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ABSTRACT

Soil microbiome modification may alter system function, which may enhance processes like bioremediation. In this study, we
filled microcosms with gamma-irradiated soil that was reinoculated with the initial soil or cultivated bacterial subsets obtained
on regular media (REG-M) or media containing crude oil (CO-M). We allowed 8 weeks for microbiome stabilization, added
crude oil and monoammonium phosphate, incubated the microcosms for another 6 weeks, and then measured the biodegrada-
tion of crude oil components, bacterial taxonomy, and functional gene composition. We hypothesized that the biodegradation of
targeted crude oil components would be enhanced by limiting the microbial taxa competing for resources and by specifically
selecting bacteria involved in crude oil biodegradation (i.e., CO-M). Postincubation, large differences in taxonomy and func-
tional gene composition between the three microbiome types remained, indicating that purposeful soil microbiome structuring
is feasible. Although phylum-level bacterial taxonomy was constrained, operational taxonomic unit composition varied between
microbiome types. Contrary to our hypothesis, the biodegradation of C10 to C50 hydrocarbons was highest when the original
microbiome was reinoculated, despite a higher relative abundance of alkane hydroxylase genes in the CO-M microbiomes and of
carbon-processing genes in the REG-M microbiomes. Despite increases in the relative abundances of genes potentially linked to
hydrocarbon processing in cultivated subsets of the microbiome, reinoculation of the initial microbiome led to maximum bio-
degradation.

IMPORTANCE

In this study, we show that it is possible to sustainably modify microbial assemblages in soil. This has implications for biotech-
nology, as modification of gut microbial assemblages has led to improved treatments for diseases like Clostridium difficile infec-
tion. Although the soil environment determined which major phylogenetic groups of bacteria would dominate the assemblage,
we saw differences at lower levels of taxonomy and in functional gene composition (e.g., genes related to hydrocarbon degrada-
tion). Further studies are needed to determine the success of such an approach in nonsterile environments. Although the biodeg-
radation of certain crude oil fractions was still the highest when we inoculated with the diverse initial microbiome, the possibil-
ity of discovering and establishing microbiomes that are more efficient in crude oil degradation is not precluded.

Oil production, oil spills, and the storage of oily wastes by the
petroleum industry have led to massive releases of petroleum

hydrocarbons into the environment, making them some of the
most ubiquitous environmental pollutants (1). Conventional de-
contamination technologies such as excavation (i.e., dig and
dump), incineration, and chemical treatment of contaminants are
costly and may further disrupt disturbed ecosystems (2, 3). When
effective, bioremediation is a cheaper and more sustainable ap-
proach to decontamination. Bioaugmentation, the addition of
targeted microbial isolates to nonsterile soils, has had various im-
pacts on bioremediation and has generally not increased the abun-
dance of the added organisms over the long term (4–8). In con-
trast to single isolate additions, high-throughput sequencing now
allows us to explore the extent to which we can modify complex
soil microbiomes. Studies in medical research have clearly linked
changes in microbiome composition with health and disease, and
gut microbiome modification is now used to treat certain human
health conditions (9, 10). As a result, it is worth exploring whether
soil microbiome modification may also be an effective approach
for improving plant, animal, and/or soil health (11).

Unlike the biotic gut environment, the soil matrix is unlikely to
be substantially altered by microbial activity in the short term,
restricting the extent to which introduced microbes can modify
their surroundings. For instance, soil organic matter can have mo-
lecular turnover times of 4 to �300 years (12), whereas large me-
tabolite shifts in the gut (a biotic microbial habitat) were observed
just 2 weeks after gut microbiome transplantation in mice (13).
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Biotic constraints such as plant root exudates (14), plant immune
signaling (15), and competition from native microorganisms (4)
can play important roles in shaping soil microbiomes, but, in gen-
eral, soil bacterial composition follows predictable patterns based
on abiotic constraints, such as physicochemical soil parameters
(16–19). These constraints complicate soil microbiome manipu-
lation and may restrict our ability to alter microbiome trajectories.

Some complex microbial functional traits (e.g., photosynthesis
and nitrogen fixation) are strongly linked to specific phylogenetic
groups and decreases in microbial diversity have been linked to
declines in denitrification, nitrification, and methane oxidation
(20, 21). For widespread functions like simple carbon substrate
degradation, redundancy within the microbiome may mean sim-
ilar functioning by very different microbial assemblages, reducing
the importance of microbial diversity. Nevertheless, the relation-
ship between microbial diversity and carbon use is unclear. Some
studies performed with low numbers of cultured microorganisms
(1 to 95 isolates) suggest that productivity increases with higher
diversity (22–24), while others show that reductions in the diver-
sity of soil microbial assemblages can lead to increased processing
of organic compounds (20, 25–27).

To investigate how soil microbiome modification might affect
soil function, we examined how targeted subsets of a soil micro-
biome would affect the degradation of certain crude oil compo-
nents. Microcosms containing a gamma-irradiated soil were rein-
oculated with the initial soil (INIT) microbiome or one of two

simplified and specialized subsets of that microbiome: all bacteria
cultivated on regular media (REG-M) or all bacteria cultivated on
media containing crude oil (CO-M). After allowing the inoculated
microbiomes to stabilize, we added crude oil and assessed the
biodegradation of total C10 to C50 hydrocarbons and polycyclic
aromatic hydrocarbon (PAH) compounds, bacterial taxonomy,
and functional gene composition after 6 weeks of incubation. We
hypothesized that the biodegradation of the paraffin and aromatic
fractions in crude oil would be enhanced by reducing the number
of microbial taxa competing for resources and by specifically se-
lecting a diverse array of bacteria cultivated on crude oil-based
media. We also examined whether incubation of the microbiomes
in soil would lead to convergence in taxonomic and functional
profiles, due to the strong controlling influence of abiotic soil
parameters.

