychological changes that can alter pain perception. 
We will first consider TBI-induced alterations in the intrinsic pain  
modulation system.

Serotinergic (5-HT) neurons are important in pain modulation72, 
and migraine is associated with 5-HT pathways. The triptan class 
of migraine abortive medications are agonists of 5-HT(1B/1D) 
receptors74. TBI could facilitate PTH by reducing the activity of 
5-HT neurons that counter migraine. Activating 5-HT receptors 
inhibits the release of CGRP and other vasoactive neuropeptides 
from trigeminal nerves68,70. 5-HT(1B/1D) receptors constrict  
painfully dilated cerebral blood vessels and inhibit nociceptive 
neurotransmission in trigeminal pathways65. Trigeminal ganglion 
neurons project centrally to several locations, including pain  
pathways and the nucleus tractus solitarius (NTS), which is involved 
in the sensation of nausea75.

TBI targets 5-HT pathways in the brain. Long serotonergic axons 
may be damaged by diffuse axonal injury (DAI) associated with 
TBI. TBI causes DAI because long axons are stretched by the  
physical distortion of the brain which occurs with all forms of 
diffuse TBI76,77. An imaging study of people with chronic PTH  
demonstrated central white matter damage that correlated with 
the presence of chronic PTH78. The imaging study could not iden-
tify whether the white matter damage involved components of the  
pain modulation system; however, the locations of white matter 
injury associated with chronic PTH included regions containing 
pain modulation fibers that interface with the amygdalae and other 
cerebral nuclei72.

Serotonergic neuron cell bodies are organized into two distinct 
groups: caudal (medulla and caudal pons) and rostral (midbrain 
and rostral pons)79. Additionally, there are serotonergic neuron cell  
bodies in the medullary reticular formation (involved in alertness)  
and other non-raphe regions such as the hippocampus and the sub-
stantia nigra79. There is a biphasic change in the levels of 5-HT in  
cerebral extracellular and perivascular spaces after TBI. For the first  
few days after TBI, 5-HT levels are elevated80–82. Elevation of 5-HT  
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levels may result from stretch-induced firing of serotonergic nerve 
fibers and release of 5-HT from inflammatory cells. The acute eleva-
tion of 5-HT levels is associated with breakdown of the blood-brain 
barrier and cerebral edema83. Levels of 5-HT and its metabolites 
decline several days after brain injury and can remain persistently 
reduced84,85. Persistent damage to 5-HT pathways, particularly  
serotonergic innervation of cerebral blood vessels, may induce 
migraine following TBI by disrupting normal serotonergic suppres-
sion of patterns of neuronal and cerebrovascular activity associated 
with migraine82. Additionally, trigeminovascular afferent activation 
of NTS cells can induce symptoms such as nausea. Nausea can  
be suppressed by activating 5-HT(1B/1D) receptors that inhibit 
NTS cells associated with migraine symptoms such as nausea75. 
Thus, somatic symptoms associated with migraine such as nausea 
may be potentiated by over-activity of injured trigeminal neurons 
and reduction in serotonergic tone following TBI.

Traumatic brain injury-associated psychological 
changes that may potentiate post-traumatic headache
Psychological states of depression and anxiety can increase the 
perceived intensity of pain such as PTH72. Among civilians with 
migraine, the frequency and severity of migraine attacks are 
associated with PTSD86. The presence of mTBI may increase the 
likelihood that a psychologically traumatic event results in 
PTSD87. In rats, explosions that produce mTBI induce PTSD-like 
behavior88. Among combat veterans with mTBI-associated explo-
sions, there is a dose-response relationship between the number 
of TBI events and the likelihood of an individual developing 
PTSD4,89,90. A study of anxiety disorders in children following 
TBI found that 8.5% of children developed anxiety disorders,  
usually PTSD, within 6 months of the TBI and those with mTBI 
had the greatest likelihood of developing PTSD91. A national study 
of civilian trauma in Australia reported that the prevalence of  
new-onset depression was 9% after trauma. The presence of 
TBI with the trauma did not seem to influence the development 
of depression. PTSD prevalence following mTBI was 6%, which 
was about 1.9-fold higher than following trauma without TBI92. 
PTSD and mTBI are associated in combat personnel. About 40% 
of military personnel and veterans with combat-acquired mTBI 
had PTSD11,93. The incidence rates of PTSD were 44% for soldiers 
recently deployed in Iraq who experienced an episode of loss of 
consciousness due to mTBI, 16% for soldiers with other injuries, 
and 9% for uninjured soldiers93.

