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Antimony (Sb) is a toxic metalloid that occurs widely at trace concentrations in soil, aquatic systems, and the atmosphere. Nowa-
days, with the development of its new industrial applications and the corresponding expansion of antimony mining activities,
the phenomenon of antimony pollution has become an increasingly serious concern. In recent years, research interest in Sb has
been growing and reflects a fundamental scientific concern regarding Sb in the environment. In this review, we summarize the
recent research on bacterial antimony transformations, especially those regarding antimony uptake, efflux, antimonite oxida-
tion, and antimonate reduction. We conclude that our current understanding of antimony biochemistry and biogeochemistry is
roughly equivalent to where that of arsenic was some 20 years ago. This portends the possibility of future discoveries with regard
to the ability of microorganisms to conserve energy for their growth from antimony redox reactions and the isolation of new
species of “antimonotrophs.”

Antimony (Sb) occurs widely in soil and aquatic systems. It is a
group 15 element in the periodic table, positioned directly

below arsenic (As). It exists in four oxidation states (�V, �III, 0,
and �III), of which pentavalent antimonate [Sb(V)] and trivalent
antimonite [Sb(III)] are the prevalent forms in the environment
(1). Being a strong chalcophilic element, Sb frequently cooccurs in
sulfidic mineral phases, such as Sb2S3 (stibnite) (1, 2). In the aque-
ous environments at neutral pH, Sb(V) dominates as Sb(OH)6

�

under oxic conditions, while Sb(III) is more prevalent as Sb(OH)3

in anoxic environments (3). Furthermore, Sb shares some chem-
ical and toxicological properties with As (4). Antimony and its
compounds are considered to be hazardous pollutants by both the
U.S. Environmental Protection Agency (5) and the Council of the
European Communities (6). In fact, the EPA drinking water stan-
dard for Sb is lower than that for As, reflecting its greater overall
toxicity. The maximum contaminant level of Sb in drinking water
is 6 �g/liter, according to USEPA (7), and the level established by
the Council of the European Communities (CEC) is 5 �g/liter (8).
Similar to most trace metals, Sb toxicity strongly depends upon its
chemical speciation (9). The general order of toxicity for Sb spe-
cies is greatest in Sb(III), followed by Sb(V) and then organoanti-
monials (10). Due to its affinity for the thiol groups of glutathione
and proteins, exposure to antimony species can cause injury in
many organ systems, such as the lungs, heart, liver, and kidney
(11, 12).

Antimony contamination in the environment is caused by
both natural and anthropogenic activities (1, 13). Natural sources
of Sb to the environment include volcanism and the weathering of
Sb-bearing crustal rocks and minerals (14, 15). Antimony is
widely used in the manufacture of flame retardants, small-arms
ammunition, semiconductors, batteries, alloys, pigments, and
catalysts (1). For many years, Sb compounds have been used in the
treatment of several tropical protozoan diseases, such as leish-
maniasis (16). In addition, human activities, especially increased
mining and industrial emissions, have significantly accelerated the
release of Sb into the environment and the associated exposure of
biota to Sb (17, 18).

The present world production and reserves of Sb are estimated
at almost 160,000 and 1,800,000 tons, respectively, most of which
is from deposits in China, Bolivia, Mexico, Russia, South Africa,
and Tajikistan (19). However, the exploitation and utilization of
Sb result in increasing Sb contamination in many countries (20–
25). Currently, China is the largest producer of Sb, with more than
80% of the world’s supply of Sb coming from the mines of South-
west China (20). In China, the Sb concentrations in water (up to
29.4 mg liter�1), sediment (up to 1,163 mg kg�1), and soil (�2 mg
kg�1) reported from the mining and smelting areas are extremely
elevated compared to typical background concentrations (1 �g
liters�1, 0.800 to 3.00 mg kg�1, and 0.57 mg kg�1, respectively)
(20). Antimony can be taken up by plants and photosynthetic
biofilms and thereby enter the food chains of contaminated envi-
ronments (2, 26). This can ultimately cause a series of human
health risks (27); hence, the problem of Sb pollution demands
global attention.

As was the case with As, microorganisms now appear to play an
important role in Sb speciation, mobility, and bioavailability in
nature (28, 29). For instance, microbial Sb(III) oxidation, which
transforms Sb(III) to Sb(V), could be considered a means of en-
vironmental Sb bioremediation because Sb(V) could be stably im-
mobilized (e.g., adsorbed) and safely disposed under an oxic en-
vironment (30). Some bacteria can utilize the energy generated
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from the microbial Sb redox reactions to support their growth (31,
32). Therefore, a better comprehension of the mechanisms driv-
ing microbe-Sb interactions is important to elucidate the Sb bio-
geochemical cycle and to further develop strategies for the biore-
mediation of Sb-contaminated environments. A search in the
NCBI PubMed central database using the word “antimony” shows
an exponentially growing number of publications over the past
few years (Fig. 1A), suggesting an increased interest in this toxic
metalloid. However, most of the reviews that have previously been
published over the last decade focused on the behavior, bioavail-
ability, and contamination of Sb in the environment. A detailed
knowledge of the molecular mechanisms underpinning the inter-
actions of microorganisms with antimony is still very limited
compared with that for other toxic metalloids, like arsenic or se-
lenium. Thus, this review covers the latest findings on microbial
Sb transformations and describes our current understanding of
the enzymes, regulatory mechanisms, and metabolic pathways in-
volved in biogeochemical cycling of Sb.