MATERIALS AND METHODS
Experimental setup. The experimental design is illustrated graphically in
Fig. S1 in the supplemental material. In May 2014, the top 20 cm of soil
was collected from a grass-covered site in Varennes, QC, Canada
(45°41=56�N, 73°25=43�W). The collected soil, while uncontaminated,
was harvested from an area adjacent to a former petroleum refinery. To
the best of our knowledge, this area has never been contaminated but has
likely received microbial migrants that have been exposed to petroleum
contaminants. A portion of the collected soil was dried at 50°C for 5 days,
sieved through 2-mm mesh to remove root fragments and stones, and
then sterilized with a minimum gamma irradiation exposure of 50 kGy
(Nordion Gamma Centre of Excellence, Laval, QC, Canada) as was done
by van Elsas et al. (28). Sterile soil was used as the matrix for soil micro-
cosms, which were seeded with three different microbiomes derived from
the initial soil: (i) the initial unsterilized soil (INIT) (5% of microcosm soil
volume as was done by Degens [26]), (ii) all bacteria isolated on standard
media (REG-M), or (iii) all bacteria isolated on media containing crude
oil as a potential carbon and energy source (CO-M). Ten replicates per
microbiome type were used. We extracted 116.9 ng DNA/g gamma-irra-
diated soil and assumed that the soil was mostly, or entirely, sterile, since
inoculation of a 10�1 dilution of gamma-irradiated soil onto tryptic soy
agar (TSA) plates produced no colonies after 2 weeks; inoculation of the
initial soil led to growth over the entire surface of the plates (see Fig. S2 in
the supplemental material). Soil parameters pre- and poststerilization are
provided in Table 1.

Bacterial isolation and microcosm preparation. Bacteria were iso-
lated on five culture media types, categorized as either regular (standard)
media or crude oil media (media compositions are provided in Table 2).

TABLE 1 Soil parameters before and after sieving plus gamma
irradiation

Soil parameter Presieving/sterilization Postsieving/sterilization

Humidity (%) 4.8 2.9
pH 7.28 6.72

Volatile organic matter
at 550°C (%)

6.7 7.4

Total Kjeldahl nitrogen
(mg/kg)

2,400 2,600

CEC (cmol�/kg)a 24 25
a CEC, cation-exchange capacity.

TABLE 2 Composition of the regular and crude oil media (based on 1 liter of medium) used to isolate bacterial assemblages from the initial soila

Soil component and dilution

Regular medium Crude oil medium

M9-glucose TSA M9-crude oil M9-glucose-crude oil TSA-crude oil

Agar (g) 15 15 15 15 15
TSBb (g) 30 30
M9 salts (ml)c 200 200 200
MgSO4, 1 M (ml) 2 2 2
CaCl2, 1 M (�l) 100 100 100
Micronutrients (ml)d 1 1 1
Glucose, 10% (ml) 10 10
Acetone-crude oil mix (10:20) (ml) 30 30 30
Soil dilution (100 �l) 10�4 to 10�6 10�5 to 10�7 10�1 to 10�3 10�4 to 10�6 10�5 to 10�7

a Each medium contained 100 mg/liter of cycloheximide. Cycloheximide, glucose, and acetone-crude oil mix were added after autoclaving. Soil dilutions for each medium were
selected based on pretrial observations of which dilutions yielded between 10 and 300 colonies per petri dish. Each petri dish was inoculated with 100 �l of a specific soil dilution.
b TSB, tryptic soy broth.
c Na2HPO4-7H2O (64 g/liter), KH2PO4 (15 g/liter), NaCl (2.5 g/liter), NH4Cl (5 g/liter).
d MnSO4-4H2O (6 g/liter), ZnSO4-7H2O (2.65 g/liter), KCl (1.5 g/liter), CuSO4-5H2O (130 mg/liter), Na2MoO4-2H2O (2 mg/liter).
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The two types of regular media were a complex medium (TSA) rich in
carbon and a limited medium containing M9 salts (M9) and a small
amount of a single carbon source (M9 plus glucose). The three types of
crude oil media were prepared by mixing crude oil (Gulf of Mexico, Mon-
treal pipeline) to a final volume of 5% with cooling culture media con-
taining either TSA, M9 plus glucose, or M9 alone. Crude oil was mixed 2:1
with acetone before addition to culture media in order to create a more
homogeneous mixture, and acetone was allowed to volatilize under sterile
conditions as was done by Zafra et al. (29). The addition of crude oil to
warm media may have sped up the volatilization of certain compounds
(and may not perfectly reflect the crude oil added to soil microcosms), but
likely most of those that are of interest in bioremediation (i.e., persistent
compounds) were retained. Bacteria were grown on each medium at three
dilutions and were incubated in the dark at 25°C for 2, 7, 14, and 28 days
in order to maximize the diversity of the isolated bacteria. Inoculations
were staggered so that the final day of each incubation period was the same
for all petri dishes. Seven replicates were used per type of culture medium,
per dilution, and per incubation period, for a total of 420 petri dishes.

