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ABSTRACT
The effective treatment of adult and pediatric malignant glioma is a significant clinical challenge. In adults,
glioblastoma (GBM) accounts for the majority of malignant glioma diagnoses with a median survival of
14.6 mo. In children, malignant glioma accounts for 20% of primary CNS tumors with a median survival of
less than 1 y. Here, we discuss vaccine treatment for children diagnosed with malignant glioma, through
targeting EphA2, IL-13Ra2 and/or histone H3 K27M, while in adults, treatments with RINTEGA, Prophage
Series G-100 and dendritic cells are explored. We conclude by proposing new strategies that are built on
current vaccine technologies and improved upon with novel combinatorial approaches.
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Introduction

Malignant glioma

Primary brain tumors have an annual incidence of »5 in
100,000 adults.1-3 Within the United States, it is estimated that
there will be 24,790 newly diagnosed malignant brain cancer
patients in the year 2016.4 Glioblastoma (GBM) is the most
common primary malignant central nervous system (CNS)
tumor in adults, accounting for »54% of all malignant glioma
diagnoses.5,6 Despite the current standard of care regimen
including maximum surgical resection, radiotherapy (RT) and
chemotherapy, median overall survival (OS) remains at
14.6 mo with less than 26% of patients surviving at 2 y post-
diagnosis.7-9 In the absence of therapy, OS is limited to 30–
35 weeks.10-13 The poor outcome for GBM patients is largely
due to the molecular and cellular heterogeneity of the cancer,
which equips the tumor with multiple strategies for adapting to
and overcoming the effects of therapy.14

Pediatric high-grade glioma (HGG) is clinically and biologically
distinct from adult glioma. However, similar to adult GBM, these
tumors are a major contributor toward cancer-related morbidity
and mortality in infants, children, and adolescents, with long-term
survival rates of only 10–15%.15 Pediatric HGG is found through-
out the CNS, with those tumors localizing to the ventral pons of
the brainstem possessing a particularly devastating prognosis.
Commonly referred to as diffuse intrinsic pontine glioma (DIPG),
these highly malignant tumors primarily affect young children

with a peak incidence at 6 y of age and possess a highmortality rate
when compared among all childhood solid cancers. Children diag-
nosed with DIPG possess a median survival of 9 mo and virtually
all patients die within 2 y. Immunotherapy has been proposed as
an approach for treating both pediatric and adult glioma. Here, we
review targeted vaccination approaches for these tumors and dis-
cuss strategies for enhancing future therapeutic efficacy.

Immunosuppression

While the cellular composition and molecular profile of GBM
varies, the immunosuppressive microenvironment is a consistent
feature of these tumors. The accumulation of tumor-infiltrating
myeloid-derived suppressor cells 16,17 and regulatory T cells
(Treg; CD4CCD25CFoxP3C),18,19 the presence of IDO1,20,21

interleukin-10 (IL-10) and transforming growth factor-b (TGF-
b), collectively contribute to the suppression of normal tumor
surveillance.22-24 Additionally, PD-L1, a ligand highly expressed
by GBM-infiltrating macrophages 25 and GBM cells,26 interacts
with PD-1 on cytotoxic T cells, further contributing toward
immunoevasion of antitumor immunity. Similarly, CTLA-4, a
molecule constitutively expressed by Tregs, suppresses T cell
cytotoxic activity,27 and is another mediator of immunotoler-
ance.28,29 Beyond the immediate microenvironment of GBM, sys-
temic lymphopenia is the result of cytotoxic therapy and
coincident with a decreased expression of HLA-ABC, HLA-DR,
CD86, ICAM-1 and TNFRII on peripheral blood monocytes.30
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Decreased MHC expression on antigen-presenting cells (APCs)
in lymphopenic patients further limits GBM-specific T cell activ-
ity and function. Therefore, the immunosuppressive properties
of malignant glioma may well act synergistically with cytotoxic
therapies to compromise the patient’s immune-mediated antitu-
mor response, with these combined effects providing additional
impetus for testing numerous immune checkpoint blockade
strategies in ongoing clinical trials.31

Much less is known about immunosuppressive mechanisms
underlying malignant glioma in children, but this is an active
area of preclinical research, currently ongoing within and exter-
nal to our group. With advanced techniques that spare critical
brain function during tumor biopsy becoming more common,
in addition to the preclinical models that have recently been
developed, more information about the novel immunosuppres-
sive nature of pediatric HGG is likely to significantly increase
during the next several years.