MICROBIAL ANTIMONY CYCLE

Microbial transformations of Sb influence the environmental
fate and toxicity of this metalloid. Microbes have coped with

the toxicity of Sb using various strategies to thrive in Sb-rich
environments, such as Sb(III) efflux, Sb(V) reduction, Sb(III)
methylation, and Sb(III) oxidation (29). These microbial Sb
transformations mediate the conversion of Sb compounds among
Sb(III), Sb(V), and organoantimonials (Fig. 1B).

Antimonite resistance. Different strategies are employed by
microbes to reduce the accumulation of toxic intracellular Sb(III),
such as first inhibiting its entrance into the cell, promoting its
active extrusion from the cell if it gains entry, or achieving its
sequestration in a nontoxic form within the cell (33). Efflux of
antimony is one of the most important mechanisms adopted by
microorganisms to protect them from the toxicity of Sb. No spe-
cialized channel for antimony uptake has been identified, and pos-
sibly no such channel has evolved, because antimony is not an
essential trace nutrient (11). At physiological pH, Sb is present as
noncharged Sb(OH)3 in solution, and because of its structural
similarities to glycerol, the uptake of Sb(III) into prokaryotic and
eukaryotic cells is often achieved by aquaglyceroporins (34). The
glycerol facilitator GlpF in Escherichia coli was the first aquaglyc-
eroporin identified to transport Sb(III) into bacterial cells (35,
36). Later, Fps1p, the yeast homologue of GlpF, was also found to
mediate the uptake of Sb(III) into Saccharomyces cerevisiae (33).
The deletion of fps1 improved the tolerance level of S. cerevisiae to
Sb(III), while constitutive expression of this gene resulted in hy-
persensitivity. Interestingly, the expression of fps1 was repressed
when cells were exposed to Sb(III), indicating a coordinated reg-
ulatory network to protect cells from the toxic effects of Sb(III)
(33). In Leishmania species, Sb(III) entered cells primarily
through an aquaglyceroporin named AQP1 (37). In general, the
transcription level of AQP1 correlated well with the accumulation
of, and the sensitivity level for, Sb(III) in Leishmania cells (38). It
was suggested that the route of Sb(V) influx is different from
Sb(III) (39). However, the uptake mechanism of Sb(V) remains
unknown. Whether it enters the cells through the phosphate
transport systems used by As(V), such as Pit or Pst, remains un-
resolved.

At present, two different transporter families have been shown
to be responsible for prokaryotic Sb(III) efflux: the ArsB protein,
which belongs to the ion transporter superfamily, and Acr3p, be-
longing to the arsenite carrier family. The ars operon that confers
both arsenic and antimony resistance has been found on both
plasmids and the chromosome (40, 41). The three-gene operon
arsRBC was present in E. coli, Pseudomonas aeruginosa, Bacillus
subtilis, and Staphylococcus aureus (42–44). The extended five-
gene operon arsRDABC was first found in E. coli plasmids R773
and R46 and on Acidiphilium multivorum plasmid pKW301 (45,
46). Expression of the ars operons was induced in response to the
presence of both As(III) and Sb(III) (43). The ArsR acts as a tran-
scriptional repressor regulating the expression of itself and down-
stream genes of the ars operon. The arsD gene encodes an As
chaperone that transfers As(III) and Sb(III) to ArsA, and ArsA acts
as an ATPase, which binds to the As(III)/Sb(III) carrier protein
ArsB to form an ATP-coupled efflux pump (47). Meng et al. (36)
demonstrated that ArsB is a trivalent metalloid/H� antiporter. In
the presence of ArsA, ArsB catalyzes the extrusion of As(III)/
Sb(III) by the hydrolysis of ATP, while it can extrude As(III) and
Sb(III) by itself using the electrochemical proton gradient. ArsC
was shown to be a cytoplasmic As(V) reductase, reducing As(V) to
As(III), thereby enabling its efflux from the cell through the ArsAB
pump. ArsC might be involved in the resistance to Sb(III) (47, 48),

FIG 1 The exponential growth (red line) of the number of publications about
Sb in NCBI PubMed (A) and the biotransformation pathways of different Sb
species (B).
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but it is not known whether it is directly related to the intracellular
reduction of Sb(V).

Another trivalent metalloid/H� antiporter, Acr3p, and its ho-
molog, YqcL, which are mainly present in Actinobacteria and Al-
phaproteobacteria, can substitute for ArsB, also functioning as an
Sb(III) efflux pump (28, 49). Acr3p is also found in archaea and
eukaryotes (50), in which a three-gene cluster (acr1, acr2, and
acr3) is responsible for Sb(III) resistance. Kang et al. (51) showed
that deletion of acr3 in Agrobacterium tumefaciens 5A resulted in
more sensitivity to Sb(III). In addition, it has been shown that the
expression of acr3 is stimulated by Sb(III), and its gene product
conferred Sb(III) tolerance in yeast (33, 52, 53). In S. cerevisiae, the
cadmium factor protein Ycf1, which belongs to ABC transporter
superfamily, is another system conferring Sb(III) tolerance
through vacuolar sequestration (54). In Leishmania, the ABC
transporter PGPR and ABCI4 were reported to be involved in
Sb(III)-thiol extrusion (55).