Colonies were scraped off 40 petri dishes for each of the five types of
culture media using plastic spreaders (minimum of three petri dishes per
incubation time) and suspended in saline solution (0.85% NaCl). A total
of 30 ml of each suspension containing bacterial colonies was added di-
rectly to 150 g of sterile soil, resulting in 20% soil moisture. We measured
the DNA concentration of the initial unsterilized soil and that of each of
the five media types immediately after inoculation into sterilized soil in
order to inoculate each treatment with the same final amount of DNA and
equal proportions of the appropriate media types (e.g., 1:1 of M9 plus
glucose and TSA in REG-M). Under sterile conditions, 10 microcosms
(250-ml autoclaved flasks stoppered with foam plugs) per treatment were
filled with 70 g of soil preinoculated with one of the three microbiome
types. Microcosms were incubated at 25°C for 8 weeks to allow micro-
biomes to stabilize as done by Degens (26), and microbiome growth (es-
timated by DNA quantification) had mostly leveled off at the end of the
stabilization period. Then microcosms were spiked with crude oil to a
concentration of 6,000 mg/kg soil. Monoammonium phosphate (MAP)
was added as a nutrient supplement to a concentration of 50 mg/kg soil,
and water saturation was adjusted to 20%. Microcosms were incubated
for another 6 weeks at 25°C in the dark before measurement of degrada-
tion of C10 to C50 hydrocarbons and PAHs and analysis of the bacterial
taxonomic and functional profiles in each microbiome type. A set of three
sterile microcosms was also incubated for 6 weeks at 25°C to account for
abiotic loss of crude oil components.

Analysis of crude oil degradation. For all microcosms, C10 to C50

hydrocarbons (sum of all hydrocarbon compounds with chain lengths
from C10 to C50) were quantified at Maxxam Analytics (Montreal, QC,
Canada) with the MA. 416 � C10-C50 1.0 method used by the Centre
d’Expertise en Analyze Environnementale du Québec (30). Briefly, hydro-
carbons are extracted with hexane, and samples are read using gas chro-
matography with a flame ionization detector (GC-FID). PAH analysis of a
subset of the samples (5 from each microbiome type) was performed at
AGAT Laboratories (Saint-Laurent, QC, Canada) with the MA. 400 �
HAP 1.1 method used by the Centre d’Expertise en Analyze Environne-
mentale du Québec (31). In this case, a variety of PAH compounds are
quantified from extracts using gas chromatography-mass spectrometry
(GC-MS) in selected ion monitoring (SIM) mode. Note that these two
analyses only target a portion of the compounds present in crude oil.

We also spiked three microcosms directly with crude oil without in-
cubation in order to provide reference values for overall degradation.
These baseline samples were also analyzed for C10 to C50 hydrocarbons
and PAHs. Sterile noninoculated controls (n � 3) were rerun after the
initial experiment to estimate abiotic loss of hydrocarbons, following a
concern with contamination in our initial sterile microcosms. These sam-
ples were run under the same conditions, and degradation was compared
with separate baseline samples that were frozen at the outset of the incu-
bation (the same starting material and equivalent addition of crude oil).

We only performed C10 to C50 analyses on the sterile controls, since the
baseline PAH content was extremely low at 9.2 mg/kg dry soil. As a result,
PAH analyses are reported as supplemental information only. Detailed
raw data for all PAH compounds detected are provided in Table S1 in the
supplemental material.

DNA isolation, amplification, and Illumina MiSeq sequencing. Soil
samples were collected following homogenization with a sterile spatula.
Total soil DNA was isolated from 250-mg soil subsamples using the Mo
Bio PowerSoil DNA isolation kit and quantified using a Qubit dsDNA HS
assay kit and Qubit fluorometer (Life Technologies, Burlington, ON,
Canada). Initial PCR amplifications were performed on an Eppendorf
Mastercycler ProS (Eppendorf, Mississauga, ON, Canada) using 1:10 di-
luted DNA extracts, and subsequent processing for sequencing was per-
formed following mainly the Illumina 16S Metagenomic Sequencing Li-
brary Preparation guide (part no. 15044223 rev. B). The 16S V3 and V4
regions were amplified with the universal bacterial primers 341F (5=-CC
TACGGGNGGCWGCAG-3=) and 805R (5=-GACTACHVGGGTATCTA
ATCC-3=) (32), containing the required Illumina adaptors at the 5= end of
the primer sequences (5=-TCGTCGGCAGCGTCAGATGTGTATAAGA
GACAG-3= for the forward primer and 5=-GTCTCGTGGGCTCGGAGA
TGTGTATAAGAGACAG-3= for the reverse primer). Initial reactions
were performed in 25-�l volumes using 200 �M deoxynucleoside
triphosphates (dNTPs), 400 nM each primer, 2.5 �l of 10� Taq buffer,
and 1 U of HotStar Taq and the following cycling conditions: 15 min at
95°C, 25 cycles of 30 s at 95°C, 30 s at 55°C, and 30 s at 72°C, and a final
elongation step of 5 min at 72°C. PCR products were cleaned using
NucleoMag NGS clean-up and size select beads (Macherey-Nagel, Beth-
lehem, PA). Unique codes were added to each sample by amplifying 2.5 �l
of the purified PCR product with 2.5 �l of each Nextera XT Index primer
(Illumina Inc., San Diego, CA, USA), 12.5 �l of 2� Kapa HiFi HotStart
ReadyMix, and 5 �l of water (total volume of 25 �l per sample) using the
following conditions: 3 min at 98°C, 8 cycles of 30 s at 98°C, 30 s at 55°C,
and 30 s at 72°C, with a final elongation step of 5 min at 72°C. PCR
products were cleaned a second time with NucleoMag beads, quantified
using a Qubit fluorometer (Life Technologies, Burlington, ON, Canada),
and combined in an equimolar ratio. This final product was run out on a
1.2% agarose gel to isolate the DNA band at the expected size and purified
using the PureLink quick gel extraction kit (Life Technologies). The
eluted pool was sequenced on an Illumina MiSeq system using the 600-
cycle MiSeq reagent kit v.3, following the manufacturer’s recommenda-
tions. A total of 10,223,352 reads across 114 libraries were obtained fol-
lowing paired-end merging.

