
F1000Research

Open Peer Review

, Instituto Gulbenkian dePedro Fernandes

Ciência Portugal

, University of New SouthBruno Gaëta

Wales Australia

Discuss this article

 (1)Comments

2

1

OPINION ARTICLE

 Top 10 metrics for life science software good practices [version
1; referees: 2 approved]
Haydee Artaza , Neil Chue Hong , Manuel Corpas , Angel Corpuz , Rob Hooft ,

 Rafael C. Jimenez , Brane Leskošek , Brett G. Olivier , Jan Stourac ,
 Radka Svobodová Vařeková , Thomas Van Parys , Daniel Vaughan11*

The Earlham Institute & ELIXIR-UK, Norwich Research Park, Norwich, NR4 7UH, UK
Software Sustainability Institute, University of Edinburgh, Edinburgh, EH9 3FD, UK
University “La Sapienza, Rome, 00185, Italy
DTL, PO Box 19245, Utrecht, 3501 DE, Netherlands
ELIXIR Hub, Wellcome Trust Genome Campus, Hinxton, CB10 1SD, UK
Institute for Biostatistics and Medical Informatics (IBMI), Faculty of Medicine, University of Ljubljana, Ljubljana, SI-1104, Slovenia
Systems Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, Netherlands
Loschmidt Laboratories, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
CEITEC Masaryk University, Brno, 625 00, Czech Republic
Department of Plant Systems Biology, VIB, Ghent, 9052, Belgium
EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, CB10 1SD, UK

 Equal contributors

Abstract
Metrics for assessing adoption of good development practices are a useful way
to ensure that software is sustainable, reusable and functional.
Sustainability means that the software used today will be available - and
continue to be improved and supported - in the future.
We report here an initial set of metrics that measure good practices in software
development. This initiative differs from previously developed efforts in being a
community-driven grassroots approach where experts from different
organisations propose good software practices that have reasonable potential
to be adopted by the communities they represent. We not only focus our efforts
on understanding and prioritising good practices, we assess their feasibility for
implementation and publish them here.

 This article is included in the channel.EMBL-EBI

1* 2* 1* 3* 4*

5* 6* 7* 8*

9* 10* 11*

1

2

3

4

5

6

7

8

9

10

11

*

 Referee Status:

 Invited Referees

 version 1
published
16 Aug 2016

 1 2

report report

 16 Aug 2016, (ELIXIR):2000 (doi: First published: 5
)10.12688/f1000research.9206.1

 16 Aug 2016, (ELIXIR):2000 (doi: Latest published: 5
)10.12688/f1000research.9206.1

v1

Page 1 of 9

F1000Research 2016, 5(ELIXIR):2000 Last updated: 26 AUG 2016

http://f1000research.com/articles/5-2000/v1
http://f1000research.com/channels/ebi
http://f1000research.com/channels/ebi
http://f1000research.com/articles/5-2000/v1
http://dx.doi.org/10.12688/f1000research.9206.1
http://dx.doi.org/10.12688/f1000research.9206.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.9206.1&domain=pdf&date_stamp=2016-08-16

F1000Research

This article is included in the ELIXIR Reports
channel.

 Manuel Corpas (), Radka Svobodová Vařeková ()Corresponding authors: manuel.corpas@earlham.ac.uk svobodova@chemi.muni.cz
 Artaza H, Chue Hong N, Corpas M How to cite this article: et al. Top 10 metrics for life science software good practices [version 1;

 2016, (ELIXIR):2000 (doi:)referees: 2 approved] F1000Research 5 10.12688/f1000research.9206.1
 © 2016 Artaza H . This is an open access article distributed under the terms of the , whichCopyright: et al Creative Commons Attribution Licence

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 MC and HA are strategically core funded by UK’s BBSRC. BGO is funded by the BE-BASIC grant F08.005. NCH wasGrant information:

supported by EPSRC, BBSRC and ESRC Grant EP/N006410/1 for the UK Software Sustainability Institute. The work was part of the
ELIXIR-EXCELERATE project, funded by the European Commission within the Research Infrastructures programme of Horizon 2020, grant
agreement number 676559.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 Competing interests: No competing interests were disclosed.