Antimonate reduction. Antimonate reduction appears to be
widespread in the environment, and it is prone to occur under
anaerobic conditions (3). It is known that Sb(V) can be abiotically
reduced to Sb(III) by Fe(II)-containing minerals (56–58). A ma-
rine macroalga, Sargassum sp., was the first reported organism
able to reduce Sb(V) in seawater (59). In the treatment of leish-
maniasis, several studies suggested that Sb(V), when used as a
prodrug medicine, might be reduced in both the vertebrate host
and the parasites (60–63). However, the knowledge of bacterial
Sb(V) reduction is limited.

Kulp et al. (64) reported anaerobic bacterial reduction of Sb(V)
in anoxic sediments. Sb(V) reduction was coupled to a dissimila-
tory respiratory pathway, which utilized acetate or lactate as the
electron donor. That same year, an Sb(V)-reducing bacterium,
Bacillus sp. MLFW-2, was isolated and found to generate energy
from anaerobic Sb(V) reduction (32), and another Sb(V)-respir-
ing isolate was isolated from Sb-contaminated industrial sedi-
ments (65). The molecular mechanism of bacterial Sb(V) reduc-
tion remains unknown, and the enzymes involved in this reaction
have not yet been identified.

Bacterial Sb(V) reduction is not only a respiratory pathway but
also a promising bioremediation strategy, since Sb(III) can readily
precipitate with sulfide or be strongly absorbed by Fe phases in a
reducing environment (64, 66, 67). A study by Hockmann et al.
(18) indicated that Sb(V) could be rapidly reduced to Sb(III) in
anaerobic calcareous soil by the indigenous microorganisms.
The generated Sb(III) subsequently bound to the surface of iron
(hydr)oxides, which led to the immobilization of Sb. In addition,
sulfate-reducing bacteria (SRB) were employed to remove Sb(V)
from Sb mine drainage (68). The SRB converted sulfate ions into
sulfide that reduced Sb(V) to Sb(III) and resulted in the precipi-
tation of stibnite (Sb2S3). Moreover, a chemoautotrophic micro-
organism belonging to the Rhizobium genus was found to be able
to use H2 as the sole electron donor for the reduction of Sb(V),
producing an Sb(III) precipitate in the form of Sb2O3 (69). There-
fore, bacterial Sb(V) reduction holds promise for the anaerobic
biotreatment of wastewater containing toxic Sb(V).

Antimonite methylation. Methylation of inorganic Sb can in-
fluence the environmental mobility, toxicity, and bioaccumula-
tion of Sb (Fig. 1B) (70). The presence of stibine (STB; SbH3),
monomethylstibine (MMSb), and dimethylstibine (DMSb) was
first reported in natural waters by Andreae et al. (71). Subse-
quently, the presence of Sb volatile and methylated species was

further observed in freshwater, seawater, geothermal waters, sew-
age, soils, sediments, and landfill gas (71–74). In addition, methyl-
antimony species have been found in plants, such as pondweed
(Potamogeton pectinatus), moss (Drepanocladus sp.), and liver-
wort (75–77).

In contrast to arsenic biomethylation, which has been known
for several decades (78), the biomethylation of Sb is of relatively
recent interest. So far, Sb biomethylation has been detected in
strains of fungi, methanogenic archaea, and bacteria. The filamen-
tous fungi Scopulariopsis brevicaulis and Phaeolus schweinitzii have
been found to generate STB, DMSb, TMSb, and some nonvolatile
methylantimony species during aerobic growth (79–82). In addi-
tion, the biovolatilization and bioaccumulation of antimony by S.
brevicaulis were recently quantified (83). The aerobic yeast Cryp-
tococcus humicolus was also reported to biomethylate both inor-
ganic Sb(III) and Sb(V) (84). It has been suggested that the toxic
gases generated from Sb methylation by the fungus S. brevicaulis in
crib mattresses might be a cause for sudden infant death syndrome
(SIDS) (85). However, further studies indicated that a mix of
common environmental Bacillus species strains in crib mattress
contributed to the formation of TMSb and some nonvolatile
methylantimony species, but no causal relation to SIDS was
proven (86, 87).

In the process of the anaerobic digestion of sewage sludge, three
methanogenic archaea (Methanobacterium formicicum, Methano-
sarcina barkeri, and Methanobacterium thermoautotrophicum), a
sulfate-reducing bacterium (SRB) (Desulfovibrio vulgaris), and a
peptolytic bacterium (Clostridium collagenovorans) were shown to
produce TMSb in their culture headspaces; among these, M. for-
micicum displayed strong methylating activity and could also pro-
duce STB, MMSb, and DMSb (88). Another study demonstrated
that biomethylation of Sb was stimulated by strains of methano-
genic archaea and SRB (89). In addition, a Gram-positive strain,
Clostridium glycolicum ASI-1, could convert inorganic Sb into the
volatile derivatives STB, DMSb, and TMSb (90). Despite using
organic Sb as a substrate, the production of TMSb could only be
accomplished by the transformation of trimethyldibromoanti-
mony in pure culture of strain Pseudomonas fluorescens K27 (91).
Low yields of MMSb, DMSb, and TMSb by an aerobic Flavobac-
terium sp. strain suggested that Sb methylation may be a fortuitous
process rather than a primary resistance mechanism (70). This is
consistent with the results of studies with S. brevicaulis and C.
humicolus (80, 81, 92). However, the molecular mechanisms of Sb
methylation have not been clarified, and it appears that Sb is
methylated much more slowly than is arsenic (29, 93).