Antigenic targets

Glioma expresses a number of antigenic targets, including
tumor-associated antigens (TAAs) that are not a direct result of
mutagenic events, such as interleukin-13 receptor a 2 (IL-
13Ra2). Additionally, they can also express tumor-specific anti-
gens (TSAs) that are the result of mutant protein expression,
such as epidermal growth factor receptor variant III (EGFR-
vIII). The select overexpression of wild-type epitopes, as well as
the unique expression of mutant epitopes, has provided the
solid foundation for vaccination approaches aimed at malig-
nant glioma treatment.32-51 Recent work has helped distinguish
pediatric HGG from adult GBM by characterizing unique epi-
genetic alterations that are exclusive to brain tumors in chil-
dren.35 One classic example is the Lys27Met (K27M) missense
mutation in genes encoding histone 3 isoforms, often found in
midline malignant glioma and in up to 80% of DIPG patients
36-38; providing a novel tumor-specific vaccination target.

Vaccines for treatment of adult malignant glioma

RINTEGA/Rindopepimut

Whereas GBM is known to express several mutant proteins,
EGFRvIII is the only TSA currently being investigated as a
vaccine target in patients diagnosed with GBM (Fig. 1).
EGFRvIII is the result of an in-frame deletion of 801
nucleotides (exons 2–7) of the wild-type gene. The mutation
manifests as a shortened protein containing a novel glycine
residue at the exon 1–8 in-frame junction.52 The mutant
epitope is presented in the extracellular space, with the
transmembrane and cytoplasmic portions of the altered
receptor left intact. The occurrence of EGFRvIII in GBM is
almost always in the context of corresponding mutant gene
amplification, resulting in a high level of expression.53 In a
preclinical GBM model, the ectopic expression of EGFRvIII
caused increased tumor growth, following subcutaneous and
intracranial engraftment of modified cells.54 Therapeutically,
mice bearing established tumors and treated with the com-
bination of rindopepimut, which consists of the EGFRvIII
junction sequence conjugated to keyhole limpet hemocyanin

(KLH) and complete Freund’s adjuvant, showed an average
survival increase of >120 d (p D 0.014): a 173% gain when
compared to vehicle-treated mice.55 Clinically, the presence
of EGFRvIII is independently prognostic for decreased
OS56-59 Accordingly, Phase I and II clinical trials treating
newly diagnosed GBM patients with RINTEGA, the trade-
name for rindopepimut, found an increase in median OS
when compared to historical controls and was well tolerated
(Table 1).60,61 ACTIII (n D 65), the largest of the Phase II
studies utilizing RINTEGA, demonstrated a PFS of 12.3 mo
and median OS of 24.6 mo in GBM patients.62 Recently,
ACTIV, the first Phase III study investigating the benefits
of RINTEGA in newly diagnosed GBM patients, was ended
in accordance with a recommendation by the trial’s inde-
pendent Data Safety and Monitoring Board which con-
cluded that the study would not reach statistical
significance for OS.63 Notably, 43% of vaccine-treated
patients showed evidence of a humoral response to EGFR-
vIII. Furthermore, at the time of tumor regrowth following
treatment, 82% of the recurrent GBM demonstrated loss of
EGFRvIII expression, suggesting that EGFRvIII-positive
GBM evades the antitumor-mediated effects of RINTEGA
by suppressing the expression of EGFRvIII.59

Prophage series G-100/HSPPC-96

Prophage series G-100 is a clinical vaccine utilizing heat shock
protein peptide complex 96 (HSPPC-96). The HSPPC-96 treat-
ment strategy relies on heat shock protein (HSP) family mem-
ber gp96 interactions with intracellular peptides in tumor and
tumor-associated APCs. In 1986, Srivastava et al., demon-
strated that tumor-derived gp96 facilitates intrinsic immunoge-
nicity as a proof-of-concept vaccine in a model of fibrosarcoma
64 leading to priming of CD8C 65 and CD4C T cells 66 in wild-
type Balb/c mice as a result of APC presentation of tumor-spe-
cific peptides by MHC I and II, respectively.67 In clinical trials
for treating GBM, HSPPC-96-peptide complex is isolated from
a patient’s tumor, and then used as an autologous vaccine in
treating the same patient.68 Based on the ability to induce a pre-
sumably multi-epitope specific immune response against a
patient’s resected tumor, HSPPC-96 vaccination is considered
to be a form of personalized medicine.69 A preclinical model
for HSPPC-96 vaccination in GBM does not yet exist, although
this is an active area of investigation by our group.

