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Abstract

During the past decade significant progress in the understanding of stimulatory and inhibitory 

signaling pathways in immune cells has reinvigorated the field of immuno-oncology. In this review 

we outline the current immunotherapy based approaches for the treatment of gynecological 

cancers, and focus on the emerging clinical data on immune checkpoint inhibitors, adoptive cell 

therapies, and vaccines. It is anticipated that in the coming years biomarker-guided clinical trials, 

will provide for a better understanding of the mechanisms of response and resistance to 

immunotherapy, and guide combination treatment strategies that will extend the benefit from 

immunotherapy to patients with gynecologic cancers.
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Introduction

The immune system plays a key role in eliminating and controlling early tumor growth [1, 

2]. Recognition and elimination of tumors by the immune system involves a series of steps 

coordinated by the various parts of the innate and adaptive immune system. The immune 

recognition of cancer begins at the tumor site, where fragments of malignant cells get taken 

up by professional antigen-presenting cells (APC) such as dendritic cells (DC). Activation of 

DCs in turn requires several maturation signals, which are in part provided by the “danger” 

signals released from the dying tumor cells, known as damage-associated molecular patterns 

(DAMPs) [3]. Following activation, APCs migrate to tumor-draining lymph nodes, where 

they present tumor-associated antigens (TAAs) in the form of antigenic peptides bound to 
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the major histocompatibility complex (MHC) class I and II molecules. This enables antigen 

recognition by antigen-specific CD4 and CD8 T cells. In addition to recognition of specific 

antigenic peptides bound to MHC, activation of T cells requires another immunostimulatory 

signal, which is provided by engagement of a co-stimulatory receptor such as CD28 on the 

surface of T cells [4]. Activated T cells then migrate to tumors through the systemic 

vasculature by following a chemokine gradient [5, 6] and extravasate through a series of 

interaction with adhesion molecules in the tumor endothelium [7]. Finally, recognition of 

tumor targets proceeds through interaction between the T cell receptor (TCR) and specific 

antigenic tumor peptide bound to MHC, ultimately leading to T-cell mediated tumor 

destruction.

Starting with the process of antigen presentation, tumors have evolved a variety of resistance 

mechanisms that allow for successful escape from immune recognition and elimination [8]. 

Hence, immunotherapeutic approaches aim to improve recognition of tumors by the immune 

system and to inhibit the mechanisms of immune escape. Many of these approaches have 

been explored in gynecologic malignancies, with recent data demonstrating promising 

activity in various tumor types. Here we will discuss several examples of such modalities, 

primarily focusing on the more recently reported studies, though the list is certainly not 

exhaustive and multiple other approaches could be considered to be applicable. With 

emerging data, it is likely that a combination of several different modalities will be needed 

for optimal activation of anti-tumor immunity and therapeutic efficacy.

I. Immunotherapy of ovarian cancer

Epithelial ovarian cancer (EOC) is the fourth most common cancer in women and accounts 

for the highest number of gynecologic cancer deaths. Although EOC has not been 

traditionally considered a type of cancer that would be amenable to immunotherapy, 

multiple lines of evidence have demonstrated that the immune system likely plays a key role 

in eliminating and controlling ovarian cancer growth. In particular, the presence of tumor-

infiltrating lymphocytes (TILs) has emerged as an important prognostic biomarker in EOC, 

with increased number of TILs predicting longer survival [9, 10]. Tumor-reactive antibodies 

and T cells have been demonstrated to be present in the peripheral blood of EOC patients 

[11, 12], and oligoclonal tumor-directed T cells have been directly isolated from the tumors 

and ascitic fluid [13–20].

Based on these findings, several immunotherapeutic strategies have been explored in EOC. 

These approaches can be broadly subdivided into three categories: 1) Direct targeting of 

tumors with tumor-specific antibodies; 2) modalities that aim to enhance antigen 

presentation, such as vaccines, toll-like receptor (TLR) agonists, and oncolytic viruses, and 

3) strategies focusing on activation of tumor-specific T cells, either through direct adoptive 

transfer or by targeting of activating and inhibitory pathways in T cells and tumor 

microenvironment.