Because of the similarity in physicochemical properties and the
cooccurrence of arsenic and Sb in the natural environment, it is
important to understand the effect of arsenic on Sb biomethyla-
tion. It was found that Sb biomethylation by S. brevicaulis, Flavo-
bacterium sp., and Cryptococcus humicolus was enhanced in the
presence of arsenic (70, 92, 94), while conversely, arsenic bio-
methylation was significantly inhibited by the presence of Sb (94).
In contrast, Hartmann et al. (92) reported that the addition of
arsenic not only enhanced the biomethylation of Sb by C. humi-
colus but also influenced the speciation of Sb. In addition, Sb bio-
methylation has been shown to utilize the methylation pathway
proposed by Challenger in a study that utilized isotopically labeled
antimonite (Sb123) (89), whereby antimony methylation demon-
strates a stepwise reduction process of monomethyl-, dimethyl-,
and trimethylantimony (78). Therefore, Sb biomethylation prob-
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ably occurs via similar or identical mechanisms to arsenic and is
catalyzed, at least in part, by arsenic methyltransferase (78, 89, 95).
However, no studies have directly identified genes and enzymes
that are involved in arsenic methylation that are also responsible
for Sb biomethylation.

Antimonite oxidation. Although little is known about the geo-
chemical properties of Sb, some studies have indicated that Sb(III)
adsorbs more strongly to surfaces and over a wider range of pH
than does Sb(V) (67, 96), a situation that is reversed for arsenic
oxyanions (e.g., see reference 97). Thus, Sb(III) oxidation may
critically affect the hydrologic mobility of Sb in the environment
(Fig. 1B) (67). In nature, Sb(III) is thermodynamically predicted
to be dominant in anoxic environments, while Sb(V) is dominant
in oxic environments (72, 98). Thus, any Sb(III) molecules that
enter oxic environments tend to be oxidized to Sb(V), a situation
that is similar to As(III).

Abiotic dark oxidation of Sb(III) with O2 is extremely slow,
with a half-life of 170 years at pH 8.5 in homogeneous solutions
(99). In contrast, H2O2-linked oxidation is much faster, with a
half-life of 118 days for 1 �M H2O2 held at pH 8.0 (99, 100).
Several other oxidants also have the potential to oxidize Sb(III) to
Sb(V), including natural and synthetic Fe and Mn oxyhydroxides
(101, 102), humic acids (103), and iodate (104). In addition, the
oxidizing capacities of Fe and Mn oxyhydroxides can transform
As species (105, 106), and the amorphous Fe and Mn oxyhydrox-
ides present in natural water and sediment also play a detoxifying
role by adsorbing and oxidizing Sb(III). It was found that amor-
phous Fe and Mn oxyhydroxides, either natural or synthetic,
could effectively oxidize Sb(III) under different pH conditions
(101).

Antimony(III) can also be oxidized via photo-induced oxida-
tion in natural surface waters, especially when adsorbed to go-
ethite (107). In experiments with seawater, the Sb(III) photo-ox-
idation rate was increased in the presence of various live
phytoplankton species (e.g., Chlorella autotrophica, Dunaliella
salina, Nannochloropsis sp., and Tetraselmis subcordiformis), and
the oxidation rate increased with higher cell densities (108), al-
though it was not clear if this was a direct metabolic effect or that
of an interaction with cellular exudates. In the case of humic acids,
the Sb(III) oxidation rate was 9,000 times faster in the light than in
the dark (103). It was reported that Sb(III) bound to natural or-
ganic matter and mineral particles is oxidized by photo-oxidants
more readily because of the change in electron density that results
from adsorption (67, 103). Moreover, in the case of Sb(III) ad-
sorbed onto goethite, oxidation only occurs in the light and was
pH dependent, increasing at pH values of �5 (107). Since the
Sb(III)-oxidizing bacteria reported so far have all been isolated
from neutral-pH-range environments (31, 109–115), it appears
that microbes may play a major role of Sb(III) oxidation at cir-
cumneutral pH.

The first report that bacteria in ore deposits could oxidize
Sb(III) to Sb(V) came from a Russian scientist (31), yet beyond
that benchmark work, the field remained dormant for nearly 40
years. Although the amount of research currently being con-
ducted on Sb is growing, our understanding of the role that mi-
crobial Sb(III) oxidation plays in the biogeochemical cycle of Sb
remains far from complete. Nonetheless, the results reported by
several research groups in recent years suggest that microbial pro-
cesses play an important role in the Sb cycle.

Diversity of antimonite-oxidizing bacteria. An Sb(III)-oxi-

dizing bacterium, Stibiobacter senarmontii, was found to be able to
use the energy produced by Sb(III) oxidation with O2 to support
chemoautotrophic growth (31). The Sb(III)-oxidizing strains that
have been described since that early study generally oxidize Sb(III)
during heterotrophic growth, suggesting that this process may
serve as a cellular detoxification mechanism rather than one
whereby energy is conserved from the oxidation to support the
biochemical incorporation of CO2 into the cell’s organic matrix.
Due to an increased focus on bacterial Sb(III) oxidation, �60
Sb(III)-oxidizing strains were isolated from mining soil (112–
114) and contaminated sediments (115–117). Chemoautotrophy,
as defined by Sb(III)-dependent growth and inorganic carbon fix-
ation, is more difficult to achieve experimentally. Nonetheless,
Terry et al. (115) conducted growth experiments with Variovorax
paradoxus IDSBO-4 using radiolabeled [14C]bicarbonate and
demonstrated that aerobic Sb(III) oxidation in that strain was
coupled to the fixation of CO2 in an apparent chemoautotrophic
process, thereby reinforcing the earlier observations made with
S. senarmontii and opening the possibility of its wider occur-
rence in nature.

