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Abstract
DNA replication origins strikingly differ between eukaryotic species and cell
types. Origins are localized and can be highly efficient in budding yeast, are
randomly located in early fly and frog embryos, which do not transcribe their
genomes, and are clustered in broad (10-100 kb) non-transcribed zones,
frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all
cases, origins are established during the G1-phase of the cell cycle by the
loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of
the replicative helicase. MCM DH activation in S-phase leads to origin
unwinding, polymerase recruitment, and initiation of bidirectional DNA
synthesis. Although MCM DHs are initially loaded at sites defined by the
binding of the origin recognition complex (ORC), they ultimately bind chromatin
in much greater numbers than ORC and only a fraction are activated in any one
S-phase. Data suggest that the multiplicity and functional redundancy of MCM
DHs provide robustness to the replication process and affect replication time
and that MCM DHs can slide along the DNA and spread over large distances
around the ORC. Recent studies further show that MCM DHs are displaced
along the DNA by collision with transcription complexes but remain functional
for initiation after displacement. Therefore, eukaryotic DNA replication relies on
intrinsically mobile and flexible origins, a strategy fundamentally different from
bacteria but conserved from yeast to human. These properties of MCM DHs
likely contribute to the establishment of broad, intergenic replication initiation
zones in higher eukaryotes.

    Referee Status:

 Invited Referees

 version 1
published
24 Aug 2016

   1 2 3 4

 24 Aug 2016, (F1000 Faculty Rev):2063 (doi: First published: 5
)10.12688/f1000research.9008.1

 24 Aug 2016, (F1000 Faculty Rev):2063 (doi: Latest published: 5
)10.12688/f1000research.9008.1

v1

Page 1 of 14

F1000Research 2016, 5(F1000 Faculty Rev):2063 Last updated: 24 AUG 2016

http://f1000research.com/channels/f1000-faculty-reviews/about-this-channel
http://f1000.com/prime/thefaculty
http://f1000.com/prime/thefaculty
http://f1000research.com/articles/5-2063/v1
http://f1000research.com/articles/5-2063/v1
http://f1000research.com/articles/5-2063/v1
http://dx.doi.org/10.12688/f1000research.9008.1
http://dx.doi.org/10.12688/f1000research.9008.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.9008.1&domain=pdf&date_stamp=2016-08-24


F1000Research

 Olivier Hyrien ( )Corresponding author: hyrien@biologie.ens.fr
 Hyrien O. How to cite this article: How MCM loading and spreading specify eukaryotic DNA replication initiation sites [version 1;

  2016, (F1000 Faculty Rev):2063 (doi: )referees: 4 approved] F1000Research 5 10.12688/f1000research.9008.1
 © 2016 Hyrien O. This is an open access article distributed under the terms of the , whichCopyright: Creative Commons Attribution Licence

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Work in the author's lab is supported by the Ligue Nationale contre le Cancer (Comité de Paris), the Fondation ARC pour laGrant information:

Recherche sur le Cancer, the Agence Nationale pour la Recherche (ANR-15-CE12-0011-01), and the Fondation pour la Recherche Médicale
(FRMDEI20151234404).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 Competing interests: The author declares that he has no competing interests.

 24 Aug 2016, (F1000 Faculty Rev):2063 (doi: ) First published: 5 10.12688/f1000research.9008.1

Page 2 of 14

F1000Research 2016, 5(F1000 Faculty Rev):2063 Last updated: 24 AUG 2016

http://dx.doi.org/10.12688/f1000research.9008.1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.9008.1


Introduction
We review here recent progress in understanding how MCM pro-
teins, which form the core of the eukaryotic replicative helicase, 
are loaded onto chromatin and redistributed along the genome to 
specify the location and activation time of eukaryotic DNA repli-
cation initiation sites. DNA replication is required for the faithful 
transmission of genetic information from mother to daughter cells1. 
The selection of replication initiation sites (origins)2 is develop-
mentally regulated in metazoan cells3–7, with possible consequences 
on developmental programs8 and genome stability9,10. Replication 
errors due to endogenous or exogenous causes can lead to cancer 
or genetic diseases11–13, and several DNA replication proteins 
including MCMs are used as cancer biomarkers14. Conversely, 
many efficient antibacterial, antiviral, or anticancer drugs act by 
targeting DNA replication1,15–18. Finally, origin selection influ-
ences the fate of DNA introduced into cells for biotechnological 
or therapeutic purposes or during natural DNA transfer processes. 
Understanding the control of replication initiation is therefore 
a fundamental endeavor critical to genome manipulation and 
to the understanding and treatment of human disease. We sum-
marize basic mechanisms of replication initiation in bacteria and 

eukaryotes and then elaborate on why eukaryotic replication ori-
gins are fundamentally different from, and more flexible than, those 
of bacteria.