A. Targeting of ovarian tumors with tumor-specific antibodies—Antibodies 

targeting surface antigens have been demonstrated to be effective against different cancer 

types [21, 22]. While some of these agents target tumor driver pathways (e.g. trastuzumab 
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and cetuxumab), some in addition mediate antibody-dependent cellular cytotoxicity 

(ADCC), allowing for recognition of the antibody-labeled cancer cells with immune 

effectors, such as natural killer cells. In ovarian cancer, however, such strategies have been 

more elusive, likely secondary to lack of an optimal surface antigen. Indeed a 2014 

Cochrane review of trials in ovarian cancer using antigen-specific targeting failed to 

establish a conclusive evidence for efficacy of such strategies in EOC [23].

CA-125: The extensive expression of CA125 and its cell-surface precursor MUC16 in the 

majority of ovarian carcinomas prompted several trials targeting CA125 [24–26]. 

Oregovomab, an antibody targeting CA-125 has been evaluated in several studies, with early 

studies demonstrating the development of anti-CA-125 T cell responses [27–29]. However, a 

randomized placebo-controlled phase III trial in patients with advanced EOC in first clinical 

remission failed to demonstrate benefit to oregovomab therapy, with no significant 

difference between the placebo and oregovomab groups [30].

EpCAM: Epithelial cell adhesion molecule (EpCAM) is a surface integrin receptor 

commonly overexpressed on cancer cells and appears to be associated with worsened 

prognosis in ovarian cancer [31]. Catumaxomab is a bispecific antibody recognizing 

EpCAM and T cell antigen CD3. In addition, catumaxomab possesses an ADCC-mediating 

Fc region, making it a trifunctional antibody. Catumaxomab mediates anti-tumor effect 

through two different immune mechanisms: via recruitment and activation of T cells to the 

EpCAM expressing tumor cells and via binding to Fc receptor-expressing effectors such as 

NK cells. In a phase II/III trial randomizing patients with advanced cancer with malignant 

ascites to standard paracentesis or paracentesis with intraperitoneal catumaxomab, 

catumaxomab delayed ascited re-accumulation, but had no impact on overall survival [32]. 

A variation on this strategy has been recently developed using bispecific T cell engagers 

(BiTE) recognizing EpCAM and CD3. This strategy has been demonstrated to be effective 

in xenograft models of human colorectal and ovarian cancer [33]. More recently, in 

preclinical models of ovarian carcinoma, a novel EpCAM-CD3 BiTE solitomab has 

demonstrated significant activity against human ovarian tumor cells in vitro and ex vivo [34, 

35].

FRa: Folate receptor alpha is expressed in high frequency in epithelial ovarian cancer [36]. 

Farletuzumab, a monoclonal ADCC-mediating antibody against folate receptor alpha, was 

evaluated in several studies, with earlier studies demonstrating promising efficacy [37, 38]. 

Despite these findings, later larger studies in combination with chemotherapy in platinum-

sensitive and resistant patients, however, failed to meet the primary endpoints 

(NCT00849667, NCT00738699). More recently, data from phase I study using IMGN853, a 

folate receptor alpha targeting antibody-drug conjugate in patients with FRa positive 

epithelial ovarian cancer and other Fra positive solid tumors demonstrated clinical benefit 

rate of 25–33% depending on schedule, with responses seen in different treatment schedule 

groups [39]. While this strategy is certainly promising, it is unclear whether there is any 

contribution of the immune system to the observed effect and further studies would be 

needed to answer this question.
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B. Enhancement of recognition of tumor antigens by the immune system

Vaccines: Several different vaccination approaches have been explored in ovarian cancer 

[40–44]. Those include simple vaccine preparations consisting of specific peptides and 

proteins, as well as more complex strategies, such as engineered cellular vaccines, DC 

vaccines, virus-vectored vaccines, and oncolytic viruses [45–54]. A comprehensive review 

of different vaccination strategies that have been explored in ovarian cancer is published 

elsewhere [55]. The majority of the vaccines have focused on using cancer-testis antigens 

(e.g. NY-ESO-1), and proteins known to be overexpressed in EOC (e.g. p53, survivin, 

MUC1). In general, while the majority of the studies demonstrated evidence of cellular and 

antibody response to the antigens, clinical benefit afforded by vaccination has unfortunately 

been marginal at best. Since most of the strategies have relied on self-antigens, it is likely 

that vaccination alone is not sufficient to overcome the T cell tolerance and combinatorial 

therapies may be necessary. Indeed, studies in preclinical models indicate that combination 

of vaccines with immune checkpoint blockade result in enhancement over either approach 

alone [56–63], thus generating rationale for exploration of similar strategies in human trials.