A compilation of the genera found and a phylogenetic tree of
the bacterial strains shown to oxidize Sb(III) are given in Fig. 2.
The Sb(III)-oxidizing strains identified thus far belong to 17 gen-
era, including Pseudomonas (22 strains), Comamonas (10 strains),
Agrobacterium (8 strains), Acinetobacter (7 strains), Stenotroph-
omonas (3 strains), Variovorax (3 strains), Paracoccus (2 strains),
Sphingopyxis (2 strains), Aminobacter (1 strain), Arthrobacter (1
strain), Bacillus (1 strain), Janibacter (1 strain), Stibiobacter (1
strain), Thiobacillus (1 strain), Hydrogenophaga (1 strain), Cupria-
vidus (1 strain), and Sinorhizobium (1 strain) (31, 109, 111–116).
Among all of these Sb(III)-oxidizing strains, Pseudomonas, Coma-
monas, Agrobacterium, and Acinetobacter are four major genera
that make up 34%, 15%, 12%, and 11% of known Sb(III)-oxidiz-
ing strains, respectively (Fig. 2A). Of the 65 strains listed in this
tally, only two thus far appear to be lithoautotrophs, one of which
(S. senarmontii) has been lost. Unlike the case for As(III) (118), to
date, there are no examples of anaerobes that can oxidize Sb(III) by
using it as an electron donor to support anoxygenic photosynthesis.

All of these Sb(III)-oxidizing strains could be classified into
Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria,
and Actinobacteria (Fig. 2B). Among all of these Sb(III)-oxidizing
strains, 49% belong to Gammaproteobacteria, and among these,
Pseudomonas and Acinetobacter are two of the most common spe-
cies (Fig. 2A). Comamonas strains belong to Betaproteobacteria,
while Agrobacterium strains are members of the Alphaproteobac-
teria. The strains belonging to Betaproteobacteria showed the
highest Sb(III) oxidation rate; for example, Comamonas testos-
teroni S44 could completely oxidize 50 �M Sb(III) to Sb(V) within
3 days (114). It is interesting to note that C. testosteroni S44 could
not oxidize As(III) (119), indicating that the molecular mecha-
nism of Sb(III) oxidation may at times be different from As(III)
oxidation (116). Sb-dependent chemoautotrophic growth of V.
paradoxus strain IDSBO-4 was able to oxidize �500 �M Sb(III) to
Sb(V) over a 10-day incubation period (115). Studies that attempt
to show clear Sb-dependent growth are difficult, as they must
employ higher concentrations (millimolar range) of this toxic
electron donor to elicit significant increases in cell density over the
incubation period.

Biotic antimonite oxidation mediated by AioA and AnoA.
Bacterial As(III) oxidation involves the As(III) oxidase AioBA or
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ArxAB (120, 121). AioBA functions as an aerobic As(III) oxidase
(122), while ArxAB catalyzes the anaerobic oxidation of As(III)
(121). Based on the similar chemistries between As and Sb, it has
been considered that they may share the same resistance and oxi-
dation mechanisms. Indeed, the ars operon conferring arsenic re-
sistance can be induced by Sb(III) and can also transport Sb(III)
out of the cell (36). In contrast, Sb(III) does not induce the tran-

scription of aioBA (123). Even though there is a previous study
that reported that the oxidation of Sb(III) and As(III) required
different biochemical pathways (116), more recent literature has
shown that AioBA is able to oxidize Sb(III) both in vivo and in
vitro, although the aioBA gene is expressed only by the presence of
As(III) and not Sb(III) (123). However, novel Sb(III) oxidation
biochemical pathways were also implicated because the disrup-

FIG 2 The percentages (A) and a neighbor-joining (NJ) phylogenetic tree (B) based on 16S rRNA gene sequences of the published Sb(III)-oxidizing strains. The
Pseudomonas spp. include 22 Sb(III)-oxidizing strains (DA2, DC5, DF12, DF11, DA5, DF3, DF9, DC8, DC7, DS4, DF7, TC13, JC11, DS7, DF8, DF5, DA4, NL6,
IK-S1, NL10, NL2, and NL5). The Acinetobacter spp. include seven Sb(III)-oxidizing strains (DC2, LH3, LH4, JL7, DS2, NL1, and NL12). The Comamonas spp.
include 10 Sb(III)-oxidizing strains (JL25, JL40, DF1, DS1, DF2, JL13, JL12, JC9, S44, and NL11). The Agrobacterium spp. include eight Sb(III)-oxidizing strains
(C58, 5A, GW4, C13, LY4, TS43, TS45, and D14) (see Table S1 in the supplemental material). Among these, the Sb(III) oxidation capabilities of six Agrobacterium
(strains C58, C13, LY4, TS43, TS45, and D14) and Sinorhizobium sp. GW3 are unpublished. All of the type strains are used for taxonomic determination without
knowing their Sb(III) oxidation abilities. Bootstrap values (�50%) are shown at nodes as percentages of 1,000 replicates. Bar, 0.02 substitutions per nucleotide
position.
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tion of aioA gene only reduced the Sb(III) oxidation rate, but did
not eliminate it, thereby implying the cooccurrence of another
mechanism (123). Previous studies found that the Comamonas
strains could only oxidize Sb(III) but not As(III) (114, 119, 124,
125). Furthermore, Hydrogenophaga taeniospiralis IDSBO-1, iso-
lated by Terry et al. (115), was shown to possess the aioA gene and
oxidized As(III), but not Sb(III), under aerobic conditions. That
strain also exhibited anaerobic Sb(III) oxidation coupled to the
reduction of nitrate via an unknown enzymatic pathway.