Depression and PTSD are frequently present in civilians with 
chronic PTH94–97. A study of psychological issues in civilians with 
chronic PTH found that 30% of subjects with PTH met criteria for 
PTSD and depression98. Although experiencing chronic pain can 
alter an individual’s psychological state, data suggest that PTSD 
is probably linked to the traumatic event rather than to chronicity 
of pain99. A meta-analysis of studies of civilian and military TBI 
concluded that PTSD may modulate the intensity and severity of 
chronic PTH but that TBI independently correlated with the genesis 
of chronic PTH2,100. A longitudinal study of Iraq and Afghanistan 
war veterans initially treated by the Department of Veterans Affairs 
in 2008 and followed through 2011 reported that PTH correlated 
with mTBI95. Additionally, coexistence of PTSD, depression, or 

both increased the likelihood of chronic PTH beyond that associ-
ated with mTBI alone95.

PTSD and depression can intensify PTH by disrupting sleep 
and this reduces the threshold for pain. PTSD disrupts sleep, 
and the impaired sleep associated with PTSD intensifies pain 
symptoms101–104. Improving the sleep of US combat veterans who 
sustained mTBI in Iraq or Afghanistan reduced PTSD severity 
and decreased the frequency and intensity of PTH episodes102,103. 
Depression is associated with impaired sleep, and impaired sleep 
can exacerbate depression105. Sleep deprivation and depression 
independently lower the pain threshold106. Several studies found 
that sleep deprivation lowers pain thresholds107–109.

PTSD is associated with chronic pain disorders, and PTSD has 
complex interactions with pain thresholds110. One report indi-
cated that PTSD increases the pain threshold but that supra- 
threshold pain was perceived as excessively intense111. PTSD 
disrupts sleep by inducing nightmares4,101–103,112–116. Prazosin, an 
alpha-1 adrenergic receptor antagonist that passes through the 
blood-brain barrier, reduces PTSD-associated nightmares102,103,112–117, 
improves cognitive performance, and reduces PTH frequency  
and severity4,102,103.

Possible relationships between mild traumatic brain 
injury and post-traumatic stress disorder
We suggest that cerebral injury associated with mTBI predis-
poses individuals to develop PTSD in response to psychologically 
traumatic events associated with the mTBI. A hypothesis on the 
neural basis of PTSD is that PTSD results from over-activation 
of the amygdalae due to loss of inhibitory regulation by the ven-
tromedial prefrontal cortex and hippocampus118. Pitman et al.119 
and Sherin and Nemeroff120 discuss the roles of hippocampus and 
ventromedial prefrontal cortex regulation of the amygdalae in the 
genesis of PTSD. Brain areas with significantly altered levels of 
activity identified by functional imaging in PTSD include ven-
tromedial prefrontal and medial temporal lobes121–123 which are 
damaged in mTBI124–137. Single-photon emission tomography 
demonstrated reduced benzodiazepine receptor binding in the 
prefrontal cortex of people with PTSD138. Prefrontal cortex activ-
ity in response to emotional stimuli is altered in PTSD139. In 
combat-associated TBI with PTSD, PTSD severity was associated 
with the presence of magnetic resonance imaging lesions involving 
the prefrontal cortex140.

In addition to imaging evidence that the ventromedial prefrontal 
cortex is altered in PTSD, the neurological examination finding of 
impaired olfaction supports altered function of the ventromedial 
prefrontal cortex in people with PTSD associated with mTBI3,4,89,92. 
The initial site of cortical processing of olfactory information is 
in the ventromedial prefrontal cortex141. Impaired olfaction was 
the most frequently recognized chronic/persistent neurological  
deficit on clinical physical examination4. TBI compromises olfaction 
by shearing the olfactory nerves traversing the cribriform plate or 
ventromedial prefrontal cortex injury or both141. Injured olfactory 
nerve fibers can recover over time, leading to improvement of olfac-
tion in the first year after TBI142. Veterans in the study of olfaction 
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after mTBI were evaluated more than one year after their last TBI; 
thus, the reported persistent reduction in olfaction likely resulted 
from damage to the ventromedial prefrontal cortex4.