TLR agonists: Toll like receptors (TLR) are a class of proteins recognizing signature 

molecules that are broadly shared by various pathogens, and play a role in the innate 

immune response and tumor antigen processing and presentation by APC. Ligands for 

various TLRs are actively being explored as anti-cancer agents and there is a rationale for 

using such ligands in ovarian cancer [64]. VTX-2337 (motolimod) is a small molecule 

agonist of TLR8, which stimulates a strong innate immune response. VTX-2337 has been 

evaluated with systemic administration in combination with liposomal doxorubicin in animal 

models and in phase I study in patients with advanced ovarian cancer. The combination 

appeared to be safe, with evidence of immune activation and clinical benefit [65]. A phase 2 

study evaluating motolimod in combination with liposomal doxorubicin is ongoing 

(NCT01666444). Another phase 1/2 study using combination of motolimod with liposomal 

doxorubicin and anti-PD-L1 antibody MEDI4736 is upcoming (NCT02431559).

Type I IFN: Type I IFN is an innate immune response cytokine, which plays a role in 

antiviral immune response. In addition, recent studies have demonstrated a critical role for 

the type I IFN pathway in anti-tumor immune response [66, 67], where type I IFN was 

demonstrated to be indispensible for tumor antigen cross-presentation by dendritic cells. 

Studies with systemic or intraperitoneal IFNα in patients with EOC failed to demonstrate 

significant efficacy, while often being associated with frequent dose-limiting toxicity [68–

70].

Oncolytic viruses: Although not initially thought of as immunotherapeutic agents, with 

evolving understanding of the interplay between oncolytic viruses and the immune system, 

came the recognition that virus-induced anti-tumor immune response, rather than direct 

tumor lysis, may be a dominant player driving the efficacy of these therapies. Several trials 

with intraperitoneally-administered oncolytic viruses have been conducted in ovarian cancer 

[71–82]. In the majority of the studies, the treatment was well tolerated and while responses 

were rare, a good percentage of patients demonstrated stable disease, which was often 

durable. These studies suggest that intraperitoneal oncolytic viruses present a viable 
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therapeutic strategy in ovarian cancer, though for optimal efficacy their evaluation in 

combination with other modalities (e.g. chemotherapy, other immunotherapies) is likely 

warranted.

C. Activation of tumor-specific T cells

Cytokines: IL-2 is a T-cell growth factor, which is FDA approved for treatment of renal cell 

cancer and malignant melanoma [83, 84]. IL-12 is a cytokine mainly produced by activated 

monocytes, tissue macrophages, and B cells. It can induce IFN-γ and together with IL-2 

becomes a potent activator of cytotoxic T lymphocytes and NK cells [85, 86]. While both 

cytokines are associated with significant toxicity with systemic administration, the toxicity 

appears to be lower with locoregional (e.g. intraperitoneal) administration. A phase 1–2 

study of IP IL-2 in patients with persistent or recurrent ovarian cancer had shown an overall 

response rate of 25.7%, with an overall 5-year survival probability of 13.9% [87]. As a 

different strategy, IL-12 expressing plasmid DNA was evaluated in patients with malignant 

melanoma with patients showing promising responses with intratumoral injection and 

electroporation [88, 89]. In ovarian cancer, an IP-administered IL-12-expressing plasmid 

was evaluated in combination with chemotherapy, and appeared to be well-tolerated, though 

responses did not exceed what would be expected with chemotherapy alone [90]. A 

subsequent study evaluated intraperitoneal EGEN-001, an IL-12 plasmid formulated with 

lipopolymer in patients with persistent or recurrent ovarian cancer. In this study of 22 

patients, 35% had stable disease [91].

Immune checkpoint blockade: Activation of tumor-specific T cells requires binding of the 

T cell receptor to the tumor-specific antigen peptide presented by major histocompatibility 

complex (MHC) class I and II molecules on the surface of APC. In addition to recognition 

of cognate MHC-peptide complex, there is a requirement for another immunostimulatory 

signal, which is provided by activation of a co-stimulatory receptor such as CD28 on the 

surface of T cells [4]. In addition to CD28, T cells express a wide repertoire of other co-

inhibitory and co-stimulatory receptors, which integrate a complex immune signaling 

network regulating T cell activation, differentiation, survival, and effector function [4]. 