A notable limitation to the HSPPC-96 approach for treating
GBM is the requirement for a minimum of 7 g resected tumor
tissue. Therefore, »35–40% of all GBM patients do not qualify
for autologous HSPPC-96 vaccination due to insufficient
resected tumor (Table 2).70,71 Nonetheless, a Phase II study of
newly diagnosed GBM patients (n D 46), whose resected
tumors were of appropriate mass, received Prophage Series G-
100 and experienced PFS of 17.8 mo and median OS of
23.3 mo: both representing substantial improvements when
compared to historical control values.72 Moreover, a phase II
trial of recurrent GBM patients treated with HSPPC-96 yielded
results showing PFS of 19.1 weeks and median OS of 42.6 weeks
(n D 46). These values also represent substantial increases rela-
tive to historical controls (PFS of 9 weeks and an OS of
35 weeks). Interestingly, patients diagnosed with lymphopenia

e1196311-2 E. LADOMERSKY ET AL.



at the time of vaccination were associated with a poor survival
outcome.69

Dendritic cells (DCs)

DCs are immunological sentinels that respond to tissue injury,
inflammatory stimuli and/or changes of cellular homeostasis,
such as hypoxia, acidity or osmolarity. DCs internalize, process
and present antigens to T cells that facilitate epitope-specific
immune responses.73,74 DCs can be expanded in vitro, for

subsequent administration to cancer patients, using a variety of
methods that include the isolation of circulating monocytes or
bone-marrow-derived precursor cells that can differentiate, ex
vivo, and become DCs.75-79 Pre-clinically, DCs treated with
murine GL261 glioma lysates have been administered to
C57BL6 mice, at one week post-intracranial injection of GL261
cells, with DC administration resulting in a reduction of tumor
growth: 78.5 mm3 (control) to 39.9 mm3. An alternative
approach has utilized DCs treated with a tumor extract-cationic
liposome complex (synthetic small unilamellar vesicles), which

Figure 1. Glioblastoma (GBM) vaccines and their interaction with immunity. (1) Rindopepimut (RINTEGA), a synthetic peptide vaccine targeted at the EGFRvIII mutation,
and HSPPC-96 (Prophage), an autologous-derived complex consisting of heat shock proteins complexed with GBM antigens, are intradermally injected for uptake by resi-
dent dendritic cells (DC). (2) The vaccines are co-administered with adjuvants, such as GM-CSF and keyhole limpet hemocyanin (with respect to RINTEGA) for stimulating
DC uptake, antigen processing and upregulation of costimulatory molecules. (3) Peripheral blood mononuclear cells can be isolated from patient blood (not shown),
expanded in culture, primed with autologous patient-derived GBM tumor lysate, followed by intravenous transfer back into the patient, bypassing the need for dermal
injection of tumor antigens. Regardless of whether DCs are primed and loaded in culture, or a cutaneous route, DC drain to lymphoid tissue for subsequent T cell activa-
tion and expansion. (4) Similar to PBMC isolation for DC preparation, autologous T cells can also be isolated from this pool. These cells can be (re-)stimulated with plate-
bound anti-human CD3e, without anti-CD28, as to only (re-)engage the experience T cells that might respond to TAAs. This CD3e-targeted stimulation can be further
boosted by adding in cytokines that favor a proinflammatory/antitumor T cell subset such as IL-2, IL-12 and IL-15. (5) An alternative to simple autologous T cell isolation,
(re-)priming and expansion, is by engineering the T cell to be highly specific to a GBM-expressed antigen, in the form of a chimeric antigen receptor-expressing T cell.
This step provides a high level of stringency and targeting for all T cell adoptively transferred into the GBM patient. Ultimately, the goal of all vaccines is to eventually
cause GBM-specific T cells to infiltrate the tumor and elicit immune-mediated rejection.
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results in a dramatic decrease in tumor volume relative to the
control group of mice (p < 0.01).80 Similarly, in a rat glioma
model, vaccination with bone-marrow-derived DCs, pulsed
with acid-eluted peptides from syngeneic cells, results in an
increased median OS from 16 (control) to 35 d (p D 0.027).81