The bacterial model for replication fork assembly
With the exception of RNA viruses, all living organisms use DNA 
to encode their genetic information, and all replicate it by the rep-
lication fork mechanism, in which the two DNA strands are sepa-
rated by a replicative helicase then copied by DNA polymerases1. 
In bacterial chromosomes, strand separation typically initiates 
at a single site, called the replication origin, through binding of 
a protein factor called the initiator (DnaA in Escherichia coli, 
Figure 1a)19. The initiator recognizes and unwinds origin DNA, 
then together with DnaC loads two inversely oriented copies of a 
ring-shaped homohexameric replicative helicase (DnaB

6
) around 

single-stranded DNA (ssDNA). The ability of each helicase 
complex to translocate in one direction along ssDNA, and to 
recruit RNA primases, DNA polymerases, and accessory factors, 
converts the origin DNA into two replication forks that travel and 
replicate DNA in opposite directions. The multiprotein complex 
that powers the replication fork is referred to as the replisome.

Figure 1. Replication initiation in bacteria (a) and eukaryotes (b). In bacteria (a), the binding of the initiator (DnaA) to the replication origin 
leads to DNA melting (top). The initiator then recruits the replicative DNA helicase (DnaB) in an active form around single-stranded DNA 
(ssDNA). This is followed by replisome assembly and the start of DNA synthesis. Since DnaB translocates in the 5’ to 3’ direction along 
the DNA, it encircles the lagging-strand template. In eukaryotes (b), the initiator (Orc1-6) loads the replicative DNA helicase (Mcm2-7) in 
an inactive, double-hexameric form around double-stranded DNA (dsDNA) during the G1-phase. Activation of the helicase is temporally 
separated from helicase loading and only occurs during S-phase by recruitment of Cdc45 and GINS to form the active Cdc45/Mcm2-7/GINS 
(CMG) holo-helicase. Since CMG translocates in the 3’ to 5’ direction along the DNA, it encircles the leading strand template.
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In the replication fork mechanism, DNA synthesis occurs con-
comitantly on both template strands as they are unwound. Since 
the two template strands are antiparallel and DNA polymerases 
synthesize DNA only in the 5’ to 3’ direction, the direction of syn-
thesis on one template must be opposite to that of fork movement 
(Figure 1). This is accomplished by the repeated initiation of 
short RNA primed nascent DNA chains, referred to as “Okazaki 
fragments”, that eventually join the 5’ ends of long nascent DNA 
chains. When DNA replication proceeds bidirectionally from spe-
cific sites, a transition from discontinuous to continuous synthesis 
occurs across the origin. Okazaki fragments are complementary 
to one template strand on one side of the origin and to the other 
template strand on the other side (Figure 1, Figure 2a).

Archaeal chromosomes can replicate from a single origin or 
multiple origins using a machinery that is much more closely 
related to that of eukaryotes than to that of bacteria20. Archaeal20 and 
bacterial19 DNA replication initiation has been reviewed elsewhere 
and will not be discussed here further.

Identification of eukaryotic DNA replication origins
Eukaryotic chromosomes contain multiple replication origins 
that are activated (fire) at different times during S-phase2,21,22. 
Eukaryotic origins were first isolated from budding yeast as short 
(100–200 bp) DNA sequence elements that are able to promote 
autonomous plasmid replication23–25. Named ARSs (autonomously 
replicating sequences), these elements were shown by physical 
analysis of replicating DNA to coincide (at a ∼1 kb resolution) with 
replication initiation sites in yeast plasmids and chromosomes26–34. 
Yeast ARSs require two separate elements for function, a degen-
erate T-rich ARS consensus sequence (ACS) and an A-rich 
nucleosome-excluding sequence downstream of the ACS35,36. The 
ACS is bound by the origin recognition complex (ORC), a con-
served heterohexameric AAA+ ATPase required for replication 
initiation in all tested eukaryotes37–43. The nucleosome-free region 
(NFR) adjacent to the ORC binding site is believed to provide space 
for the association of additional replication factors (see below). 
High-resolution analysis of leading strand synthesis at ARS1 identi-
fied a single start site for each leading strand within this NFR44.