Targeting of such receptors demonstrated significant activity in pre-clinical models and in 

early clinical trials [92]. The CTLA-4 and PD-1 inhibitory immune checkpoint blocking 

antibodies are the most advanced in clinical development and were recently approved by the 

FDA for treatment of metastatic melanoma [93, 94]. Based on these findings, therapy with 

immune checkpoint blockade (ICB) is being evaluated in preliminary trials in patients with 

EOC. A recent phase II study of Nivolumab in platinum resistant ovarian cancer patients 

showed response and disease control rates of 15 and 45%, respectively, including two 

patients with a durable complete response [95].

-CTLA-4: The CTLA-4- blocking antibody ipilimumab was the first immune checkpoint 

blocking antibody that has entered clinical testing and has an FDA-approved indication for 

treatment of metastatic melanoma on the basis of survival benefit demonstrated in a phase 

III study[93]. In eleven patients with ovarian cancer, who previously received autologous 

tumor cell vaccine expressing GM-CSF (GVAX), treatment with ipilimumab led to an 

objective response in one patient, which was durable for over 4 years [96].
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-PD-1/PD-L1: A rationale for targeting PD-1/PD-L1 pathway in gynecologic malignancies 

was initially demonstrated in a phase I study of anti-PD-L1 antibody in patients with 

advanced cancer, which included 17 patients with ovarian cancer [97]. Of the ovarian cancer 

cohort, 22% of the patients had evidence of objective response or stable disease, lasting at 

least 24 weeks [97]. Preliminary clinical data have now in addition been reported for the 

EOC patients treated with PD-1 blocking drugs nivolumab and pembrolizumab, as well as 

PD-L1 blocking antibody avelumab. In a phase I study of nivolumab in 20 EOC patients, 

best overall response was 15%, including 2 patients with durable CR, with a total disease 

control rate of 45% [95]. In a phase Ib open-label expansion trial of avelumab in 75 patients 

with recurrent or refractory ovarian cancer, efficacy data from the first 23 patients 

demonstrated PR in 4 patients (17%), stable disease in 11 patients (48%), and 2 patients with 

PR after initial progression. In a phase I study of pembrolizumab in 26 ovarian cancer 

patients selected for PD-L1 positivity, the drug demonstrated activity with one patient with 

CR, 2 patients with PR, and 6 patients with stable disease. In all studies, the drugs were very 

well tolerated [95, 98, 99]. Based on these studies PD-1/PD-L1 blockade thus demonstrates 

promising activity in advanced ovarian cancer patients and larger studies are currently 

underway.

The development of CTLA-4 and PD-1/PD-L1-targeting antibodies has provided for an 

opportunity for evaluation of combinations of these agents, which resulted in additive or 

even synergistic activity in animal models of melanoma and ovarian cancer [100, 101] and in 

phase I dose escalation studies in metastatic melanoma and renal cell carcinoma [102, 103]. 

In melanoma, combined CTLA-4 and PD-1 blockade with ipilimumab and nivolumab, 

respectively, was recently demonstrated to enhance response rate and PFS in comparison to 

either agent alone, although with increased toxicity [104]. To determine whether addition of 

CTLA-4 blockade would increase therapeutic efficacy in EOC, there is an ongoing NRG 

Oncology Group randomized phase II study comparing the combination of nivolumab and 

ipilimumab to nivolumab alone in patients with relapsed EOC (NCT02498600).

D. Adoptive T cell therapies—Adoptive cell therapies (ACT) aim to overcome the 

immunosuppressive effect of tumor microenvironment through infusion of large numbers of 

autologous tumor-reactive T cells that have been expanded from tumor infiltrating 

lymphocytes (TILs) in vitro. Significant activity of such therapies have been reported in 

patients with metastatic melanoma [105]. Two trials have evaluated the efficacy of adoptive 

cell therapy in ovarian cancer with evidence of clinical benefit seen in the majority of the 

treated patients [106, 107]. These studies are obviously biased by selection of the patients 

from whom sufficient amount of TILs could be isolated, as patients with high numbers of 

TILs would be expected to have a more favorable prognosis. Additional studies using TIL 

ACT in ovarian cancer are ongoing (NCT02482090, NCT01883297).