Clinically, newly diagnosed GBM patients (n D 12) treated
with autologous DCs and pulsed with acid-eluted tumor pepti-
des demonstrates a PFS of 15.5 mo and median OS of 23.4 mo.
In 4/12 patients, survival is >30 mo and tumors isolated at
recurrence show robust CD3 T cell infiltration when compared
to corresponding untreated tumor obtained at the time of
initial surgery. In contrast, 4 of 12 patients that succumbed
to tumor within 12 mo post-treatment initiation show
decreased T cell infiltration of recurrent tumor, suggesting that
T cell exclusion was an important determinant of therapeutic

outcome.82 Another Phase I trial studying newly diagnosed
GBM patients (n D 16) treated with DCs pulsed with HER2/
neu, TRP-2, AIM-2, MAGE1 and IL13Ra2 antigens (ICT-107;
Immunocellular Therapeutics Ltd.) yielded results showing PFS
of 16.9 mo and median OS of 38.4 mo.83 In a recent random-
ized Phase II study of ICT-107 treatment in newly diagnosed
GBM patients (n D 124), median PFS is 11.2 mo and median
OS is 18.3 mo when compared to a PFS and OS of 9 mo (p D
0.01) and 16.7 mo, respectively, in patients treated with control
dendritic cells.84 A Phase III study for ICT-107 is currently
recruiting patients (NCT02546102). In yet another Phase II
trial, GBM patients (n D 11) treated with radiation and temo-
zolomide (TMZ), followed by vaccination with autologous
tumor lysate-loaded DCs primed with PGE2 and TNF-a had a
PFS of 9.5 mo and median OS of 28 mo. The frequency of

Table 1. Clinical efficacy of vaccines for patients with newly diagnosed adult GBM or pediatric DIPG. �Trial closed ahead of stated objectives.

Newly diagnosed adult GBM

Therapeutic mediator(s) Percent eligible Trial (Phase) n PFS (weeks) OS (weeks) References

Current standard (resection, radiation, temodar) 29.6 62.6
RINTEGA (Rindopepimut) 27–67 ACTII (II) 22 65.6 104.6 61

ACTIII (II) 65 52.7 105.4 NCT00458601
ACTIVATE (II) 18 60.9 105.4 NCT00643097
ACTIV (III) Control Arm 700 91.7 119

Rintega Arm 88.6
Prophage series G-100 (HSPPC-96) 60–65 Prophage series G-100 (II) 46 76.3 99.9 NCT00905060
DCs 60–65 Tumor lysate (I) 12 66.4 100.2 82

100 RT and TMZ with DCs (PGE2 and TNFa) (I) 11 40.7 120 85

60–65 ICT-107 (I) 16 72.4 164.6 83

ICT-107 (II) Placebo 43 9 16.7 NCT01280552
ICT-107 81 11.2 18.3

T cells 100 CAR T cell (I) Ongoing Ongoing NCT01454596
Recurrent adult GBM

Current standard (currently no effective therapy) 9 35
RINTEGA (Rindopepimut) 27–67 ReACT Ongoing Ongoing NCT01498328
Prophage series G-100 60–65 Phase I 12 47 120

Phase II 41 19.1 42.6 69

Pediatric malignant gliomas
Current standard (radiation) 13–26 30.8–60.8
Peptide based Phase I 14 55.2 86

DC Phase I 33 19 59 88

Autologous lysate pulsed DCs (I) 3 144.7 87

HSPPC-96 Phase I Ongoing Ongoing NCT02722512

Table 2. Factors that limit patient selection for vaccine therapy.

Therapeutic mediators Vaccine Limiting factors

RINTEGA (Rindopepimut) Synthetic peptide � Requires EGFRvIII expression
� Expressed in 27–67% of GBMs
� Leads to EGFRvIII negative recurrent GBM121

Prophage series G-100 (HSPPC-96) Tumor lysate isolation � Requires 7 g of patient-resected tumor
� Not all patients are surgical candidates
� Not all GBM tumors are large enough for vaccine production120

DCs Tumor-lysate pulsed DCs � Patient must be a surgical candidate
� Normal bone marrow function
� 2 weeks without radiation therapy82

Lysate-pulsed DCs (PGE2 and TNFa) � Patient must be a surgical candidate
� Yield must be �8 £ 107 tumor cells

� Adequate hepatic and renal function85

Synthetic peptide-pulsed DCs � Gross total resection >95%
� Presence of at least one of six antigens83

T Cells CAR T cells � Requires expression of novel antigen122

� In this case EGFRvIII
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CD4C T cells in post-vaccination tumor tissue was significantly
increased (p D 0.004) relative to pre-vaccination, whereas the
frequency of CD8C T cells was not significantly changed.85

Notably, a number of Phase II DC vaccine trials are ongoing,
including studies whereby DCs are treated with: autogenic gli-
oma stem-like cells (A2B5C) (NCT01567202), CMV RNA plus
tetanus-diptheria toxoid (NCT02465268) and autologous tumor
lysate plus resiquimod or adjuvant poly-ICLC (NCT01204684).