Figure 2. Okazaki fragment sequencing delineates initiation and termination sites. (a) Relationship between replication fork direction and 
Okazaki fragment strandedness. Leftward- and rightward-moving forks synthesize the Watson (W) and the Crick (C) strand, respectively, in 
the form of Okazaki fragments (short red and blue arrows). (b) Expected strandedness of Okazaki fragment synthesis along a single copy of 
a chromosomal DNA segment containing the indicated origins and terminus. Note that Okazaki fragments (∼0–200 nt) have been drawn to 
a much larger size than proportional to replication units (∼40 kb in yeast, ∼200 kb in human cells). (c, d) Typical abundance pattern of Crick 
(red) and Watson (blue) Okazaki fragments (short arrows) in asynchronously growing yeast33,119 (c) and human59 (d) cell populations (c, d, 
top) and interpretation (c, d, bottom). Long arrows indicate the movement of replication forks in individual chromosomal copies. Watson-to-
Crick shifts in Okazaki fragment strandedness, diagnostic of initiation events, are abrupt in yeast (c), indicating efficient usage of site-specific 
origins, but gradual in human cells (d), indicating inefficient usage of multiple, dispersed origins within a broad zone (10–100 kb). Crick-to-
Watson shifts, indicative of termination events, are gradual in both yeast and human cells, indicating that termination is dispersive in the cell 
population owing to a variable position and/or firing time of adjacent origins and/or a variable rate of fork progression.Yeast termination zones 
are most often relatively confined, clearly separated from origins by zones of unidirectional fork progression. In contrast, human termination 
zones are much broader and frequently contiguous with initiation zones.

a.

b.

c.

d.
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In contrast to yeast, autonomous replication assays failed to isolate 
metazoan ARSs. Plasmid replication does not require any specific 
DNA sequence and initiates at random sequences in Xenopus 
eggs45–47 or in cultured mammalian cells48,49. Consistently, meta-
zoan ORCs do not show any DNA binding sequence preference 
in vitro50–52. Replication of metazoan chromosomes initiates at 
random sequences in early fly53 and frog54 embryos, in which the 
genome is transcriptionally silent. In later embryos, however, the 
onset of zygotic transcription is accompanied by a circumscription 
of replication initiation to intergenic zones consisting of multiple 
inefficient initiation sites5,6. Broad replication initiation zones 
delimited by active transcription units were also observed at a few 
loci in mammalian somatic cells2,55–58.

Recently, Okazaki fragment sequencing has been used to measure 
replication fork directionality (RFD) and delineate initiation and 
termination sites genome-wide in budding yeast33 and in human 
cells59 (Figure 2). Okazaki fragment sequences indicate their 
strandedness (Figure 2a) and therefore the direction of their fork 
of origin (Figure 2b). This allows one to determine the frequency 
with which a locus is replicated rightward or leftward in a cell 
population (Figure 2c, 2d). In yeast, abrupt left-to-right RFD inver-
sions typical of punctate initiation sites are observed at consist-
ent locations with pre-existing origin identifications33 (Figure 2c). 
In human cells, however, smooth leftward-to-rightward RFD 
inversions are observed, revealing thousands of broad (10–100 kb) 
replication initiation zones59 (Figure 2d). About one-half of the 
replication initiation zones are bordered by active transcription units 
on one or both sides, and these fire early in S-phase. The remain-
der are scattered in large non-expressed portions of the genome 
and fire predominantly late in S-phase. The mechanism specify-
ing the boundaries of initiation zones in the absence of flanking 
active genes is unclear, although both types of initiation zones share 
open chromatin marks typical of active or poised enhancers59. Ter-
mination occurs over broad zones of rightward-to-leftward RFD 
inversion in both yeast33 and human59 cells, at positions dictated by 
the firing time distributions of flanking origins (Figure 2c, 2d).

The broad and gradual changes in Okazaki fragment strandedness 
observed in human initiation zones set up the need for broadly dis-
tributed potential start sites that may exceed the number of ORC 
binding sites. Overall, in agreement with pioneering studies of the 
DHFR locus55,60, these results indicate that in metazoan cells, the 
entire genome is a potential substrate for stochastic initiation but 
the efficiency of individual sites is epigenetically and developmen-
tally regulated, in coordination with transcriptional activity.

Replisome assembly at eukaryotic DNA replication 
origins and disassembly at termination sites
The control of replisome assembly at eukaryotic replication ori-
gins relies on a strict temporal separation of replicative helicase 
loading and activation (Figure 1b)61,62. From late mitosis to the 
late G1-phase of the cell cycle, the ORC together with Cdc6, 
another AAA+ ATPase, and Cdt1 load the ring-shaped, Mcm2-7 
replicative helicase motor in the form of a catalytically inactive 
head-to-head dimer around double-stranded DNA (dsDNA). This 
process, called origin licensing or pre-replicative complex (preRC) 
assembly, has been reconstituted with purified budding yeast 