Engineered T cells present an alternative strategy that avoids the need to isolate a sufficient 

number of TILs. Using this strategy, autologous lymphocytes isolated from peripheral blood 

are transduced either with a T cell receptor recognizing a specific tumor antigen within the 

context of MHC, or with a chimeric antigen receptor (CAR) recognizing a tumor-associated 

surface antigen [108]. Preclinical studies demonstrated that targeting of MUC16 with 

engineered T cells expressing a MUC16-specific CAR could induce complete eradication of 

Zamarin and Jazaeri Page 6

Gynecol Oncol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



orthotopic ovarian xenografts [109, 110], and a phase I study targeting MUC16 with CAR T 

cells is upcoming [111] (NCT02498912). It is conceivable that any antigens expressed on 

the surface of ovarian cancer could be targeted with these strategies, and studies are 

currently underway using T cells targeting differentiation proteins such as folate receptor 

alpha [112], and mesothelin (NCT01583686), and cancer testis antigens such as NY-ESO-1 

(NCT01567891, NCT02457650).

While ACT, including engineered T cells, have demonstrated significant promise against 

several tumor types, they can be associated with significant toxicities, which include 

cytokine release syndrome (CRS) and toxicities from ‘on target, off tumor’ recognition 

[108]. CRS, resulting from activation of the infused tumor-specific T cells, can lead to a 

range of clinical toxicities, including fever, hypotension, hypoxia, and neurologic toxicities, 

and requires prompt recognition and treatment with steroids or anti-interleukin-6 receptor 

antibody tocilizumab [113, 114]. On target toxicities include recognition of normal tissues 

expressing the tumor antigen, and can lead to severe toxicities which have been fatal in some 

instances [115]. Engineering of additional safety features such as suicide genes into T cells 

may provide a safety switch and will likely be required in future studies exploring tumor 

antigen targets that are also expressed on normal tissues.

E. Other immunotherapeutic modalities on the horizon for ovarian cancer

Antibodies targeting co-stimulatory receptors: In addition to the antibodies targeting 

CTLA-4 and PD-1/PD-L1, antibodies to other T cell co-stimulatory and co-inhibitory 

receptors are currently in development. Amongst those are the agonistic antibodies targeting 

activating T-cell surface receptors (e.g. anti-GITR, anti-OX40) as well as other blocking 

antibodies to the inhibitory receptors on T-cells and NK cells (e.g. anti-LAG3, anti-KIR) 

(NCT01968109, NCT02061761, NCT01750580, NCT01714739, NCT01239134) [92]. 

Some of the studies are using combination of these drugs with PD-1/PD-L1 blocking 

antibodies, with the aim of reversal of T cell dysfunction or enhancement of T cell 

activation.

Targeting mechanisms of immunotherapy resistance: Several inhibitory mechanisms that 

play a role in immune evasion have been demonstrated to be associated with poor prognosis 

in ovarian cancer, including increased tumor-infiltrating regulatory T cells (Tregs) [10, 116, 

117] and tumor-associated macrophages with an M2-immunophenotype (CD163+/CD68+) 

[118, 119], and expression of the immune inhibitory ligands such as PD-L1, B7-H3, and B7-

H4, and of the inhibitory enzyme indoleamine 2,3-dioxygenase (IDO) by the tumor or 

stromal cells [120–123]. Drugs targeting these mechanisms are currently being explored 

against solid tumors, including ovarian cancer.

Depletion or inhibition of the immunosuppressive cells in the tumor microenvironment has 

the potential to enhance the efficacy of immunotherapies. In animal models, combination of 

CTLA-4 blockade and depletion of regulatory T cells with anti-CD25 antibody resulted in 

improved therapeutic efficacy of CTLA-4 blockade [124]. Strategies targeting CD25 in 

humans with daclizumab [125] or denileukin diftitox (Ontak) [126] have also been 

evaluated, though benefit so far has been demonstrated to be marginal, likely because CD25 
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is not a marker specific for regulatory T cells and is also expressed on activated T effector 

lymphocytes. An anti-CCR4 antibody has been demonstrated to selectively deplete 

regulatory T cells from humans [127, 128], and a phase I study of the anti CCR4 antibody 

mogamulizumab in patients with solid tumors is currently ongoing (NCT01929486). In 

separate studies, mogamulizumab is being explored in combination with PD-L1 blocking 

antibody MEDI4736 and CTLA-4 blocking antibody tremelimumab (NCT02301130) and 

anti-PD-1 antibody nivolumab (NCT02476123).