Illumina HiSeq for shotgun metagenomics. DNA extracts from the
end of the incubation were selected from five preassigned microcosms per
microbiome type and from three extracts from the initial unmodified soil.
Extracted DNA was sheared to a mean size of 200 bp in 130-�l AFA Fiber
Snap-Cap microTUBEs (Covaris, Woburn, MA, USA) using the M220
focused ultrasonicator (Covaris) with a default program. Sample prepa-
ration of sheared DNA for Illumina HiSeq 2500 2 � 150-bp sequencing
was performed using the Ovation Ultralow system V2 1-96 (NuGen, San
Carlos, CA, USA), following the manufacturer’s instructions. Eighteen
samples were multiplexed across 2 HiSeq lanes at the McGill University
and Genome Québec Innovation Centre (Montreal, QC, Canada). A total
of 164,216,968 paired-end reads were recovered. A summary of the HiSeq
sequence characteristics is provided in Table S2 in the supplemental ma-
terial.

Bioinformatic analyses. In mothur v.1.32.1 (33), paired-end reads
were merged using the command make.contigs. Primers were removed
with trim.seqs (pdiffs, 2; maxambig, 0), and the group sequences
matching the trimmed fasta file were obtained with list.seqs followed
by get.seqs. To reduce the file size for compatibility with the 32-bit
version of USEARCH (34), we performed singleton removal in mothur
instead of USEARCH. The fasta file was reduced to only unique se-
quences (unique.seqs), singletons were removed (split.abund, cutoff, 1),
and the fasta file was then repopulated with all of the original sequences,
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minus those identified as singletons. The single fasta file was then split into
separate files for each sample to facilitate naming in QIIME (MacQIIME
v.1.8.0) (35), and the command add_qiime_labels.py was used to name
and merge individual files. Next, we followed the steps described in the
Brazilian Microbiome Project (BMP) pipeline (36) to produce opera-
tional taxonomic units (OTUs) at 97% similarity (starting at step 4;
http://www.brmicrobiome.org/#!16S-profiling-pipeline-new-illumina
/czxl). Taxonomic classifications were made using the QIIME-formatted
Greengenes (gg_13_8) 16S rRNA gene database (37). The resulting OTU
table was uploaded to R v.3.0.2 (38) for further analyses. We also projected
functional profiles from our 16S rRNA gene data using PICRUSt (39).
These were compared with our metagenomic data sets and allowed us to
predict changes in major functional gene groups over time, as well as in
the bacteria cultured on each of the five media types.

Paired-end reads from HiSeq libraries were imported to MG-RAST
v.3.5 (40), merged, and uploaded with default parameters (except that
dereplication was deselected) for functional and taxonomic annotation.
Tables corresponding to the hierarchical levels of interest from the SEED
subsystem annotations (SEED level 1 and level 3) were downloaded from
the Metagenome Analysis subpage and uploaded to R for further analyses.
To examine the relative abundance of alkane hydroxylases in our samples,
we produced an All Annotations table using GenBank annotations in the
MG-RAST analysis platform, searched “alkane” under “function,” and
grouped all alkane hydroxylase annotations.

Statistical analyses. We focused our analyses on week 0 (pre-crude oil
spike) and week 6 (end of incubation), omitting samples collected at week
3, since the OTU-level compositions of the microbiomes were very similar
at week 3 and week 6 (see Fig. S3 in the supplemental material). All prin-
cipal-coordinate analyses (PCoA), Bray-Curtis distances, and diversity
indices were calculated in the R package vegan (41). Proportional Venn
diagrams were created using EulerApe (42) to visualize the OTUs shared
between the three microbiome types. Taxonomic bubble plots were cre-
ated using the R package PBSmodelling (43).

To examine whether there was persistence in the taxonomic structure
despite the observed convergence in high-level taxonomy, we reduced our
set of OTUs to the 137 that were shared between all microbiome types at
all time points (i.e., initial soil/culture media, poststabilization, and post-
crude oil incubation). At each time point, we normalized the abundance
of each OTU across all treatment means to 1 (i.e., mean abundance in
REG-M plus mean abundance in CO-M plus mean abundance in INIT �
1) and then projected these ratios onto ternary plots, created with the R
package vcd (44), coloring each OTU by the microbiome type in which it
was most abundant in the initial inoculum. Our aim was to determine
whether, independent of changes in the overall abundance of an OTU, an
OTU would remain more or less abundant as a result of its initial abun-
dance.