 16 Aug 2016, (ELIXIR):2000 (doi:) First published: 5 10.12688/f1000research.9206.1

Page 2 of 9

F1000Research 2016, 5(ELIXIR):2000 Last updated: 26 AUG 2016

http://f1000research.com/channels/elixir-reports
http://f1000research.com/channels/elixir-reports
http://dx.doi.org/10.12688/f1000research.9206.1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.9206.1

Introduction
Compliance with and promotion of good development practice is a
powerful mechanism for promoting software sustainability. Using
metrics to judge good practice can enhance research software
maintainability and helps establish a baseline of quality, reusabil-
ity and reproducibility. Software development metrics, however,
are only useful if it is clear what they measure. This could be
a) the application of agreed good practice in a piece of software
or software team, or b) how sustainable the software is in the long
term. There have been previous attempts to assess good practices
for scientific computing1 but they did not specifically tackle the
question how to measure them during software development. As
part of a collaboration between the ELIXIR pan-European research
infrastructure for life science data and the Software Sustainability
Institute, a working group met at Schiphol airport (Amsterdam) on
December 14–15th 2015 to a) define and select the metrics that
reflect the application of good practices, b) discuss the collection
of these metrics and c) establish how the metrics could be imple-
mented to ensure their wide adoption. In this article we report the
outcomes of this workshop. We believe this effort is set apart from
previous initiatives because of its ‘bottom up’ approach to ensure
community adoption and therefore it should have realistic chances
of implementation. We benefit from the fact that participating
members of both groups have long established track records in life
science research software development. This is the first release of
our agreed software development good practices and expect that
new revisions could evolve from it in future iterations. It is outside
of the scope of this manuscript to delve into the issues that these
metrics might raise in terms of performance comparison between
different software.

Methods
In a workshop 12 experts from across Europe met to discuss
good software development practices for life sciences. At the
meeting, the group was divided randomly into two equally large
subgroups to facilitate discussion, each subgroup spending a set time
discussing potential metrics, their impact and applicability. The
experts in each subgroup did not impose any restriction on which
metrics to propose, but rather aimed to be as inclusive as possible,
as long as each suggested metric had potential for impact. After
the discussion, each group summarised the results and subsequently
we merged the resulting metrics together into a list of 17 topics.

Next, the two groups worked on prioritising the identified metrics
according to two criteria: 1) Importance and 2) Implementability.
Importance is a measure of the impact that a particular practice can
have in making software more sustainable. A metric is considered
highly implementable if it is easy to generate. For each identi-
fied metric, importance and implementability were ranked by all
members of the working group on a scale from 1 to 5, 5 being
highest importance or easiest implementation. An average score
was calculated and the resulting list was sorted from highest to
lowest scoring metrics. Here we discuss and evaluate a final list of
the top ten prioritised metrics.

Results
We identified a set of 17 topics that are critical for software
development good practice (Box 1). It was evident that these
include measurements of different styles: measurements can be
self-reported, automatically produced or externally audited. The

Box 1. Our complete list of potential topics to be indicative of
good practices in software development. Each of these topics have
quantitative and qualitative metrics that may help track the adoption
of good practice and monitor compliance with the guidelines in life
sciences.

1. Version control:

 a. Yes/no?

 b. How many committers?

 c. When was the version control started?

 d. When was the last commit?

2. Code reviews:
 a. Yes/no?

 b. Star rating based on code description

3. Automated testing:
 a. Yes/no?

 b. Coverage for unit tests

 c. Yes/no for individual tests:

 i. Unit tests

 ii. Functional tests

iii. Integration tests

iv. Regression tests

 d. Are the tests part of the code in the repository?