In support of the immunosuppressive role of the myeloid cells in tumor microenvironment, 

study by Zhu et al. recently used a mouse model of pancreatic ductal adenocarcinoma to 

demonstrate that depletion of MDSC with CSF1 receptor antibody synergizes with PD-1 and 

CTLA-4 blockade [129]. A CSF1R- targeting antibody emactuzumab (RG7155) has been 

evaluated in patients with advanced solid tumors. Treatment with antibody led to depletion 

of tumor associated macrophages, with partial metabolic responses and disease stabilization 

seen in 5/44 and 6/40 patients respectively [130]. A phase Ib study of emactuzumab in 

combination with anti-PD-L1 antibody MPDL3280A in solid tumors including ovarian 

cancer is ongoing (NCT02323191). PLX3397, a small molecule inhibitor of CSF1R and c-

kit is currently being evaluated in combination with paclitaxel (NCT01525602), as well as 

anti-PD-1 antibody pembrolizumab (NCT02452424) in patients with advanced solid tumors.

II. Immunotherapy for Endometrial Cancer

Endometrial cancer is the most common gynecologic malignancy in developed countries. 

While hysterectomy alone results in excellent cancer-related outcomes for patients with 

grade 1 and 2, low stage endometrioid tumors, the prognosis for patients with advanced 

stage disease and high risk histological subtypes remains poor. The normal human 

endometrium can be viewed as having the unique immunological roles of serving as a 

barrier to ascending infections from the female genital tract, and at the same time, harboring 

an immunosuppressive state that is crucial to gestation and fetal development. Despite this 

long recognized dual function our knowledge of the immune function of the endometrium 

and its alterations in malignant an premalignant states is remarkably incomplete [131].

Until recently, immunotherapy approaches used in the treatment of endometrial cancers have 

been largely limited to small series of patients with dendritic cell vaccines and related 

approaches [132–134]. Not surprisingly, the recent success of immune checkpoint inhibitors 

in melanoma and other cancers has led to the investigation of these agents in endometrial 

cancers. Of particular interest is the fact approximately 20–30% of endometrial cancers are 

characterized by high microsatellite instability (MSI-H) due to genetic or epigenetic defects 

in components of the DNA mismatch repair pathway. These defects results in a high somatic 

mutation load and accordingly increased number of neoantigens in these MSI-H tumors 

[135, 136]. In colon cancer, MSI-H tumors have been shown to be more immunogenic with 

increased infiltration of immune cells and increased immune checkpoint expression[137, 

138]. A recently published phase 2 study of pembrolizumab (an anti-PD-1 antibody) 

demonstrated object response rates of 40 and 71% in MSI-H colorectal and non-colorectal 

cohorts (which included 2 patients with endometrial cancer), respectively[139]. This same 

study found no responses in patients with microsatellite stable colorectal tumors (0 out of 
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18). Additionally, a third arm of the study was composed of non-colorectal MSI-H tumors, 

including two endometrial cancer cases. This group also showed improved objective 

response rate and progression free survival [139]. These results have generated great interest 

for clinical testing of immune checkpoint inhibitors in other MSI-H tumors including 

endometrial cancer.

Mutations in the replicative DNA polymerase epsilon (POLE) define another subset of 

highly immunogenic endometrial cancers characterized by ultra-high somatic mutations 

rates resulting from defects in the proof-reading function of this polymerase [136, 140, 141]. 

Approximately 5% of endometrial cancers are characterized by POLE mutations [142]. 

These tumor are predominantly endometrioid, grade III, and associated with peritumoral and 

tumor infiltrating lymphocytes [143]. POLE mutated tumors were reported to have the 

highest number of predicted neoantigens per tumor sample, followed by MSI-H tumors, and 

microsatellite stable tumors [136]. In addition, POLE and MSI-H tumors exhibited higher 

numbers of CD8+ TIL which were characterized by PD1 overexpression [136]. Taken 

together, these results provide a strong rationale for clinical investigations of checkpoint 

inhibitors and other immunotherapeutic approaches in endometrial cancers harboring the 

POLE ultramutated phenotype.

Other endometrial cancer immunotherapy targets currently under investigation include tissue 

factor (TF) [144], human trophoblast-cell-surface marker (Trop-2) [145], and survivin [146]. 

These targets are still in the preclinical or early clinical development with encouraging 

results.