By using a proteomics approach, Li et al. (117) discovered an
oxidoreductase (AnoA) in A. tumefaciens GW4 that was induced
by the presence of Sb(III). The disruption of anoA reduced resis-
tance to Sb(III) and also decreased the Sb(III) oxidation rate by
�27% compared with that of the wild-type strain, while the over-
expression of anoA increased the Sb(III) oxidation rate by �34%.
In addition, heterologous expression of AnoA significantly in-
creased the Sb(III) oxidation rate in E. coli (117). Acting as a novel
Sb(III) oxidase, AnoA could also oxidize As(III) in vitro, with a Km

of 103.2 � 17.7 �M and a maximum rate of metabolism (Vmax) of
88.23 � 6 nmol min�1 mg�1 (Fig. 3A). Using Sb(III) as a sub-
strate, AnoA yielded Km and Vmax values of 64 � 10 �M and 150 �
7 nmol min�1 mg�1, respectively (Fig. 3C). In contrast, based on
published data (123), AioBA yielded Km and Vmax values for
As(III) of 9.3 � 1.5 �M and 120.4 � 6 �mol min�1 mg�1, respec-
tively (Fig. 3B). The addition of Sb(III) yielded Km and Vmax values
of 163 � 8 nM and 18.4 � 1.2 nmol min�1 mg�1, respectively
(Fig. 3D). These results indicated that AnoA tends to catalyze the
Sb(III) oxidation more efficiently than As(III) oxidation, while
AioBA is likely to favor oxidation of As(III), although both en-
zymes could oxidize both As(III) and Sb(III). The existence of the
novel Sb(III) oxidase AnoA may explain the occurrence of dis-
cernible Sb(III) oxidation in bacteria that lack the As(III) oxidase
AioBA (114).

Based on genome analysis, the antimonite oxidase gene anoA
(117) exists in all of the arsenite-oxidizing Agrobacterium and Co-
mamonas strains tested thus far, and the gene exists in other as-
yet-untested bacterial strains. To understand the phylogenetic re-
lationship among AnoA in different bacteria, we performed
phylogenetic analysis based on amino acid sequences of the puta-
tive AnoA from 10 Agrobacterium strains, together with five Rhi-
zobium strains, three Sinorhizobium strains, and two Comamonas
strains (see Fig. S1 in the supplemental material). The AnoA can
be classified into two main groups. One group contains the AnoA
from strains of Agrobacterium, Rhizobium, and Sinorhizobium,
and another group contains AnoA of Comamonas strains. This
indicates that AnoA in Comamonas has a distant phylogenetic
relationship from that in Agrobacterium, Rhizobium, and Sinorhi-
zobium strains. Based on the literature published to date, the de-
letion of either aioBA or anoA only reduces the Sb(III) oxidation
rate but does not completely eliminate Sb(III) oxidation, implying
(but not proving) the possible existence of another mechanism(s)
of Sb(III) oxidation (117, 123).

Abiotic antimonite oxidation is mediated by H2O2 and pos-
sible regulatory mechanisms involved. In a variety of naturally
occurring surface waters, hydrogen peroxide (H2O2) is present at
concentrations exceeding 10�7 mol liter�1 (i.e., 10 nM) and is
thought to play a key role in the redox chemistry of a number of
trace elements in aquatic environments (126–129). Sb(III) oxida-
tion by H2O2 has been studied over a wide range of pH values,
ionic strengths, and temperatures, and it may be relevant in sur-

face water with elevated H2O2 with alkaline pH values, such as
seawater (100). H2O2 is not only widespread in natural surface
water and rainwater but also exists within bacterial cells.

Aberrant electron flow especially under stress conditions from
the electron transport chain or cellular redox enzymes to O2 leads
to the production of reactive oxygen species (ROS) in bacterial
cells (130). The harmful ROS, including superoxides (O2

�), hy-
drogen peroxide (H2O2), and hydroxyl radicals (·OH), can cause
damage to [Fe-S] clusters, protein carbonylation, membrane lipid
peroxidation, and DNA damage (131). Superoxide dismutase
(Sod), which catalyzes the dismutation of O2

� to H2O2 and O2, is
part of a first-line defense against these ROS and commonly oc-
curs in nearly all aerobic bacteria. Catalases and peroxidases rep-
resent the second line of defense against ROS by being able to
consume H2O2 (131). It has been reported that KatA is a major
catalase that can be detected during all phases of growth (132).
Therefore, the katA gene in the Sb(III)-oxidizing strain A. tume-
faciens GW4 was disrupted, and the mutant strain GW4-�katA
and its complemented strain GW4-�katA-C were created. The
wild-type strain, GW4-�katA, and GW4-�katA-C showed consis-
tent growth profiles in chemically defined medium (CDM) after
the addition of 50 �M Sb(III) (Fig. 3E). The disruption of katA
significantly increased the Sb(III) oxidation rate (Fig. 3F), which
may have been caused by the increasing cellular H2O2 concentra-
tion (130). Consistent with a previous study by Khakimova et al.
(133), H2O2 could induce the expression of KatA in strain GW4
(Fig. 3G). Moreover, the addition of Sb(III) was also able to stim-
ulate the expression of katA (Fig. 3H). These results indicated that
H2O2 may act as a chemical oxidant in Sb(III) oxidation, along
with the aforementioned enzymatic reactions.