4. Not reinventing the wheel:

 a. Using libraries?

 b. Using Frameworks?

 c. � �Describing the algorithm, explaining why known code is
reimplemented.

 d. �Reinventing should be documented. References to the
algorithm?

 e. Percentage of code written from scratch?

 f. Percentage of code that is involved in the core functionality?

5. Discoverability:

 a. Via structured search on functionality?

 b. �Is it in the ELIXIR Tools and Data Services Registry2 or others
(e.g., BioSharing3)?

6. Reusability of source code:

 a. �Number or reuses = number of derived projects/external
commits?

7. Reusability of software:

 a. Number of citations on the paper

 b. �Having basic description of features in structured ELIXIR
format (EDAM ontology4) - in ELIXIR Tools and Data Services
Registry?

8. Licensing:

 a. Is there a license?

 b. Is the source available?

 c. Is it open source according to opensource.org?

9. Issue tracking/bug tracking:

 a. Does it have a publicly accessible issue tracker?

 b. How long are issues open?

 c. What is the number of unresolved issues?

 d. �How much activity has there been in the last three months in
the issue tracker?

10. Support processes:
 a. �Are basic processes defined? Like governance, mailing list,

releases, ...

Page 3 of 9

F1000Research 2016, 5(ELIXIR):2000 Last updated: 26 AUG 2016

Table 1. Prioritised top 10 metrics for assessment of life science software development good practice.
Each identified metric was scored according to importance (for sustainability) and implementability. Importance
scores ranged from 1 (little) to 5 (very much) and implementability from 1 (difficult) to 5 (easy). Average values are
shown for both importance (a) and implementability (b). A priority score (c) is calculated as the sum of the averages
provided by (a) and (b). (c) is further discussed and the final Manual Priority Evaluation (d) is agreed, reflecting the
final prioritisation judgement decided by the Working Group.

Top 10 Ranked Metrics Avg
Importancea

Avg
Implementabilityb

Avg Sum
Priority Scorec

Manual Priority
Evaluationd

Is version control used? 5 4.6 9.6 1

Is the software discoverable? 4.1 5 9.1 2

Is an automated build system used? 4.6 3.9 8.4 3

Are test data available? 3.8 4 7.8 4

Does software contain parts that
reimplement existing technology? 4.4 2.9 7.3 5

Is the software compliant with
community standards? 4.1 2.5 6.6 6

Are code reviews performed? 3.4 2.8 6.1 7

Is automated testing performed? 3.5 3.1 6.6 8

Is the code documented? 2.4 4.3 6.6 9

How high is the code complexity? 3.5 2.9 6.4 10

type of metric is also important to consider here: there are met-
rics of qualitative and quantitative nature. Qualitative metrics
correspond to a binary classification description, while quantitative
metrics tend to be more amenable to integration and presentation
as statistics. Metrics interpretation may pose challenges of its own
kind, particularly related to the subjective nature of the importance
of metrics and the different perceptions of value according to the
context in which they are used.

We used the 43 metrics contained in the 17 identified topics as a
basis for further prioritisation as described in the Methods sec-
tion. Prioritisation of metrics was achieved by all participants
scoring them according to their perception of importance and
implementability. An average score was calculated and a sum of
average importance and average implementability to rank the list
(Table 1). We introduced also a manual evaluation for each of the
proposed ranked metrics, which reflected the consensus of the final
prioritisation, given initial difference of opinions when reviewing
the average scores. In Table 1, we summarise the top 10 suggested
metrics.

As a use case, we base the application of these metrics within the
context of code development in ELIXIR. We define each of the
10 prioritised metrics in Table 1 and, where necessary, describe
and explain the motivation for a metric and how to measure it. We
consider that these definitions are applicable to a wider range of
software development communities in life sciences.

11. Compliance with community standards:
 a. Yes/no?

 b. �Specifies the level of compliance, specification version or
metrics?

12. Buildable code:
 a. Does the compiler give warnings?

 b. Does a static analysis (“lint”) give warnings?

 c. Is an automated build system used?