III. Immunotherapy for cervical cancer and other HPV-related Gynecological Malignancies

Cervical cancer is unique among gynecologic malignant tumors because of its well-

established and causative risk factor, chronic HPV infection. HPV, a double-stranded 

circular DNA virus, is the most common sexually transmitted infection, and it is estimated to 

infect 75–80% of women at one time or another during their lives [147]. The vast majority 

of HPV infections are cleared by the immune system, but a small fraction become chronic 

and result in cervical dysplasia and carcinoma. Over 170 HPV subtypes have been 

identified. However, HPV-16 and HPV-18 are the genotypes most commonly associated with 

cervical cancer, accounting for approximately 70% of invasive cervical cancers [148].

The infectious etiology of cervical cancer has led to the development of effective 

preventative vaccines. Discussion of preventative vaccines is beyond the scope of this review 

and interested readers are referred to excellent recent reviews [149, 150]. Despite the 

excellent potential for prevention, advanced stage/metastatic disease remain a principal 

cause of gynecologic cancer mortality in much of the world where there is limited access to 

vaccination and screening. Thus improved approaches for treatment of advanced cervical 

cancer including immunotherapy remain high clinical priorities.

Cervical cancer directed immunotherapies can be divided into several subtypes including 

therapeutic vaccines, immune checkpoint inhibitors, and adoptive cell therapies. These are 

briefly highlighted below.

Zamarin and Jazaeri Page 9

Gynecol Oncol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A. Therapeutic vaccines—The success of preventative immunization has raised hopes 

for the successful development of a therapeutic vaccines. However, important differences 

between the two approach exist. To be effective prophylactic vaccines need only to block 

viral entry into cervical epithelial cells. In contrast, therapeutic vaccines must target 

integrated HPV virus that has become intracellular and is characterized by a non-lytic cycle. 

The main targets of therapeutic vaccine development have been HPV E6 and E7 proteins, 

since they are continuously expressed by infected cells and necessary maintenance of the 

malignant phenotype [151]. Targeting E6 and E7 has been accomplished using a number of 

different approaches including peptides, fusion proteins, and recombinant modified vaccinia 

and Listeria based vaccines [152, 153]. While a detailed discussion of these approaches is 

beyond the scope of this review, some of the main clinically relevant findings are briefly 

outlined below.

Vaccinia based vaccines: Modified vaccinia virus Ankara (MVA) is a double-stranded 

DNA virus derived from a Turkish smallpox vaccine strain. It is unable to replicate in most 

mammalian cells, has an excellent safety profile in humans, and can be genetically 

engineered to express foreign proteins [154]. MVA vaccines induce both humoral and 

cellular immune responses against the expressed foreign antigen. Vaccinia virus expressing 

the E6 and E7 proteins of HPV 16 and 18 has been developed and used for the treatment of 

HPV related intraepithelial neoplasia [155, 156]. In a study that included nearly 1200 

women, subjects were injected with 107 virus particles directly into the dysplastic area 

(cervix, urethra, vulva, or anus). Complete elimination of the lesion was observed in 89.3% 

of patients and 83% had undetectable HPV DNA after treatment [155].

Listeria based vaccines: Similar to the vaccinia approach, Listeria monocytogenes (Lm) 

based vaccines use a genetically modified non-pathogenic form of this bacterium to present 

specific proteins/antigens to the immune system. ADXS11-001, is a vaccine designed to 

induce an immune response against HPV E7 [157]. The efficacy of ADXS11-001 against 

HPV-related human cervical, oropharyngeal and anal cancers is under evaluation in several 

ongoing clinical trials [158].

Peptide and protein vaccines: Peptide based-vaccines targeting HPV E6 and E7 [159] and 

non-HPV tumor associated antigens [160] are undergoing clinical testing. An alternative 

approach is the use of a Mycobacterium bovis heat shock protein (HSP65) linked to the 

entire HPV16 E7 sequence [161, 162]. Studies on high grade cervical intraepithelial 

neoplasia (CIN) have shown some complete responses, but due to the single arm design, the 

results are confounded by the potential for spontaneous regression [161, 162]. Another 

investigation using HPV16 E6 and E7 synthetic long peptide vaccine reported a complete 

clinical response in 47% of patients with VIN III [163].