One-way analysis of variance (ANOVA) tests (for crude oil degrada-
tion and targeted functional gene categories related to carbon processing)
were performed with the lm function followed by the Tukey honestly
significant difference (HSD) test in the R package stats. STAMP v.2.0.9
(45) was used to perform multiple comparisons of the relative abundance
of functional gene categories and OTU abundance across microbiome
types using the Benjamini-Hochberg false discovery rate (FDR) correc-
tion (46) and to produce principal-component analysis (PCA) plots, scat-
terplots, and extended error bar plots. A coinertia analysis (R package
ade4) was performed to analyze the relationships between the 16S rRNA
gene data set and the functional metagenomic data set (SEED subsystems
annotations level 3).

Accession number(s). MiSeq and HiSeq data have been deposited in
the NCBI Sequence Read Archive and are available under the project
number SRP073489. HiSeq data are also available through MG-RAST
(4625855.3 to 4625856.3, 4626132.3 to 4626140.3, 4626321.3 to
4626325.3, and 4626327.3 to 4626328.3).

RESULTS AND DISCUSSION

In this study, we reintroduced the original microbiome of a soil, as
well as two cultivated microbiome subsets, to a sieved, dried, and
gamma-irradiated version of the initial soil. Details on the struc-
tures of the inocula for the three microbiome types and remnant
DNA in the gamma-irradiated soil are provided in the supporting
information and Fig. S4 and S5 in the supplemental material. Our
design allowed us to avoid the confounding effects of microbiome
origin, differences in soil parameters, and competition with estab-
lished microbes, while still performing targeted microbiome ma-
nipulation within a soil matrix. After 14 weeks in soil (8 weeks of
stabilization plus 6 weeks of metabolic interaction with crude oil
and MAP), we compared taxonomy and functional gene compo-
sition for each microbiome type and the capacity of each to de-
grade the components of spiked crude oil.

We expected that a simplified microbiome, obtained exclu-
sively on bacterial growth media containing crude oil, would en-
hance crude oil biodegradation in soil by selecting mainly bacteria
involved in this process. No significant difference in C10 to C50

degradation was observed between the cultured microbiomes,
while C10 to C50 degradation was significantly higher in micro-
cosms inoculated with the source soil, even though the relative
abundances of genes related to alkane degradation and carbon
processing were higher in the CO-M and REG-M microbiomes,
respectively. This appears to be true for the absolute abundances
of these genes as well, since the amount of DNA extracted from the
INIT microbiomes at week 6 was similar to that extracted from the
CO-M microbiomes and less than that extracted from the REG-M
microbiomes. There is increasing recognition that the relative
abundances of functional genes for a biogeochemical process and
the rate of the actual process can be weakly linked (47). It is likely
to be even more difficult to identify strong links when a process is
widespread throughout the microbiome, since organisms possess-
ing the genes may be inactive or contributing little to the overall
process rates. Here, only a few OTUs increased significantly in
relative abundance after addition of crude oil and MAP, support-
ing this possibility.

Microbiome trajectories following addition to soil and incu-
bation with crude oil. Shannon diversity changed significantly
between week 0 and week 6 for each microbiome type (paired t
tests, P 	 0.05), while evenness was only significantly changed in
the INIT microbiomes (paired t test, P 	 0.05). As was observed
across a range of soil types treated with diesel (18), Shannon di-
versity of 16S rRNA genes declined slightly in REG-M and
CO-M microbiomes following incubation with crude oil and
MAP (Fig. 1a). Diversity (and evenness) actually increased in
the INIT microbiomes, while the Chao1 richness estimate de-
clined in all microbiome types (Fig. 1a). The Bray-Curtis dis-
tance between microbiome types at the phylum level shows mi-
crobiome convergence after 8 weeks of stabilization in the
gamma-irradiated soils and further convergence after 6 weeks of
incubation with crude oil, despite large phylum-level differences
in the microbiome inocula (Fig. 1b and d). In contrast, OTU com-
position remained distinct across microbiome types, with only
slight decreases in the Bray-Curtis distance relative to the starting
microbiome composition (Fig. 1c and e). The CO-M microbiome
remained the most stable over time (Fig. 1c), likely indicating that
the CO-M media screened for bacteria that were able to use crude
oil as a substrate.
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Phylum-level convergence was mostly linked to Actinobacteria
dominance of the microbiome (Fig. 2a). Despite large initial dif-
ferences in the phylum-level composition of the microbiome
types, each was dominated by Actinobacteria following incubation
in the sterile soil. At week 0 (pre-crude oil spike), Actinobacteria
represented 79.4% of sequences on average across microbiome
types and 86.6% on average at week 6. This highlights the seem-
ingly powerful constraints of abiotic soil parameters on bacterial
taxonomy, supported by many environmental surveys of soil bac-
terial composition (e.g., 16–19). Although we use a single soil
substrate in this study, the abiotic environment appeared to lead
to taxonomic convergence, and soil type has been shown to influ-
ence the trajectories of bacterial assemblages across a range of soil
types following diesel contamination (18). The nature of the soil
environment appears to determine whether petroleum contami-
nation will lead to dominance by Actinobacteria or Proteobacteria
(18).