proteins63,64. Origins are then activated during S-phase, which is 
triggered by a rise in Clb5,6- and Dbf4-dependent protein kinase 
(CDK and DDK) activities65. In this complex process, the Mcm2-7 
double hexamer (MCM DH) associates with helicase cofactors 
Cdc45 and GINS and a number of other initiation factors65, result-
ing in the formation of two active Cdc45/Mcm2-7/GINS (CMG) 
holo-helicases66 that encircle ssDNA67 and seed replisome assem-
bly. The head-to-head configuration of the MCM DH thus pro-
vides a molecular mechanism for the establishment of bidirectional 
DNA synthesis at eukaryotic origins. Once cells enter the S-phase, 
several well-studied mechanisms prevent de novo MCM loading 
onto origins68. More elusive are the mechanisms that eliminate 
unfired MCMs from chromatin as DNA synthesis proceeds69. 
Recent work shows that when converging forks meet and terminate 
replication, converging CMGs pass one another and leading and 
lagging strands are rapidly ligated70, then CMGs are disassembled 
by ATPase p97 following ubiquitylation of MCM771,72. Passage 
through mitosis and G1-phase is then required for a new round of 
origin licensing prior to DNA replication.

A remarkable recent achievement is the reconstitution of helicase 
loading followed by helicase activation and DNA synthesis 
with purified budding yeast proteins (16 factors made of 42 
polypeptides)73. Even though DNA synthesis in this system does 
not yet fully recapitulate normal leading and lagging strand rep-
lication, this work defines the minimum set of factors required 
for origin-dependent replication initiation and sets the stage for 
complete reconstitution of chromosome replication. Other impor-
tant recent achievements are a crystal structure of the Drosophila 
ORC74 and a cryo-EM, near atomic structure of the MCM DH 
purified from yeast G1 chromatin75. The ORC structure suggests 
that ORC can switch between autoinhibited and active conforma-
tions, exposing a gap in the ORC ring where DNA can bind and be 
trapped by joining of Cdc6 prior to MCM loading. In the MCM DH 
structure, the two single hexamers are twisted and tilted to form a 
kinked central channel. The kink, located at the DH interface, is 
proposed to deform DNA and act as a nucleation center for DNA 
unwinding. DDK-dependent opening of the rings at the MCM2-
MCM5 interface may create an expanded central chamber for 
strand separation through which ssDNA may loop out and become 
accessible to the copying process.

Mcm2-7 DHs are loaded in excess to origins
In contrast to the bacterial mechanism of replication initiation, 
neither the binding of ORC to DNA nor the loading of the 
MCM DH during G1 results in any detectable ssDNA formation 
(Figure 1)76. Furthermore, once MCM DHs are loaded, ORC, Cdc6, 
and Cdt1 are no longer required for replication initiation73,77,78. 
The CMG helicase, whose assembly is restricted to S-phase, is 
solely responsible for DNA unwinding at origins and at moving 
forks. Therefore, activated MCM DHs, not ORC, ultimately 
determine where replication can initiate.

Importantly, studies in budding yeast79 and metazoans80–82 revealed 
that MCM proteins are bound to chromatin in G1-phase at levels 
that far exceed (by a factor of 10 to 50) the number of active rep-
lication origins and ORC. This raises questions about the loading 
mechanism and the location and function of these abundant 
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MCMs. Early experiments with model DNA substrates in Xenopus 
egg extracts83–85 suggested that many copies of MCM could be 
loaded, and initiate DNA replication, over a large region around 
ORC, suggesting a mechanism for the formation of broad initiation 
zones from a single ORC (Figure 3). A single MCM DH encircles 
∼60 bp of dsDNA63. Presumably, MCMs loaded next to the ORC 
would need to spread through the surrounding chromatin to liberate 
space for reiterated MCM loading. In vitro reconstitution of yeast 
origin licensing has shown that MCM DHs can passively slide 
along dsDNA63, which may facilitate their spreading around the 
ORC. The punctate nature of budding yeast replication initiation 
sites suggests that if MCM spreading also occurs in yeast, ORC-
proximal MCMs are favored for initiation, which is in contrast to 
the situation in Xenopus.

Spreading of MCM DHs along chromosome arms is expected to 
require the displacement of nucleosomes, as the channel in the 
MCM DH is not wide enough to accommodate nucleosomal par-
ticles. Genome-wide measurements of nucleosome turnover in 
Drosophila cells suggest that turnover is high around ORC binding 
sites and proportional to ORC binding86. High nucleosome turno-
ver may facilitate ORC binding, and perhaps MCM loading and 
spreading around the ORC. Among the many factors reported to 
promote preRC assembly, the histone H4 acetylase HBO187, the 
ATP-dependent chromatin remodeler SNF2H88, and the novel 
histone-binding protein GRWD189, which are all recruited to chro-
matin by interaction with Cdt1, have been proposed to promote 
MCM loading in human cells. One possible model is that H4 
acetylation by HBO1 promotes the recruitment of SNF2H and/or 

GRWD1, which cooperatively increase chromatin fluidity to facili-
tate MCM loading.