Vaccines for treatment of pediatric malignant glioma

Relative to vaccine attempts in the setting of adult GBM, analo-
gous pursuits have been modest with respect to treating children
diagnosed with malignant glioma. In a Phase I trial of newly diag-
nosed DIPG (n D 26), a peptide vaccine against the glioma-
associated antigens, EphA2, IL-13Ra2 and survivin were targeted.
In addition to safety aspects of the study, which were satisfactory
in avoiding grade III or higher systemic toxicities, patients had an
OS of 55.2 weeks, representing a substantial increase over histori-
cal control levels of 39–43 weeks. Inclusion in this trial required
patients with HLA-A2-positive status and minimal or no dexa-
methasone usage at the time of enrollment.86 In a separate Phase I
trial of newly diagnosed patients with HGG between the ages of 1
and 18, autologous tumor lysate-pulsed DCs were generated for 3/
9 enrolled patients with 2 of the DC-treated individuals still alive
at 40 and 51 mo post-surgery, respectively.87 Another Phase I trial
using DCs treated with tumor lysate in 33 malignant glioma
patients showed an average PFS of 19 weeks and OS of 59 weeks,
with 7 patients surviving at the time of publication.88 A Phase I
study utilizing the HSPPC-96 vaccine for treatment of pediatric
malignant glioma recently opened at the Ann and Robert H. Lurie
Children’s Hospital of Chicago (NCT02722512). Also notable is
an effort to leverage the presence of H3K27M mutations found in
the high percentage of midline malignant glioma cases in the soon
to open H3K27M peptide vaccine trial (S. Mueller, personal com-
munication). Although no Phase II studies have reported results
using vaccines in pediatric patients, preliminary results that
address safety and tolerability indicate a high level of feasibility in
the pediatric cohort with HGG.

Improving vaccine efficacy

Combinatorial approaches

Whereas vaccines aim to induce tumor-specific immune
responses, effective immunotherapy against cancer requires the
co-treatment against tumor-induced immune evasion. In
patients diagnosed with GBM, as well as other cancers, sponta-
neous T cell infiltration has been associated with improved sur-
vival.89-94 However, the basis for this relationship has been
difficult to describe comprehensively. One possibility is that the
necrotic release of DNA from tumor cells leads to activation of
the stimulator of interferon genes (STING) pathway, providing
a mechanism for T cell recruitment to tumor.95 However, in
malignancies with potent and active immunoevasive mecha-
nisms, T cell infiltration, alone, is unlikely to change patient
outcome.96 New strategies that engage STING, while simulta-
neously inhibiting a tumor’s immunosuppressive activity, may
help to recruit vaccine-conditioned cytotoxic T cells from the

periphery to CNS, thereby promoting more effective tumor
rejection that results in greater patient survival.

Future clinical studies should be designed to provide
patients with multiple therapies to address the immunosup-
pressive phenotype present in adult GBM and pediatric HGG,
while also aiming to improve T cell infiltration and T-cell-
mediated killing of tumor cells. Although the optimal timing
for administration of each treatment type (RT, chemotherapy,
immunotherapy, vaccination, etc.) still requires further investi-
gation. As shown in Fig. 2, it may be beneficial to treat malig-
nant glioma with radio-/chemotherapy to (1) release TSA, (2)
increase inflammatory cues responsible for immune cell
recruitment and (3) facilitate the signals required for APC
uptake and maturation. Therefore, vaccination in combination
with standard of care therapies may promote a more effective
antitumor T cell response with the benefit of improved survival.