A study of US military personnel who served in Iraq or Afghanistan  
and sustained combat TBI, predominantly mTBI, reported that 
29% of subjects had white matter lesions in at least two areas of 
interest127. The areas of injury were ventromedial prefrontal cortex, 
cingulum, and middle cerebellar peduncles. The finding of ven-
tromedial prefrontal cortex injury associated with combat mTBI 
provides a structural explanation for impaired olfaction in combat 
mTBI4,92. Further support for a structural basis for both impaired 
olfaction and PTSD with combat mTBI is that both impaired 
olfaction and the presence and severity of PTSD correlated with 
the number of mTBI events4,92.

Animal studies suggest that the neural elements associated with 
PTSD, including the amygdalae, ventromedial prefrontal cortex, 
and hippocampus, have unique responses to psychological stress 
that may perpetuate and enhance the severity of PTSD. Plac-
ing rats in prolonged stressful environments enhanced dendritic  
arborization of neurons in the amygdalae143,144 and produced  
dendrite atrophy in the hippocampus143. Consequently, continued 
stress, as might be produced by difficulty functioning within soci-
ety because of chronic PTH, could lead to structural brain changes  
that perpetuate and intensify PTSD. For combat veterans, the  
frequency and severity of PTH are associated with PTSD severity4.  
Consequently, PTH and PTSD could augment each other via  
cerebral structural changes.

Studies of Vietnam-era veterans show that subtle neurological 
deficits can increase the risk of developing PTSD145. In studies of 
monozygotic twins in which one twin was in combat and the other 
was not, among twin pairs where one had combat-associated PTSD, 
both twins had a higher prevalence of subtle neurological deficits145 
and gray matter abnormalities in the right hippocampus, pregenual 
anterior cingulate cortex, and left and right insular cortex146. The 
twin studies showed that subtle, genetically based neurological 
deficits can potentiate the genesis of PTSD.

The twin studies contrast with the Vietnam Head Injury Program 
(VHIP), in which veterans with combat penetrating severe TBIs 
involving the right amygdala or bilateral ventromedial prefrontal 
cortex had reduced prevalence of PTSD119. One explanation for the 
differences between the VHIP and twin studies is that the subjects 
in the VHIP study had severe TBI compared with the subtle defi-
cits of participants in the twin studies. Mild cerebral injury could 
foster PTSD genesis by impairing normal interactions among the 
amygdala, ventromedial prefrontal cortex, and hippocampus, 
whereas the more severe injuries in the VHIP study may prevent 
“the ‘super-normal’ levels of fear/anxiety that define PTSD”119. 

Thus, mild injury to specific areas of the brain may potentiate the 
genesis of PTSD, whereas obliteration of these areas may prevent 
PTSD from developing. In childhood TBI, PTSD and other anxiety 
disorders correlated with mild injury to the superior frontal gyrus, 
anterior frontal white matter, and ventromedial prefrontal gray 
matter93,123. Overall, the risk of developing PTSD following  
combat TBI is greater for mTBI compared with severe TBI147.  
Children with mTBI are more likely to develop PTSD than  
children with severe TBI93.

In summary, TBI can induce PTH by several mechanisms. TBI 
can induce neuroinflammation that activates structures associated 
with headache genesis, especially migraine. CNS damage resulting 
from TBI will impair pain modulation and enhance headache 
genesis. The CNS injury resulting from TBI can potentiate the 
development of depression and anxiety disorders, including PTSD 
that can intensify PTH. The areas of the brain injured in TBI  
overlap with the areas of impaired function associated with PTSD. 
The complex nature of PTH suggests that their treatment should 
include interventions that address psychological issues such as 
depression and PTSD and impaired sleep and that directly address 
pain symptoms associated with PTH.

Many questions remain regarding the genesis of PTH. We believe 
that an important issue to examine is whether some individuals 
are more susceptible to developing persisting PTH. Psychological 
conditions and secondary gain can influence the likelihood that an 
individual will develop PTH148. Psychological resilience enhances 
the ability of individuals to recover from psychological trauma and 
appears to reduce the likelihood that an individual will recover 
from TBI with prolonged post-concussion symptoms, including 
PTH149. The twin studies demonstrated that subtle, genetically 
based neurological deficits influence the genesis of PTSD145,146. 
We suggest that genetically based or acquired alterations in brain 
structure may also influence the likelihood that an individual will 
develop PTH.
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