It may be less necessary to invoke MCM spreading if ORC can 
bind at multiple locations throughout broad initiation zones. 
Metazoan ORC binds weakly and cycles on and off DNA quickly90, 
whereas MCM DHs are highly stable once loaded69, which may 
explain the large excess of MCM in relation to ORC on G1 chro-
matin. However, human genome-wide analysis suggests that ORC 
binding sites, unlike initiation sites, are not uniformly distributed 
through initiation zones but concentrate at their borders59, con-
sistent with ORC preference for the promoters of active genes91. 
Furthermore, the broad initiation zones reconstituted in Xenopus 
experiments do reflect MCM spreading from ORC, since DNA 
hypermethylation was used to prevent ORC binding through the 
template except in a small, low-CpG-density DNA region84.

In Xenopus, the redundancy of potential origins afforded by excess 
MCMs has been proposed to ensure a reliable S-phase completion 
time by allowing initiation to increase late in S-phase inside long 
inter-origin gaps85,92,93. A comparable time-dependent increase in 
initiation rate has been observed in widely divergent eukaryotes 
and proposed as a universal feature of S-phase kinetics94. When 
MCMs are depleted by up to 90%, although S-phase progression 
is not obviously altered, progressive accumulation of DNA damage 
is observed95. This genotoxic effect is strongly potentiated by treat-
ment with drugs that slow fork progression. Cells from several 
metazoan organisms can activate extra origins to maintain a nor-
mal rate of S-phase progression in response to fork slowing, but 

Figure 3. Model for broad replication initiation zones in metazoan cells. During origin licensing, multiple Mcm2-7 double hexamers 
(MCM DHs) are loaded onto a large region surrounding the origin recognition complex (ORC). Only a small fraction of MCM DHs is then 
activated in any one S-phase. Thus, initiation can potentially occur at any of a large number of sites in a broad zone around the ORC.

Reiterative helicase loading

Random helicase activation

OR

OR
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this response is abolished when MCMs are depleted by >90%95–97. 
However, clear evidence for a similar role of excess MCMs as 
back-up origins has not been reported in budding yeast.

Single and reiterative MCM DH loading
In nuclear extracts derived from G1-arrested yeast cells, the ORC 
can load at least four MCM complexes on a 1 kb fragment contain-
ing a single copy of the early firing origin ARS198. Importantly, an 
orc 4 mutation that blocks ATP hydrolysis (but not ATP binding) by 
the ORC allows a single round of MCM loading in this system98. 
ATP hydrolysis by the ORC is therefore required for reiterated 
MCM loading. According to a recent study of origin licensing 
using real-time, single molecule imaging of fluorescently labeled 
ORCs, MCMs, and origin DNA, the ORC is released from the 
origin after the assembly of a single MCM DH99. If so, the ORC 
would need to cycle on and off origin DNA to load multiple MCM 
DHs. Conceivably, ATP hydrolysis may facilitate ORC release 
from loaded MCM DHs and ADP/ATP exchange would reac-
tivate the ORC for another round of loading. Reiterative loading 
was detected only at a high concentration of purified proteins in 
reconstitution experiments63,99 and was far less efficient than with 
extracts98. Extracts may contain factors that promote ADP/ATP 

exchange by the ORC or that actively push loaded MCM DHs 
along dsDNA to liberate space for repeated MCM loading at the 
same site.

Reiterative MCM DH loading and replication timing 
regulation
One possible function of excess MCM loading is in regulating 
origin firing time. A computational analysis of genome-wide 
replication kinetics in budding yeast shows that earlier-firing 
origins have a tighter firing time distribution and a higher poten-
tial efficiency than later-firing origins31. Furthermore, analysis of 
several ChIP-seq experiments suggests that MCM peaks are on 
average stronger at early origins than at late origins100, although 
no such correlation between ORC or MCM levels and origin effi-
ciency was observed in another study33 that used different ChIP-seq 
datasets101. The observed correlation suggests a model in which 
origins fire stochastically but are loaded with a variable number 
of MCMs so that origins that have more MCMs fire on average 
earlier and at a more precise time than origins with fewer MCMs 
(Figure 4)31. Recent quantitative ORC and MCM Western blots on 
purified plasmid origins detected, on average, three MCM DHs at 
early origin ARS1, two at early origin ARS305 but fewer than one 

Figure 4. The multiple-MCM model for regulating origin firing efficiency and time. If a variable number of Mcm2-7 double hexamers (MCM 
DHs) are loaded at origins and each MCM DH has a constant probability of firing per unit time, origins with more MCM DHs have as a whole 
a higher probability of firing and an earlier mean firing time.