However, the relative abundances of the 20 most abundant
genera within the Actinobacteria (between week 0 and week 6)
varied across microbiome types, despite being present in all three

(Fig. 2a). A very small number of OTUs were disproportionately
favored by crude oil and MAP addition, with different taxa re-
sponding in each microbiome type. In fact, only 8 OTUs across all
phyla significantly increased in relative abundance by �1% from
week 0 to week 6 (Benjamini-Hochberg corrected P 	 0.05) (Fig.
2b). In the CO-M microcosms, two OTUs identified as Arthrobac-
ter and Rhodococcus were the largest responders, increasing by
�23% and 8%, respectively. In the INIT and REG-M microcosms,
a different Rhodococcus OTU increased by averages of 
10 and

30%, respectively, while an OTU classified as Mycobacterium
responded positively in both (�5 and 11%, respectively). Of the
genera shown in Fig. 2, Arthrobacter, Rhodococcus, Mycobacte-
rium, and Nocardioides are all identified as degraders of hydrocar-
bon compounds in the Minnesota Biocatalysis/Biodegradation
Database, while both Williamsia and members of the Alcaligen-
aceae have been isolated using hydrocarbons as a sole carbon and
energy source (48, 49). All were 98 to 100% similar to sequences in
the NCBI nucleotide database that were derived from taxa living
in organic-contaminated environments. Since different OTUs re-
sponded to crude oil and MAP in each microbiome type, despite
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FIG 1 Shifts in microbiome structure through time by microbiome type. (a) Metrics for operational taxonomic unit (OTU) richness, diversity, and evenness in
the three microbiome types, both before and after incubation with crude oil. Bars represent standard errors or estimated standard errors in the case of the Chao
richness estimator. Principal-coordinate analysis (PCoA) ordinations of Bray-Curtis dissimilarity at the phylum (b) and OTU (c) levels. Shapes colored in white
represent the means of replicate DNA extractions from the initial inocula. For the REG-M and CO-M inocula, they represent the means of the two and three
media types used to produce them, respectively, as bacteria from each media type were added in equal amounts. Bar charts showing mean Bray-Curtis distances
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the presence of all OTUs in each, biotic interactions may play an
important role in controlling which taxa thrive, rather than addi-
tives leading to microbiome convergence. Interactions may also
simply be influenced by the initial relative abundance of the re-
sponding OTUs.

Targeted microbiome selection with addition to soil has poten-
tial in biotechnology, but to become a useful tool, the micro-

biomes that persist over time should roughly resemble those
added to the soil. When we analyzed the normalized relative abun-
dance of OTUs shared between the three microbiome types (i.e.,
relative abundance per OTU across treatments), we found that
OTUs tended to remain most abundant in the treatment in which
they were initially present at a higher relative abundance (Fig. 2c),
even if the relative abundance of that OTU declined across all
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week 6 (post-crude oil). Actinobacteria are highlighted to indicate that this phylum converged strongly by week 6 across microbiome types and was by far the
dominant bacterial group. The abundance of Actinobacteria at week 6 did not differ significantly across microbiome types, while those of all other phyla and
genera shown did (P 	 0.05; multiple ANOVA with P value correction using the Benjamini-Hochberg false discovery rate). (b) Dot plot with 95% confidence
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treatments on average. In fact, after 8 weeks of stabilization in soil,
85.4% of shared OTUs were the most abundant in the micro-
biome type in which they were most abundant in the source ma-
terial (initial soil or combined media), and this was true of 81.8%
of OTUs after another 6 weeks of incubation with crude oil and
MAP. At the end of the incubation with crude oil, 89.1% of shared
OTUs remained most abundant in the microbiome type in which
they were most abundant at the end of the initial stabilization
period. This is important for the future of microbiome manipu-
lation in soils, because, despite the impact of soil on taxonomy, the
relative abundance of OTUs can be purposefully modified, at least
in the absence of an indigenous microbiome.

Although many OTUs were not considered in this analysis, the
shared OTUs represented the majority of sequences for all micro-
biome types at week 0 and week 6 (Fig. 2d). Well-characterized
hydrocarbon-degrading genera represented a lower proportion of
sequences in the INIT than in REG-M or CO-M microbiomes (see
Fig. S6 in the supplemental material; see also the genera listed in
Table S3 in the supplemental material), although these genera
represented far more of the sequences in each microbiome type
than in the source soil, and were more abundant at week 6 than
week 0 (see Fig. S6 in the supplemental material).

Divergence in functional gene profiles. Despite taxonomic
convergence at the phylum level, the functional gene content of
the microbiome types differed with respect to gene categories re-
lated to carbon processing. This shows that, despite the con-
straints of the soil matrix on taxonomy, we can create micro-
biomes in a single environment that vary with respect to
functional potential. Although it is well known that the link be-
tween taxonomy and function is not as strong in microorganisms
as in macroorganisms, due to processes such as lateral gene trans-
fer (50), it was interesting to observe that key functional differ-
ences in microbiomes were maintained over 14 weeks in a com-
mon environment. We also show that a large difference in
taxonomic diversity did not lead to substantial differences in the
overall functional profiles of the INIT and CO-M microbiomes,
highlighting the high degree of functional redundancy that exists
within complex soil microbial assemblages.