In addition to catalase, glutathione was considered to be a vital
component of the bacterial oxidative stress response (134). A previ-
ous study with C. testosteroni S44 showed that the [Fe-S] assembly
transcription factor IscR could positively contribute to glutathi-
one (GSH) formation, possibly through the regulation of IscS-
mediated cysteine desulfurization (134). The expression of iscR
was induced by Sb(III), and the deletion of iscR decreased the
cellular GSH content. These results suggested that bacterial
Sb(III) oxidation was partly under the regulation of IscR (134).
The hypothetical model of IscR’s regulation of bacterial Sb(III)
oxidation may be summarized by the following: (i) Sb(III) can
induce the bacterial oxidative stress response, leading to the pro-
duction of H2O2; (ii) the induced H2O2 oxidizes Sb(III) to Sb(V)
under alkaline conditions; and (iii) IscR is involved in the regula-
tion of GSH formation. Then, H2O2 is consumed by KatA and
GSH, which might also affect bacterial Sb(III) oxidation (Fig. 4A).
Although there are other regulators of the bacterial oxidative re-
sponse, such as the Mer-like redox sensor SoxR and the LysR
regulator OxyR (131), their function(s) with respect to Sb(III)
oxidation has not been determined.

METABOLIC PATHWAYS ASSOCIATED WITH ANTIMONITE
RESISTANCE

A proteomics approach was used to study Sb resistance and oxi-
dation in Leishmania spp. (135–138), Miscanthus sinensis (139),
and Agrobacterium tumefaciens (117). The proteomics analysis in
Leishmania spp. showed that its mechanism of antimony resis-
tance is complex, incorporating aspects of protein folding/chap-
erones, stress response, antioxidant/detoxification, diverse meta-
bolic processes, RNA/DNA processing, and de novo protein
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FIG 3 The comparison of Michaelis-Menten kinetics of AnoA and AioBA for As(III) and Sb(III), and the influence of H2O2 concentration on bacterial Sb(III)
oxidation efficiency of A. tumefaciens GW4. (A and B) Kinetic data for As(III). (C and D) Kinetic data for Sb(III). The data from panel A are from our unpublished
data, the data from panels B and D are from reference 123, and the data from panel C are from reference 117. (E) The growth curves of strain GW4, the katA
mutant strain, and the katA complementary strain. (F) Sb(III) oxidation profiles of the three strains as in panel E (shown with the same symbols in panel E). (G
and H) The lacZ reporter assays of katA gene with the addition of H2O2 and Sb(III), respectively (panels G and H have the same symbols). The data are shown
as the mean of the results from three replicates, with the error bars representing the standard deviation (SD). v, volume; OD600, optical density at 600 nm; d, days;
	-gal, 	-galactosidase; MU, Miller units.
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biosynthesis (135–138). The proteomic study of A. tumefaciens
GW4 revealed that Sb(III) could influence the Ars resistance, the
Sb(III) oxidase AnoA, phosphate metabolism, carbohydrate
transport and metabolism, and the metabolism of lipids, purines,
and amino acids (Table 1).

The arsenic resistance system (ars) was shown to catalyze the
efflux of both As(III) and Sb(III) and was induced by Sb(III) (36).
Consistent with these results, the upregulation of the Ars resis-

tance system by Sb(III) could be considered for use as a positive
control for the validity of this proteomic analysis in A. tumefaciens
GW4. The phosphate system and the proteins involved in phos-
phate and phosphonate metabolism were both upregulated with
the addition of Sb(III) (Table 1). The induction of PstS2 in the
presence of Sb(III) (Table 1) implies that Pst2 may have an effect
on bacterial Sb(III) oxidation (117).

In comparative proteomic and genomic analyses in the pres-

FIG 4 Overview of mechanisms of bacterial antimonite resistance and oxidation. (A) A hypothetical model of IscR’s regulation of bacterial Sb(III) oxidation. (i)
Sb(III) induced the production of H2O2 via the bacterial oxidative stress response and subsequently H2O2 oxidized Sb(III) to Sb(V). (ii) H2O2 was partially
consumed by catalase KatA. (iii) Sb(III) induced the expression of [Fe-S] assembly transcription factor IscR, which could positively contribute to GSH formation.
Then, H2O2 was partially consumed by GSH. (B) Cellular events are represented on this model according to the published literature. Sb(III) is taken up through
glycerol channel and extruded from the cell by Acr3 and ArsAB, and transportation of Sb(V) remains unknown. Bacteria obtained Sb(III) resistance by the ars
operon. In addition, Sb(III) oxidation, Sb(V) reduction, and Sb(III) methylation were also involved in bacterial Sb detoxification. For energy generation, Sb(III)
could induce activation of the TCA cycle and produce energy to protect against the toxicity of Sb.
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ence or absence of As(III), the enzymes involved in the tricarbox-
ylic acid (TCA) cycle were upregulated after the addition of
As(III), indicating the bacteria needed a large amount of energy to
resist As(III) toxicity (140–142). In contrast, the TCA cycle in A.
tumefaciens GW4 was downregulated by the addition of As(III).
Interestingly, this strain could use the energy generated from
As(III) oxidation to support growth (Q. Wang, K. Shi, X. Wang, Y.
Han, J. Li, L. Wang, J. He, M. Li, and G. Wang, unpublished data),
indicating that As(III) is not simply a toxic element to strain GW4
and that it has an energy-linked chemolithotrophic metabolic
facet. It is significant that the expression of the enzymes associated
with carbohydrate metabolism in A. tumefaciens GW4 was in-
creased by the presence of Sb(III) (Table 1) (117), indicating that
strain GW4 possesses totally different resistance mechanisms for
As(III) and Sb(III). In addition, reverse transcription-quantitative
PCR (qRT-PCR) analysis showed that the genes involved in the
TCA cycle were induced by Sb(III), suggesting that strain GW4
may require increased energy to tolerate Sb(III) (Table 1; see also
Fig. S2 in the supplemental material).