13. Open development:

 a. Number of external committers in the repositories

14. Making data available:

 a. Yes/no?

 b. Where?

15. Documentation:

 a. Ratio code/comments, code lines/document lines?

 b. Percentage of code dedicated to documentation?

16. Simplicity:

 a. Measure of cyclomatic complexity

17. Dependency management:

 a. Is it done automatically using a system?

 b. �Does it use a language-standard repository to pull in
dependencies?

 c. �Is software made available as a dependency in a
dependency repository?

Page 4 of 9

F1000Research 2016, 5(ELIXIR):2000 Last updated: 26 AUG 2016

1. Is controlled versioning used?
o	� Description: Is it clearly indicated, can it be easily

found?

o	� Motivation: Version control systems provide an environ-
ment for safe and transparent software development.

o	� How to measure: Put information about a version
control tool to the ELIXIR Tools and Data Services
Registry (which system, when it was installed, …)

2. Is the software discoverable?
o	� Description: Is it easy to find the software based on its

functionality (without knowing its exact name)?

o	� Motivation: It is important to be discoverable so other
potential contributions are encouraged and more people
use the software.

o	� How to measure: The ELIXIR community should be
motivated and guided to provide this information into
the ELIXIR Tools and Data Services Registry. If not,
a list of other catalogues should be defined (maximum
5–10 other sources, e.g. BioSharing, field-specific
catalogues, etc.). If the tool cannot be found there, the
discoverability should be evaluated as 0.

3. Is an automated build system used?
o	� Description: Are the builds of the software performed by

some automated system?

o	� Motivation: If the automated system for builds is applied,
can the users rebuild the software easily, which markedly
increases its usability?

o	� How to measure: This information should be again
included into the ELIXIR Tools and Data Services
Registry2. Ideally, a link to the installation document
should also be provided. How many commands are
necessary for building of the software? (Optimally, just
one command should be performed.)

4. Are test data available?
o	� Description: Are data for testing of the software easily

available for users?

o	� Motivation: Without test data, it may be difficult to try
the functionality of the software and assess correct func-
tioning of an installation.

o	� How to measure: The test data should be linked to from
the web page describing the software or in the supple-
mentary material of its associated publication. A link to
the data should be included in ELIXIR Service Registry.

5. �Does software contain parts that reimplement existing technology?
o	� Description: Are common components/algorithms

covered by libraries or reimplemented?

o	� Motivation: A (naïve) reimplementation can cause
unnecessary errors or decrease the effectiveness.

o	� How to measure: Percentage of code written from
scratch and/or number of used libraries. Additionally,
descriptions of why a library with similar functional-
ity was not used and responses to suggestions from
community.

6. �Does the software support open community standards and what
is its level of compliance?

o	� Description: Evaluation of software compliance with
open/community standards

o	� Motivation: This is needed, for example, where data
input/output, networking and general interoperability are
concerned. However, it is also non-trivial to implement
and measure in terms of the overall software quality.

o	� How to measure: A base metric would be: “does the
software make use of open standards (yes/no), if so
which ones (listing)?” In addition, more qualitative infor-
mation such as “which versions of the standard does
the software support?”, “Is it compatible with the latest
specification?”, and “Can it be used to provide a more
general level of support?” Another fundamental aspect to
consider is whether the standard provide its own compli-
ance metric (e.g., a test suite) and what the software’s
level of compliance is. An example of such a compliance
test suite is provided by the Systems Biology Markup
Language (SBML,5).

7. Are code reviews performed?

o	� Description: Whether new code is inspected by someone
else before it becomes part of the code base.

o	� Motivation: Code reviews increase quality of the code
both because it is written with more care and because the
second pair of eyes will more readily catch false assump-
tions or errors.

o	� How to measure: Activity in code review process (com-
ments to updated lines, etc.)

8. Is automated testing performed?

o	� Description: Is some system for automated testing imple-
mented?

o	� Motivation: Automatic testing decreases occurrence of
bugs.

o	� How to measure: Information about the testing meth-
odology should be present in the software documenta-
tion. In parallel, developers can be motivated to add this
information to ELIXIR Service Registry.