The functional profiles of all microbiome types differed sub-
stantially from those of the source soil (see Fig. S7 to S9 in the
supplemental material). PCA revealed redundancy in functional
potential between the INIT and CO-M microbiomes, which clus-
tered closely and were distinct from the REG-M and source soil
profiles (Fig. 3a). This is in contrast to the 16S rRNA gene data
when analyzed at the OTU level, in which the INIT and REG-M
microbiomes at week 6 clustered most closely together (Fig. 1c and
the 16S rRNA gene data from shotgun sequencing in MG-RAST,
which are not shown here). A coinertia analysis showed that the
OTU tables from our 16S rRNA data and the functional gene
abundance tables (SEED subsystem annotations level 3) were
more closely related than would be expected by chance (see Fig.
S10 in the supplemental material) but also emphasized the differ-
ential clustering of microbiome types in the taxonomic and func-
tional data. There was no significant difference in functional
categories identified per sequence in the INIT and CO-M micro-
biomes or in the source soil (see Table S2 in the supplemental
material), despite an estimate of roughly twice as many 16S rRNA
gene OTUs in the INIT microbiome as in the CO-M microbiome
at week 6 (Fig. 1a).

The Shannon diversity of bacterial OTUs was linearly corre-

lated (R2 � 0.295, P � 0.018) with the Shannon diversity of SEED
level 3 functional categories, although the curve was much steeper
for the REG-M microcosms, which had lower functional diversity
than the other microbiome types (Fig. 3b). The relative abun-
dance of SEED level 3 categories was very similar between the
CO-M and INIT microbiomes (Fig. 3c), but not between REG-M
and INIT microbiomes, in which a number of categories, mostly
related to the metabolism of different carbon compounds, were
notably higher in the REG-M microbiomes (Fig. 3d and e). We
compared certain SEED level 1 categories related to carbon pro-
cessing, which we expected were important in crude oil biodegra-
dation. The relative abundances of “carbohydrates,” “fatty acids,
lipids, and isoprenoids,” and “metabolism of aromatic com-
pounds” were significantly higher in the REG-M microbiomes
than in all others and significantly lower in the initial soil micro-
biome (Fig. 3f). We grouped all functional annotations of alkane
hydroxylases (involved in the biodegradation of straight-chain pe-
troleum hydrocarbons), and these were significantly higher in the
CO-M microbiomes than in all others (Fig. 3f). The addition of
MAP is also likely to have influenced the microbiomes, and we
observed small but significant increases in the relative abundance
of N metabolism genes in all microbiomes compared to those in
the source soil and small but significant decreases in genes related
to P metabolism (see Fig. S7 to S9 in the supplemental material).
However, we should also note that these findings are based on the
abundance of known and classifiable genes. We showed that the
cultivated microbiome subsets contained a higher proportion of
known and cultivated hydrocarbon-degrading genera than did the
initial microbiome (see Fig. S6 in the supplemental material; see
also the genera listed in Table S3 in the supplemental material). As
a result, we may be underestimating the proportion of important
functional genes in the initial microbiome, since more unclassi-
fied and uncultivated microorganisms are present.

We also used PICRUSt metagenome projections (39) to pre-
dict metagenome functional content from 16S rRNA gene data, in
order to see how the proportion of biodegradation genes may have
varied over time and across media types. We looked at shifts in the
KEGG orthology functional category Xenobiotics Biodegradation
and Metabolism and found that at week 6 after spiking with crude
oil and MAP and in the initial soil samples, the PICRUSt projec-
tions inflated the counts relative to what we observed in the se-
quenced metagenomes (data not shown) but still presented the
same general pattern. The relative abundance of genes in this cat-
egory was projected to be 4 to 4.5% higher in the bacteria se-
quenced from the crude oil plus M9 media than in any of the other
media types and was projected to be higher on average than that in
any of the microbiome types at week 0 or week 6, with the excep-
tion of REG-M at week 6 (see Fig. S11 in the supplemental mate-
rial). A PCA also showed media type separation based on pro-
jected functional profiles, and the functional profiles of all
microbiome types shifted from those of the initial soil and the four
media types containing either TSA or glucose at week 0 toward the
functional profile of the crude oil plus M9 medium type by week 6
(Fig. 4). Despite this, the taxonomic composition of the most
abundant OTUs in each microbiome type at week 6 did not re-
semble that of the crude oil plus M9 medium (see Fig. S12 in the
supplemental material).

Functional redundancy in microbiome subsets. Defining
functional redundancy in the soil microbiome is challenging. Al-
though taxonomy has sometimes been correlated with function
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(18, 51, 52), these correlations tend to be confounded by differ-
ences in soil conditions. When starting with a single microbial
strain, increasing microbial diversity is likely to increase carbon
processing (as observed by Bell et al. [22]) since there is a high
chance of complementarity. In hyperdiverse soil microbiomes,
however, most forms of metabolism will likely be present, and the
pool of genes for potential horizontal gene transfer is much larger.
We observed nearly identical functional gene profiles in the INIT
and CO-M microbiomes (when classified to level 3 of the SEED
subsystems), even though the CO-M microbiome consisted only
of cultivable taxa and was estimated to contain around half as
many OTUs. It needs to be emphasized, however, that these sim-
ilarities are driven primarily by basic metabolic functions, which

are overrepresented in functional databases; many specialized
functions within the INIT microbiomes are likely not present in
the CO-M microbiomes.