Origin 1
(efficient, early-�ring)

Origin 2
(inefficient, late-�ring)

Helicase loading

Helicase activation

Each MCM DH fires in 25% of chromosomal copies

Origin 1 as a whole
fires in 75% of

chromosomal copies

Origin 2 as a whole
fires in 25% of

chromosomal copies

Page 7 of 14

F1000Research 2016, 5(F1000 Faculty Rev):2063 Last updated: 24 AUG 2016



at late origin ARS306100. Finally, an ARS1 mutation that reduced 
MCM loading 6-fold without affecting ORC binding strongly 
delayed ARS1 firing time100. These results support the multiple-
MCM model for replication timing regulation.

ORC occupancy, chromatin context, and a number of trans-acting 
factors might all determine MCM multiplicity at origins, and some 
of these factors may also regulate origin firing time by affecting the 
activation of MCMs after they have been loaded102. In Drosophila, 
ORC-rich origins show a higher rate of nucleosome exchange than 
ORC-poor origins86. In yeast, early origins have a wider NFR, and 
a higher occupancy and better positioning of adjacent nucleosomes, 
than late origins103. Mutations in chromatin remodelers and histone-
modifying enzymes might be expected to affect MCM spreading 
and consequent origin efficiency. However, correlative evidence 
suggests that the Rpd3 histone deacetylase, the KU telomere 
binding protein, the Fkh1 transcription factor, or the Ctf19 kine-
tochore protein, which all affect replication timing by modify-
ing chromatin structure in yeast, do so independently of MCM 
number100. The ATP-dependent chromatin remodeling complexes 
Isw2 and Ino80, which promote yeast DNA replication specifi-
cally in the late-replicating regions, apparently do so by facilitating 
replication fork progression but not late origin firing104. Therefore, 
chromatin remodelers that specifically increase MCM spreading 
and multiplicity in budding yeast remain to be identified. Rbr1, the 
yeast homolog of GRWD1, a histone-binding protein that facilitates 
MCM loading in human cells, is a possible candidate89.

Fine mapping of MCM DHs and initiation sites at ARSs
The multiple-MCM model predicts multiple potential initiation 
sites at early origins (Figure 3), in apparent conflict with the 
identification of a single start site for each leading strand within 
the NFR of ARS144. However, sequences outside the NFR were not 
examined in the mapping of ARS1 initiation sites. A recent genome-
wide study, in apparent conflict with both the multiple-MCM model 
and the fine mapping of leading strand start sites at ARS1, suggests 
that a single MCM DH is loaded per origin but not at the NFR105. 
In this work, micrococcal nuclease (MNase) footprinting of wild-
type and orc1 mutant cells reveals ORC-dependent footprints at 
one-half of all (800) putative origins previously identified in a 
plasmid assay106. ORC footprints extend downstream from the 
ACS into the NFR and are surrounded by well-positioned nucleo-
somes. When MNase footprints are compared with ChIP-seq data, 
ORC is found to coincide with the ACS, as expected. However, 
MCMs do not map to the NFR but to either the upstream or the 
downstream nucleosome, with which they likely form a complex 
protecting a total of ∼210 bp of DNA. Genome-wide mapping 
of replication initiation sites at nucleotide resolution would be 
required to further evaluate whether they coincide with ARS NFRs 
or flanking nucleosomes. Although a single MCM DH per origin 
is detected in these experiments105, additional MCM DHs may 
escape detection if they are not complexed with nucleosomes and 
translocate off DNA during MNase digestion or if they are too het-
erogeneously scattered to form ChIP-seq peaks. These results may 
thus be reconciled with the large body of evidence for an excess of 
chromatin-bound MCMs to ORCs.

Dispersive MCM DH loading and non-canonical 
budding yeast origins
In ChIP-seq experiments, most MCM peaks coincide with ORC 
peaks and with ARSs35,100,101,107. However, it seems difficult to 
account for the 10–20-fold excess of MCMs to ORCs in G1-phase 
yeast chromatin79 by the close packing of 5–10 MCM DHs in the 
immediate vicinity of each ARS. Only two or three MCM DHs were 
observed in vivo at plasmid-borne ARS305 and ARS1100. Therefore, 
the ChIP-seq peak signal at origins may represent only a fraction of 
loaded MCMs while the rest may be too heterogeneously spread to 
form detectable peaks. It is also possible that, at steady state, ORC 
is bound to only a fraction of ARS because it cycles on and off 
rapidly. Having 3 MCM DHs and 0.3 ORCs per ARS would give 
an MCM/ORC ratio of 20. However, ORC occupancy at ARS1 has 
been reported to be high in vivo42.