Other vaccine approaches: Investigations using a number of other vaccine approaches 

targeting cervical cancer have been reported. These include genetically modified CEA 

expressing yeast, “naked DNA” constructs encoding E6–E7 [164–166] and dendritic cell 

vaccines [167–169]. However, most of these are either in early clinical development or have 

yet to demonstrate significant clinical responses.
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B. Immune checkpoint inhibitors—Recent studies have provided support for a 

potential role for immune checkpoint inhibitors in the development and spread of cervical 

cancer. PDL1 expression was observed in 95% of CIN and 80% of squamous cell 

carcinomas, but undetectable in normal cervical epithelial cells [170]. Furthermore, lymph 

nodes harboring metastatic cervical cancer were found to be characterized by high levels of 

PDL1+ APCs and FOXP3+ regulatory T cells (Tregs) [171]. The PD-1: PD-L1 pathway has 

also been implicated in mediating immune-resistance in HPV-associated head and neck 

squamous cell cancers [172]. Hence, there is accumulating evidence suggesting a potential 

therapeutic benefit for checkpoint inhibitors in cervical and other HPV related cancers.

In cervical cancer, CTLA4 directed therapy with ipilimumab after chemoradiation is in 

Phase I clinical trial evaluation (NCT01711515) in patients with locally advanced or 

metastatic cervical cancer. In addition several other trials using agents targeting the PDL1-

PD1 pathway (including a phase II GOG/NRG sponsored study (NCT02257528)) are 

targeting patients with advanced or recurrent cervical and head and neck cancers 

(clinicaltrials.gov).

C. Adoptive T cell therapies—HPV-reactive T cells can be be isolated and expanded 

from patients’ peripheral blood and tumor tissue [173, 174]. Stevanovic and colleagues 

recently showed that adoptive cell therapy using tumor infiltrating lymphocytes (TIL) 

resulted in two partial and one complete responses among the nine patients with heavily 

treated recurrent metastatic cervical cancer included in this cases series [173]. Of note, HPV 

reactivity of TIL correlated positively with clinical response, although the small number of 

cases precludes any definitive conclusions.

Adoptive cell therapy is one of the most rapidly evolving fields among immunotherapies, 

and there is significant research aimed at designing antigen specific engineered T cell 

receptors (TCRs) and chimeric antigen receptors (CARs). An NCI sponsored trial of 

adoptive cell therapy using an E6 targeting TCR (NCT02280811) is currently accruing.

IV. Immunotherapy of other Gynecologic Cancers

There is a relative paucity of data on potential immunotherapeutic targets in rarer 

gynecologic cancers such as sarcomas, GTN, low grade serous ovarian cancer, and 

malignant sex-cord stromal ovarian tumors. However, the basic immunotherapy concepts of 

enhancing immune recognition and activation and blocking immune-inhibitory pathways are 

likely to apply to these tumors as well.

Conclusions

The advances in understanding of genetics, tumor microenvironment, and interaction of 

tumors with the immune system in gynecologic malignancies provide compelling evidence 

that these cancers are not immunologically inert and generate a strong rationale for 

immunotherapeutic approaches. While many of such approaches have demonstrated 

significant promise in different tumor types, including gynecologic cancers, the benefit 

afforded by these treatments has so far been limited to only a subset of patients. Such 

challenges in immunotherapy logically call for identification of targetable markers 

Zamarin and Jazaeri Page 11

Gynecol Oncol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



predicting better response and development of rational combinatorial approaches. Data from 

preclinical studies indicate that combinatorial modalities targeting different parts of the 

immune response (e.g. vaccines and immune checkpoint blockade) result in improved 

therapeutic efficacy and early clinical studies indeed indicate that such approaches can 

indeed be more effective. Combined immune checkpoint blockade such as CTLA-4/PD-1 

blockade has already demonstrated evidence of superior activity in metastatic melanoma and 

certainly warrants evaluation in gynecologic cancers. One must take these findings with a 

word of caution, however, as the side effect profile in patients with advanced gynecologic 

cancers may be different and might not justify the potential benefits. Furthermore, the 

significant toxicities reported from the combination regimens such combined CTLA-4/PD-1 

blockade would make it challenging to build further treatment combinations based on this 

platform [104]. To address these problems it is becoming increasingly evident that the 

efficacy of specific therapies and combinations will likely not be universal and that the 

choice of a treatment modality may need to be tailored to fit the needs of each individual 

patient. Through biomarker-guided clinical trials, we’ll be able to better understand the 

mechanisms of response and resistance to immunotherapy and develop treatment strategies 

that will extend the benefit from immunotherapy to a broader range of patients and tumor 

types.
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