Adoptive T cell therapy

An additional immunotherapeutic approach that negates the
problems associated with suboptimal T cell activation in
patients, is the ex vivo preparation of activated autologous T
cells. Similarly, T cells can be engineered to express chimeric
antigen receptors (CAR) specific to tumor antigens, while co-
expressing genes that confer resistance to tumor-induced
immune inhibitory signals.97 One such approach involves the
fusion of intracellular g or z subunits of the immunoglobulin
or T-cell receptor (TCR) to the variable domain of the high-
affinity monoclonal antibody, specific to the TAA.98 This
strategy facilitates T cell activation through interaction of the
chimeric TCR with the antigen on the surface of the tumor cell,
overcoming the T cell’s inability to recognize GBM cells with
insufficient levels of MHC I/II for effective antigen presenta-
tion.99 Given the ability to rapidly generate CAR T cells in »2
weeks, preparation of adequate GBM-specific T cell levels can
be achieved within reasonable time for therapeutic utiliza-
tion.100 Currently, an ongoing clinical trial evaluating the safety
and PFS in newly diagnosed GBM patients treated with CAR T
cells engineered to target EGFRvIII has been announced but is
not yet recruiting patients. (NCT02664363)

A novel strategy for generating high-affinity tumor-reactive
T cells against autologous patient malignancy utilizes human-
ized mice. These mice gain their name by combining severely
immunodeficient NOD-SCID-IL-2Rgnull (NSG) hosts, modi-
fied for constitutive expression of human stem cell factor
(SCF), granulocyte-macrophage colony stimulating factor
(GM-CSF) and interleukin-3 (IL-3) (SGM3) transgenes, with
engrafted human fetal thymus and fetal liver-derived hemato-
poietic stem cells (BLT).101-103 These mice support the reconsti-
tution of a human immune system 104 and can be used as hosts
for patient tumor and immune system engraftment, followed
by immune checkpoint blockade (anti-human CTLA-4, PD-(L)
1 and/or IDO1 inhibition) to activate and expand a tumor-spe-
cific T cell response. Although current studies are aimed at
optimizing mouse models for human cancers, in principle,
memory lymphocytes could be isolated from the systemic
immune cell repertoire of these mice, expanded in vitro, and
adoptively transferred back into the patient for therapeutic ben-
efit. Although it is possible that select T cells may also respond
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to mouse antigens, the predicted multiclonality of the T cell
response to human antigens presented by human MHC is
expected to supersede those T cells not directed toward relevant
targets. Also, it is expected that mouse antigens will not be
expressed in human patients, further diminishing this concern.
However, these considerations will be necessary to address,
should a humanized mouse bearing autologous immune
system and tumor be utilized in this regard. This highly novel

approach would also be considered an adaptation to, ‘personal-
ized medicine’.

Conclusion

Early vaccine-based clinical trials have demonstrated promising
results, though questions and concerns remain with respect to
the durability of therapeutic efficacy and ultimate benefit from

Figure 2. Evolution of brain tumor immunity. (1) The naive (newly diagnosed) brain tumor flourishes in the immunosuppressive environment of the central nervous sys-
tem and is relatively non-immunogenic. (2) Standard of care for patients with brain tumors causes cancer cell death and the subsequent release of antigens. (3) The
inflammation caused by cancer cell death triggers the recruitment of dendritic cells to the brain tumor microenvironment. (4) CD8a dendritic cells (DC) engulf the can-
cer-associated antigens and utilize the cross-presentation pathway to facilitate the loading of those epitopes onto major histocompatibility complex (MHC) I molecules.
The CD8a-loaded DC subsequently emigrate out of the tumor microenvironment while simultaneously increasing costimulatory molecules that facilitate the future pro-
ductive interaction(s) of naive CD8C (and CD4C T cells through MHCII) T cells. (5) After immigration into the lymph node, DC-mediated T cell priming and expansion
occurs through MHC/antigen (Ag) expressed by DC and a high affinity T-cell receptor (TCR) expressed by T cells. (6) T cells that are now activated and specific to tumor-
associated antigens then emigrate from the lymphoid tissue, back into the circulation. (7) To successfully penetrate the brain tumor, T cells must first come into contact
with selectins and integrins (not shown) that facilitate the attachment to inflamed endothelium. Upon successful adhesion, T cells extravasate through the endothelial
basement membrane, followed by the perivascular space and eventually through the parenchymal basement membrane whereby they can now come into direct contact
with the CNS-resident tumor cells. (8) Productive T cell-mediated GBM rejection occurs when lymphocytes are reactivated by (re-)stimulation of T cell-expressed TCR with
MHC/Ag expressed by brain tumor cells. This interaction facilitates the robust production and release of proinflammatory, interferon-gamma (IFNg), in addition to the
release of the pore forming complex, perforin, which facilitates the passive transfection of granzyme molecules (serine proteases) that cleave tumor-expressing procas-
pases into active molecules that trigger apoptosis.
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such cancer treatments. Recent data reporting disappointing
results from the Phase III study of RINTEGA highlights the
necessity for cautious optimism of early phase clinical trials
that are limited to single arm approaches with small numbers
of enrolled patients. This design has several restrictions that
include a possible placebo effect, as well as the evolving stan-
dard of care that may incrementally increase in efficacy over
time.105