9. Is the code documented?

o	� Description: Does the code contain comments describ-
ing its main elements?

o	� Motivation: Code comments increase the readability of
the code and also indirectly motivate the programmer to
write a cleaner code. However, commenting can present
the problem of not being updated as code changes.
This means that code comments may rot and become
misleading/inaccurate. Often comments can be made
redundant by better names of variables and methods. An
exception is example code where explaining what each
line does with a comment is useful.

o	� How to measure: Determine the percentage of text from
the source code that corresponds to comments.

Page 5 of 9

F1000Research 2016, 5(ELIXIR):2000 Last updated: 26 AUG 2016

10. high is the code complexity?

o	� Description: This refers to how complex or straightfor-
ward the code is.

o	� Motivation: The more complex code, the higher risk of
errors. Code can be simplified by proper separation of
tasks into different routines and methods.

o	 How to measure: Measure the cyclomatic complexity.

Discussion and conclusion
We present an initial set of 10 good practices that could help make
software for the life sciences more sustainable. From our discus-
sions, it was clear that a community-wide adoption of standards is
needed in terms of how measurement of metrics are collected and
shared. We operate under the assumption that all software devel-
oped should be open source from the beginning of development,
which means that the collection of statistics for good practice com-
pliance should not violate any of the licensing or privacy issues
associated to closed code.

These ‘Top 10 Good Practices’ should be considered as an initial
view of what the community considers important with a descrip-
tion of their feasibility for implementation within the life sciences.
Among our top suggested topics there is a remarkable coincidence
on the need for versioning. The ways on how to collect metrics
regarding versioning systems vary: if using GitHub, a number of
statistics are readily available that allow their easy collection for
benchmarking. We do not, however, want to prescribe which ver-
sioning systems should be adopted. There are many ways in which
this metric can be measured, a sample of which we offer. The
metrics we propose can be both qualitative and quantitative.
Although quantitative metrics are easier to track, it is also impor-
tant to capture qualitative characteristics such as existence of
automated testing or compliance with community standards.

This article is a first attempt to crystallise the conclusions from
the work that the group of experts gathered under the auspices of

ELIXIR and the Software Sustainability Institute. It is thus not
intended to be a final declaration of what the ELIXIR community
thinks the metrics, implementation and feasibility for measur-
ing good practices for software development should be. This
document is an initial response from the working group established
to assess the problem of evaluating metrics for software develop-
ment good practices. We expect it to be modified in future versions
as more experts join this group and new challenges emerge with
evolving technologies and life science software needs.

Author contributions
All authors participated in the discussions, selection and priori-
tisation of metrics. We believe all authors contributed equally to
this work. All authors contributed to the writing of this article. All
authors read and approved the submitted manuscript.

Competing interests
No competing interests were disclosed.

Grant information
MC and HA are strategically core funded by UK’s BBSRC. BGO
is funded by the BE-BASIC grant F08.005. NCH was supported
by EPSRC, BBSRC and ESRC Grant EP/N006410/1 for the
UK Software Sustainability Institute. The work was part of the
ELIXIR-EXCELERATE project, funded by the European
Commission within the Research Infrastructures programme of
Horizon 2020, grant agreement number 676559.

The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Acknowledgements
We are grateful to Susanna Repo (ELIXIR-Hub) and Chris Ponting
(ELIXIR-UK Head of Node) for comments and feedback.