In principle, yeast MCMs may spread from the ORC over large 
distances, as demonstrated in human cells108, in Xenopus egg 
extracts83, and recently in Drosophila cells82. The spreading mech-
anism is unknown. An ORC bound to an ARS may load MCMs 
at distal sites by chromosomal looping. However, a DNA loop 
is not obviously compatible with the coaxial alignment of ORC 
and MCM rings observed in origin licensing intermediates109. 
Alternatively, MCMs loaded next to an ORC may spread through 
chromatin by nucleosome displacement and remodeling. Finally, 
the ORC may occasionally bind DNA and load MCMs elsewhere 
than at ARSs. In vitro experiments show that the yeast ORC can 
direct functional MCM DH loading on plasmid DNA devoid of 
ARSs78,110. Since ARSs are strictly required for plasmid mainte-
nance in vivo, but are dispensable in vitro for replication of DNA 
not occluded by nucleosomes, one may speculate that in vivo the 
ORC sometimes binds and loads MCM DHs opportunistically at 
NFRs not associated with ARSs.

It was reported years ago that a yeast chromosome III derivative 
entirely devoid of ARS elements still replicates and segregates 
correctly 97% of the time and that the ORC is required for its 
maintenance111. The location of the putative non-canonical ini-
tiation events responsible for maintenance was not determined. 
Recently, an origin-deficient derivative of yeast chromosome VI 
was also found to replicate robustly, and initiation was observed 
at non-canonical loci located around deleted origins112. The 
ability to direct replication from non-canonical sites in an ORC-
dependent manner is consistent with the loading of MCM DHs 
elsewhere than at ARSs. Further work is required to evaluate the 
prevalence of non-canonical initiation events in normal S-phase as 
well as in conditions of replicative stress and their effect on yeast 
chromosomal replication robustness.

MCM spreading by transcription
Recently, MCM loading and distribution have been quantified at 
different points in the cell cycle of Drosophila Kc cells82. This 
important work provides the first genome-wide view of MCM 
distribution in a higher eukaryote and reveals a dramatic reor-
ganization of MCMs during late G1 (Figure 5). As expected, cells 
arrested at the G1/S transition with hydroxyurea (HU) had a robust 
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accumulation of MCMs on chromatin. However, ∼10-fold fewer 
MCMs were loaded in cells arrested in late G1 by overexpression 
of Dacapo, a cyclin E/Cdk2 inhibitor, or by RNAi against cyclin E 
or Cdk2. When Dacapo-arrested cells were released back into the 
cell cycle, a ∼10-fold increase in MCM chromatin association was 
observed coincident with entry into S-phase. Both the early and late 
G1-phases of MCM loading required Cdc6 and Cdt1, a signature of 
the canonical origin licensing pathway.

ChIP-chip was used to localize ORCs in asynchronous cells and 
MCMs in G1 or G1/S-arrested cells. ORCs and MCMs in cyclin E  
RNAi-treated cells were highly concordant with each other and 
localized to early origins. In HU-arrested cells, in contrast, a binary 
pattern of broad, MCM-containing chromosomal regions alternat-
ing with MCM-free regions was observed through the genome.  
Therefore, the full complement of MCMs was loaded and redistrib-
uted throughout the genome in late G1/early S (Figure 5). Active 
genes had no or very little MCM signal, whereas inactive genes 
and intergenic DNA exhibited an elevated signal. When two cell  
lines were compared, genes active in only one cell line were 
depleted of MCMs only in that cell line. Although it is plausible that  
HU-stalled forks contributed to MCM redistribution, the transcrip-
tion-dependent, biphasic pattern of MCM binding was observed at 
both early and non-early origins. Therefore, MCMs loaded in late 
G1 are displaced from transcribed genes by active transcription and 
cannot be re-established or translocate in these regions after the  
G1/S transition (Figure 5). These results82 fit nicely with the  
widespread detection of broad replication initiation zones bounded 
by active transcription units in human cells59.