In terms of actual degradation, we observed significantly more
degradation of C10 to C50 hydrocarbons in the INIT microbiomes
(PANOVA � 0.0117, �2 � 0.281) (Fig. 5). Although the total con-
centration of PAH compounds in the crude oil was low (9.2 mg/kg
on average), there was significantly more PAH degradation
(PANOVA � 0.0338, �2 � 0.431) in the INIT microbiomes than in
the REG-M microbiomes (see Fig. S13 in the supplemental mate-
rial). These differences may be related to the presence of unculti-
vated microbes, including eukaryotes, which would not have been
captured using bacterial culture media. A previous study demon-

similarity between the CO-M and INIT profiles. Lines extending from points in the scatterplots indicate standard deviations. (e) Histogram and confidence
intervals of functions found to be significantly different between INIT and REG-M, with an effect size (difference in relative abundance) of at least 0.25. These
functions are found within the orange-colored area of panel d. There were no significant differences of this size between INIT and CO-M. (f) Relative abundances
of functional categories related to carbon processing across microbiome types and within the initial source soil. The top three histograms are level 1 categories
from SEED subsystem annotations, whereas the bottom histogram (alkane hydroxylases) was created by combining all GenBank alkane hydroxylase annotations
using the All Annotations search function in MG-RAST. INIT, sterile soil reinoculated with the initial soil; REG-M, sterile soil reinoculated with bacteria cultured
on regular media; CO-M, sterile soil reinoculated with bacteria cultured on media containing crude oil.

FIG 4 PCA plot produced using STAMP analysis of PICRUSt-projected functional profiles (level 3, KEGG orthology). This plot shows that the week 6 profiles
group together with the profiles from the crude oil plus M9 media, whereas the pre-crude oil profiles group together with the profiles from all other media types
(TSA and glucose, with or without crude oil added).

Bell et al.

5538 aem.asm.org September 2016 Volume 82 Number 18Applied and Environmental Microbiology

http://aem.asm.org


strated that bacteria and fungi were responsible for 82% and 13%
of hexadecane degradation, respectively (53), and the high effi-
ciency of degradation in the cultured microbiome subsets rein-
forces the importance of bacteria in hydrocarbon degradation,
especially when PAH compounds are not abundant. A diverse
microbiome, while functionally similar to a less diverse micro-
biome, might also adapt better to multiple environments and bet-
ter tolerate changing environmental conditions (e.g., increasing
salt concentrations and warming [54]). However, we must also
consider the possibility that the lab-cultivated submicrobiomes
are less adapted to the soil environment than the initial micro-
biome. This might be due to declines in basic ecological traits not
related to crude oil degradation or a reduced ability to interact
efficiently with coexisting microbes.

Culturing without isolation can produce diverse and func-
tionally distinct microbiomes. New methods allow increasingly
high-throughput culturing of individual microbial strains and can
even select variant individuals from a single species with particular
functional abilities (55). Hand-selected isolates might potentially
be combined into designer soil inocula, but the interactions be-
tween these isolates in situ will be difficult to predict, as will the
consistency of their functions, phenotypes, and mobile genomes.
In addition, microbial strains that grow and evolve together can be
more productive as a group, in part because some adapt to using
the by-products of coexisting species (56).

In this study, we show that diverse soil microbiome subsets
with distinct taxonomic and functional profiles can be quickly
obtained through bulk culturing on standard media. Isolation fol-
lowed by scraping and sequencing appears to capture a high per-
centage of OTUs compared to that for traditional colony picking,
although we cannot determine how many were derived from rem-
nant DNA in the sterile soil, as the same OTUs may have been
present in both the culture media and the sterile soil. This was also
observed by Shade et al. (57), who captured �21% of all soil bac-
terial OTUs using only one type of cultivation medium, compared

to the five types used in this study (we observed 22.4% and 33.8%
of all observed OTUs in our REG-M and CO-M inocula, respec-
tively, as shown in Fig. S4 in the supplemental material). Although
less sophisticated, this approach is of interest for a few reasons: (i)
microbial inocula adapted to local conditions and to each other
can be developed for any target soil; (ii) government regulations
often complicate the introduction of nonnative species to soils;
and (iii) small changes in media composition might capture mi-
crobiome subsets with different functional phenotypes (e.g., r-
and K-strategists, salt-tolerant microbes, and phenanthrene de-
graders). This method should prove complementary to other
complex microbiome selection approaches and will help provide a
range of inocula for testing the persistence of microbiomes intro-
duced to soil.

In conclusion, as has been shown through environmental sur-
veys, this study demonstrates the strong controlling influence of
soil abiotic conditions on bacterial phylum-level taxonomy but
less so at the OTU level. Microbiome composition at the OTU
level was roughly maintained throughout a 14-week incubation,
demonstrating that it is possible to purposefully structure the soil
microbiome to some extent. Interestingly, OTUs that responded
positively to crude oil and MAP spiking varied by microbiome
type, even though the responding OTUs were present in all micro-
biome types. These microbiomes were maintained under sterile
conditions, so further studies are needed to determine whether
differentially seeded microbiomes can resist invasion by the initial
soil community or whether convergence in structure and function
is inevitable without modification of the physical soil environ-
ment. It will also be necessary to track microbiome structure be-
yond the 14-week interval used in this study, to determine
whether convergence increases with time. Finally, this study
shows that the initial soil microbiome more efficiently degraded
added crude oil than did a presumably specialized bacterial assem-
blage selected on crude oil media, although this might vary by soil
type and soil history.
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