References

1.	 Wilson G, Aruliah DA, Brown CT, et al.: Best practices for scientific computing.
PLoS Biol. 2014; 12(1): e1001745.
PubMed Abstract | Publisher Full Text | Free Full Text

2.	 Ison J, Rapacki K, Ménager H, et al.: Tools and data services registry: a community
effort to document bioinformatics resources. Nucleic Acids Res. 2016; 44(D1): D38–47.
PubMed Abstract | Publisher Full Text | Free Full Text

3.	 Field D, Sansone S, Delong EF, et al.: Meeting Report: BioSharing at ISMB 2010.
Stand Genomic Sci. 2010; 3(3): 254–258.
PubMed Abstract | Publisher Full Text | Free Full Text

4.	 Ison J, Kalas M, Jonassen I, et al.: EDAM: an ontology of bioinformatics
operations, types of data and identifiers, topics and formats. Bioinformatics.
2013; 29(10): 1325–1332.
PubMed Abstract | Publisher Full Text | Free Full Text

5.	 Hucka M, Bergmann FT, Dräger A, et al.: Systems Biology Markup Language
(SBML) Level 2 Version 5: Structures and Facilities for Model Definitions.
J Integr Bioinform. 2015; 12(2): 271.
PubMed Abstract | Publisher Full Text

Page 6 of 9

F1000Research 2016, 5(ELIXIR):2000 Last updated: 26 AUG 2016

http://www.ncbi.nlm.nih.gov/pubmed/24415924
http://dx.doi.org/10.1371/journal.pbio.1001745
http://www.ncbi.nlm.nih.gov/pmc/articles/3886731
http://www.ncbi.nlm.nih.gov/pubmed/26538599
http://dx.doi.org/10.1093/nar/gkv1116
http://www.ncbi.nlm.nih.gov/pmc/articles/4702812
http://www.ncbi.nlm.nih.gov/pubmed/21304729
http://dx.doi.org/10.4056/sigs/1403501
http://www.ncbi.nlm.nih.gov/pmc/articles/3035313
http://www.ncbi.nlm.nih.gov/pubmed/23479348
http://dx.doi.org/10.1093/bioinformatics/btt113
http://www.ncbi.nlm.nih.gov/pmc/articles/3654706
http://www.ncbi.nlm.nih.gov/pubmed/26528569
http://dx.doi.org/10.2390/biecoll-jib-2015-271

F1000Research

Open Peer Review

 Current Referee Status:

Version 1

 26 August 2016Referee Report

doi:10.5256/f1000research.9909.r15704

 Bruno Gaëta
School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia

As a meeting report and opinion piece, there is little to contradict in the manuscript. The ideas put forward
are sensible and make a great starting point for discussion which is the purpose of the manuscript. Maybe
the scope of the article could be slightly better defined to differentiate the goal of the proposed metrics
from that of the metrics and methods used for software verification (see for example Giannoulatou et al
(2014))

References
1. Giannoulatou E, Park SH, Humphreys DT, Ho JW: Verification and validation of bioinformatics software
without a gold standard: a case study of BWA and Bowtie. . 2014; : S15 BMC Bioinformatics 15 Suppl 16

 | PubMed Abstract Publisher Full Text

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 24 August 2016Referee Report

doi:10.5256/f1000research.9909.r15707

 Pedro Fernandes
Instituto Gulbenkian de Ciência, Oeiras, Portugal

This is a pragmatic report that describes a systematic approach to selecting criteria to measure the
adoption of good practices in software development. The context of this study is a not as wide as the title
and abstract indicate. However, the assessments are fair and the methodology for collecting data is well
described. The use case provides a ground for a concrete reflection, and that is very useful. The
generalisation of the method will require more decoupling from the use case, but it is understood that it
can happen in future iterations of this study.

It is reasonable to believe that various grades of agreement has been reached in the discussions. It
would have been interesting to have included some measurement of dispersion, as the prioritisation
results from ranking average scores alone (Table 1). It would add value to the confidence in the choice of

the top 10 prioritised metrics that otherwise look indistinguishable from a full consensus. Although it is

Page 7 of 9

F1000Research 2016, 5(ELIXIR):2000 Last updated: 26 AUG 2016

http://dx.doi.org/10.5256/f1000research.9909.r15704
http://www.ncbi.nlm.nih.gov/pubmed/25521810
http://dx.doi.org/10.1186/1471-2105-15-S16-S15
http://dx.doi.org/10.5256/f1000research.9909.r15707

F1000Research

the top 10 prioritised metrics that otherwise look indistinguishable from a full consensus. Although it is
useful to concentrate on the top 10 and describe them at this level of detail, it would be very useful to see
the ranking of the full set of 43 metrics analysed, possibly in a bar graph with the average score and error
bars to indicate dispersion. That would enrich this manuscript significantly.