A recent study in budding yeast has analyzed how MCM DHs 
respond to collisions with transcription complexes (Figure 6)113. 
MCM DHs were reconstituted on an ARS plasmid carrying a T7 

Figure 5. Dynamic loading and redistribution of Mcm2-7 double hexamers (MCM DHs) during the G1-phase in metazoans. In early G1, 
MCM DHs are loaded in small numbers and colocalize with the origin recognition complex (ORC). MCM DH loading increases during the 
course of G1-phase. At the G1/S transition, a biphasic pattern of MCM DH binding is observed, with broad chromosomal regions containing 
MCM DHs punctuated by exclusion of MCM DHs from transcribed regions.

Figure 6. Transcription through a licensed origin shifts the 
position of initiation sites. Mcm2-7 double hexamers (MCM DHs) 
loaded at a licensed origin respond to collisions with transcription 
complexes by sliding along the template and remain functional 
for replication initiation at their new location. ARS, autonomously 
replicating sequence; RNAP, RNA polymerase.

RNA polymerase (RNAP) promoter. In the presence of T7 tran-
scription, MCM DHs remained stably bound to circular but not 
linear DNA molecules. Therefore, T7 RNAP did not disassemble 
the MCM DHs but pushed them off the ends of the DNA. Impor-
tantly, T7 RNAP transcription did not interfere with the ability of 
circular templates to replicate in S-phase extracts. However, MCM 
DHs and initiation sites were shifted by up to several kbp. Given 
that many yeast origins are located downstream of protein-coding 
genes, the effect of RNAP collisions with origins was examined  
in vivo in yeast cells harboring a thermosensitive mutation in the 

Active gene Inactive gene

Entry into G1

Late G1 / S phase entry

a. No collision b. Collision and sliding

ARS ARS

RNAP
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transcription termination factor Rat1. After two hours of asynchro-
nous growth at non-permissive temperature, ORC ChIP-seq peaks 
were not altered, whereas MCM peaks were broadened and shifted 
by up to a few kbp in the direction of transcription. Okazaki frag-
ment sequencing revealed that frequent shifts in origin position cor-
related with the shift in MCM distribution. Loss of origin efficiency 
was also observed, which could be due to several factors including 
1) dispersive origin redistribution, 2) displacement of MCM DHs at 
sites not permissive for initiation, or 3) prevention of origin licens-
ing by invading transcription. Collisions between RNAP and MCM 
DHs may contribute to the displacement of MCMs from transcrip-
tion units in late G182 and the establishment of replication initiation 
zones bounded by active transcription units in higher eukaryotes59.

These recent results highlight the passive spreading of MCM 
DHs along chromosome arms by the transcription machinery as a 
mechanism to specify replication initiation sites on eukaryotic 
chromosomes. A similar mechanism has been previously proposed 
for the relocation of the ring-shaped cohesin complex along yeast 
chromosomes114. Differently from MCM DHs, however, cohesin 
rings appear not to be displaced but traversed by the replisome, 
which results in cohesion between nascent sister chromatids. 
What distinguishes the replisome from the transcription appara-
tus so that it does not push cohesin, but may slide through it, is 
unclear. Might cohesin assist MCM spreading? Cohesin loading 
is independent of preRC proteins in budding yeast114, colocalizes 
with ORC independently of other preRC proteins in Drosophila115, 
and is dependent on chromatin-bound MCMs in Xenopus egg 
extracts116,117. Given that cohesin appears to have functions beyond 
sister chromatid cohesion by entrapping DNA segments of the 
same chromosome118, it is interesting to consider, in addition to 
collision and pushing by RNAP, that MCM DHs may be loaded 
away from ORC via cohesin-mediated chromatin looping.

Conclusions and perspectives
There is increasing evidence that the spreading of multiple MCM 
DHs around the ORC, as first reported in metazoan cells, also 
occurs in budding yeast and that MCM multiplicity regulates origin 

firing time and safeguards the genome against incomplete replica-
tion. Multiple mechanisms that involve various DNA translocation 
and nucleosome eviction machineries probably contribute to this 
spreading. MCM DHs indeed respond to collisions with transcrip-
tion complexes by sliding along the template yet remain functional 
for replication initiation, which partly explains how transcription 
programs shape the replication landscape of metazoan cells.

As mentioned above, the mechanisms that eliminate unfired MCM 
DHs from chromatin as DNA synthesis proceeds are unclear. 
Do replication forks collide with unfired MCM DHs or are such  
collisions avoided by anticipated removal of MCM DHs ahead of 
forks? Removing MCM DHs in advance of such collisions seems 
counterproductive, as it would deplete unreplicated DNA segments 
from backup origins and increase their vulnerability to fork stall-
ing. If collisions occur, are collided MCM DHs disassembled, 
or are they pushed ahead of the elongating replisome to serve as  
“portable” rescue origins? No doubt the coming years will bring 
answers to some of these fascinating questions.
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