Conceptually, an attractive antigenic target for GBM treat-
ment is the human cytomegalovirus (CMV), first reported to
be expressed by GBM in 2002.48 Since that initial study, a grow-
ing body of literature implicating CMV as a factor present in
GBM has grown substantially.49-51 Notably, a Phase I clinical
assessment of CMV-specific adoptive T cell therapy demon-
strated PFS during the study period (175, 462, 1010, and
1447 d) in 4/10 GBM patients.106 Additionally, a Phase I ran-
domized trial in newly diagnosed GBM (n D 12) whereby the
vaccine site was pre-conditioned with tetanus/diphtheria (Td)
toxoid and then vaccinated with CMV pp65 RNA-pulsed DCs,
showed a median PFS of 10.8 mo and a median OS of 18.5 mo;
similar to patients treated with standard of care in this study.107

Similar to targeting EGFRvIII, independent groups have
developed vaccines against mutant isocitrate dehydrogenase 1
(mIDH1).108,109 This mutation occurs in 12% of total GBM
patients, but is expressed prolifically in low-grade glioma (II
and III). Interestingly, the presence of mIDH1 expression is
associated with a favorable prognosis of GBM patients with a
median OS of 3.8 y when compared to 1.1 y for GBM patients
presenting with wild-type IDH1 (p < 0.001).110 Given that
mIDH1 expression is associated with extended survival in
GBM patients, the rationale for targeting this mutation and
potentially selecting for a more aggressive GBM phenotype
should be thoroughly considered.

In addition to targeting mutant peptide sequences, it is
important to consider that cancer cells possess altered cellular
surfaces with distinct carbohydrate modifications of cell mem-
brane components.111-113 One glycosylation pattern, O-linked
N-acetylgalactosamine (Tn antigen), has been shown to be
selectively expressed in GBM,114 breast cancer,115 metastatic
melanoma,116 as well as stomach, colon and pancreatic can-
cer.117 Brooks et al. demonstrated that targeting this carbohy-
drate moiety can result in striking tumor specificity.118 Further
study of unique GBM posttranslational modifications that
occur on the surface of the tumor cells may well reveal addi-
tional targets with vaccination potential.

There are some aspects of vaccine therapy which are unique
to pediatric HGG. While adult GBM most often develops in the
cerebral hemispheres, lending to neurosurgeons’ ability to
remove a significant amount of tumor en bloc for vaccine
development, pediatric malignant glioma is often unresectable
and only small amounts of tumor are possible to obtain during
biopsy. The currently open HSPPC-96 vaccine trial will help to
clarify the minimum of amount of tumor necessary for suitable
vaccine development. Efforts directed against known TAAs
that are available ‘off-the-shelf’ are attractive for pediatric
patients. However, identification of appropriate antigens is still
a challenge given the molecularly heterogeneity of histologically
similar pediatric HGG and the relatively low mutational rate,
when compared to adult GBM.

As vaccination therapies for patients with malignant glioma
continue to be tested and refined, discussion(s) of how best to
integrate standard-of-care therapy and other novel approaches
will likely dominate in the future. The efficacy of combinatorial
multi-modal treatments that include vaccine-induced immune
responses will be influenced, in-part, by the timing of each
administered modality. For instance, concurrent cytotoxic and
vaccine regimens may substantially boost overall immune-
mediated efficacy and OS, but at the cost of inducing significant
and long-lasting adverse side effects in patients. Thus, one of
the most significant hurdles going forward is how best to mini-
mize immunotherapeutic-induced toxicity, without disabling
therapeutic efficacy and immunological responsiveness.
Toward this goal, increasing the study of humanized immuno-
competent mice bearing HLA-matched intracranial adult and
pediatric malignant glioma may prove especially informative.
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