The importance of this effort in defining such criteria is very large, and, as the authors suggest, it
represents a first step of an iterative process that is much needed in this area. In subsequent iterations
some refinement of the measurement methods will be needed, such as in metric #9. "Is the code
documented?", presently listed as "How to measure: Determine the percentage of text from the source
code that corresponds to comments." The advantage of having the metric in usage is high, but the way to
measure needs to match the relative importance of the criteria. In this case, a high percentage of text in
comments is relevant is the comments are useful and contextualised, and it can be argued that a large
quantity of irrelevant comments can actually be detrimental in various aspects, from code readability to
maintainability itself.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Discuss this Article
Version 1

Reader Comment 23 Aug 2016
, University of Bergen, NorwayMatúš Kalaš

A great and timely article!

Thank you authors for discussing the main factors for developing and maintaining , , and reliable reusable
 software, as these are the main prerequisites for further good practices towards scientificdurable

software's qualities such as , , or .efficiency accessibility interoperability

One crucial factor appears implicitly throughout the article, but isn't phrased explicitly: the importance of
having a , with compilable and debuggable code, and installable binaries.public source code repository
And perhaps also a good support for of contributors (),building a community Budd 2015et al.
transparent and participatory, with social media, mailing lists, events, public discussions ...

I'm personally also a bit surprised that especially hasn't been voted higher. And licensing issue tracking
neither. I could also imagine more explicit references to and , to and ,free software open source FSF OSI
and maybe to , , or also .Stallman 1986 Perens 1999 1997

Altogether, I'm very glad to see an article like this published!

Matúš Kalaš

References:

Page 8 of 9

F1000Research 2016, 5(ELIXIR):2000 Last updated: 26 AUG 2016

http://doi.org/10.1371/journal.pcbi.1003972
http://fsf.org/
https://opensource.org
http://www.gnu.org/bulletins/bull1.html
http://www.oreilly.com/openbook/opensources/book/perens.html
http://lists.debian.org/debian-announce/1997/msg00017.html

F1000Research

Perens, B. . ,(1997) Debian’s ”Social Contract” with the Free Software Community. debian-announce@lists.debian.org

(msg00017). Re-published as .Debian Social Contract, Version 1.0
Perens, B. . In . O’Reilly.(1999) The Open Source Definition. Open Sources: Voices from the Open Source Revolution

Stallman, R. M. . , (1), 8–9.(1986) What is the Free Software Foundation? Gnu’s Bulletin 1

 No competing interests were disclosed.Competing Interests:

References:

Budd, A. . , (2), e1003972.et al. (2015) A quick guide for building a successful bioinformatics community. PLoS Comput. Biol. 11

Perens, B. . ,(1997) Debian’s ”Social Contract” with the Free Software Community. debian-announce@lists.debian.org

(msg00017). Re-published as .Debian Social Contract, Version 1.0
Perens, B. . In . O’Reilly.(1999) The Open Source Definition. Open Sources: Voices from the Open Source Revolution

Stallman, R. M. . , (1), 8–9.(1986) What is the Free Software Foundation? Gnu’s Bulletin 1

Page 9 of 9

F1000Research 2016, 5(ELIXIR):2000 Last updated: 26 AUG 2016

http://lists.debian.org/debian-announce/1997/msg00017.html
https://www.debian.org/social_contract.1.0
http://www.oreilly.com/openbook/opensources/book/perens.html
http://www.gnu.org/bulletins/bull1.html
http://doi.org/10.1371/journal.pcbi.1003972