CONCLUSION AND PERSPECTIVE

This review highlights the recent advances in our understanding
of microbial Sb transformations (Fig. 4B). Due to the similar

chemical characteristics between As and Sb, the biochemical path-
ways of Sb(III) oxidation as well as the pathway for dissimilatory
Sb(V) reduction were predicted to be shared with As(III) and
As(V). However, based on recent literature and our published
work, we propose that microbial Sb transformation proceeds by
some unique biochemical mechanisms compared with As(III). In
the future, particular issues that require attention may include the
following points.

(i) It is known that Sb(III) is extruded by the As(III) trans-
porter Acr3 or ArsB. However, the mechanisms of Sb(V) trans-
portation into cells remain unknown. A proteomics study (117)
hinted that, as in the case of As(V), a phosphate transport system
may be involved in Sb(V) transport; further research to identify
the underlying molecular mechanism of Sb(V) importation still
needs to be conducted.

(ii) In addition to biologically driven Sb(III) oxidation, some
abiotic factors, such as H2O2, are also responsible for bacterial
Sb(III) oxidation. The regulation of AnoA’s expression and other
factors related to abiotic Sb(III) oxidation require further study.

(iii) Dissimilatory microbial Sb(V) reduction using organic
substrates as electron donors has been reported. While it is con-
ceivable that the respiratory As(V) reductase ArrAB might be in-

TABLE 1 Proteins induced by the addition of Sb(III) in A. tumefaciens GW4a

Gene name Protein name Accession no.
Upregulated ratio
[zero Sb(III):50 �M Sb(III)]b

Antimony resistance
arsC1 Arsenate reductase AFM38847 1.0:2.9
arsC2 Arsenate reductase AFM38848 1.0:4.7
ohr Organic hydroperoxide resistance protein KDR90118 1.0:3.2

Antimonite oxidation
anoA Oxidoreductase KDR88348 1.0:4.1

Phosphate metabolism
pstS2 Phosphate-binding protein KDR86346 1.0:2.0
ppa Putative phosphatase KDR90647 0:11.2
phnM Metal-dependent hydrolase involved in phosphonate metabolism KDR86941 1.0:2.8
phnI Putative enzyme of phosphonate metabolism KDR86951 1.0:4.1
afuA ABC transporter, substrate-binding protein KDR89957 1.0:2.7

Carbohydrate transport
and metabolism

pdhB Pyruvate dehydrogenase E1 component, beta subunit KDR89057 1.0:2.7
pfp Pyrophosphate fructose 6-phosphate 1-phosphotransferase KDR87902 1.0:2.8
ugpB1 Periplasmic glycerol-3-phosphate-binding protein KDR87393 0:5.3
ugpB2 Periplasmic glycerol-3-phosphate-binding protein KDR89469 0:8.7
acnAb Aconitate hydratase KDR88332 1.0:2.1
sdhAb Succinate dehydrogenase KDR89039 1.0:3.3
fumCb Fumarate hydratase KDR89425 1.0:1.7

Lipid transport and
metabolism

sitA Manganese ABC transporter, periplasmic-binding protein KDR90951 1.0:2.1

Purine metabolism
cpdP 3=,5=-Cyclic-nucleotide phosphodiesterase KDR86320 1.0:25.9

Amino acid metabolism
trpB Trp repressor-binding protein KDR87480 1.0:3.9

a Certain gene/protein and ratio data are from reference 117.
b Genes tested by qRT-PCR.
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volved in all or part of dissimilatory Sb(V) reduction, this has not
been proven, and it remains an open subject for future research
scrutiny. Likewise, cytoplasmic Sb(V) reduction, analogous to in-
ternal cellular As(V) resistance, reduction, and export, has not
been investigated thus far.

(iv) Sb(III) methylation has been described in some microor-
ganisms. To better understand the environmental mobility, tox-
icity, and biogeochemical cycle of Sb, it is important to clarify
mechanisms of Sb(III) methylation and the roles of Sb(III) trans-
methylase. The volatile methyl and hydride derivatives generated
from microbial Sb(III) methylation may represent a significant
environmental hazard.

(v) Because of significant and growing Sb environment con-
tamination problems, it is necessary to develop Sb biosensors and
bioremediation tools. The expression of AnoA in environmental
microbial communities may be a potential biosensor for the mon-
itoring of Sb(III). Anaerobic bacterial Sb(V) reduction holds the
possibility of being applied for the remediation of Sb-contami-
nated environments by producing an immobilized Sb(III) phase.
Antimony(III)-oxidizing bacteria may also be applied to enhance
phytoremediation effects in combination with plants.
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