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The ability to site-specifically incorporate noncanonical amino acids (ncAAs) with novel
structures into proteins in living cells affords a powerful tool to investigate and manipulate
protein structure and function. More than 200 ncAAs with diverse biological, chemical, and
physical properties have been genetically encoded in response to nonsense or frameshift
codons in both prokaryotic and eukaryotic organisms with high fidelity and efficiency. In this
review, recent advances in the technology and its application to problems in protein bio-
chemistry, cellular biology, and medicine are highlighted.

With the rare exceptions of pyrrolysine and
selenocysteine, the genetic codes of all

known organisms consist of the same 20 canon-
ical amino acids. However, additional function-
al groups, including organic and inorganic
cofactors and posttranslational modifications
(PTMs), are required for many of the functions
performed by proteins. This observation sug-
gests that an expanded genetic code might allow
one to either rationally design or evolve proteins
with new or enhanced physical, chemical, and
biological properties. To this end, methodology
has been developed to exploit the endogenous
protein biosynthetic machinery to site-specif-
ically incorporate noncanonical amino acids
(ncAAs) into proteins in living organisms with
high translational fidelity and efficiency (up to
5 g/L on a commercial scale). The desired ncAA
is encoded by a nonsense or frameshift codon
using an orthogonal aminoacyl-tRNA synthe-

tase (aaRS)/transfer RNA (tRNA) pair that is
specific for the ncAA but does not cross-react
with endogenous host aaRSs, tRNAs, or amino
acids (Fig. 1A) (Wang et al. 2006b; Liu and
Schultz 2010). Using this system, over 200 struc-
turally distinct ncAAs have been genetically
encoded in both prokaryotic and eukaryotic
organisms. These ncAAs include spectroscopic
probes, metal ion chelators, photo-affinity
probes and photocaged amino acids, posttrans-
lational modifications, and amino acids with
orthogonal chemical activity for the site-specific
modification of proteins (Wang et al. 2006b; Liu
and Schultz 2010; Wan et al. 2014). They have
been used as probes of protein structure and
function, both in vitro and in vivo, and in the
rational design of proteins with new orenhanced
biological or pharmacological activities. Most
recently, in vitro evolution experiments have be-
gun to show that additional amino acid building
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blocks can lead to novel protein structures and
activities. Herein, we review a number of recent
advances in the field, both in the development
and application of this technology.

GENETICALLY ENCODING ncAAs

Evolved Methanococcus jannaschii tyrosyl aaRS/
tRNA pairs and Methanosarcina barkeri and
mazei pyrrolysyl aaRS/tRNA pairs have enabled
the incorporation of a large number of ncAAs
into proteins in Escherichia coli (Fig. 1B) (Wang
et al. 2006b; Liu and Schultz 2010; Wan et al.
2014). To further expand the number and na-
ture of genetically encoded ncAAs, aaRS/tRNA
pairs from other archeal and eukaryotic organ-
isms have been recently developed, includ-
ing Pyrococcus horikoshii lysyl aaRS/tRNA,
P. horikoshii glutamyl aaRS/tRNA, Saccharomy-
ces cerevisiae tryptophanyl aaRS/tRNA, hetero-
geneous leucyl Mt-tRNA/Hs-aaRS, and proly
Af-tRNA/Ph-aaRS pairs (Anderson and Schultz
2003; Santoro et al. 2003; Anderson et al. 2004;
Chatterjee et al. 2012, 2013d; Xiao et al. 2014).
The structurally distinct active sites of these
aaRSs allow one to encode chemically diverse

amino acid side chains; however, the efficiencies
with which the ncAAs can be incorporated at a
given site in the proteome vary—ranging from
milligrams to 5þ g/L of mutant protein, most
likely because of the differing degrees to which
the aaRS/tRNA pair is optimized (of course, for
any given protein, efficiency is also affected by
the mutation site). Platform vectors, for exam-
ple, pEvol and pUltra, have been established that
allow high-level protein expression of a desired
mutant protein in bacteria, and large-scale
fermentation (.10,000 L) has yielded mutant
proteins on a 5 g/L scale (Young et al. 2010;
Chatterjee et al. 2013b). A current focus is the
efficient incorporation of multiple identical or
distinct ncAAs into the same protein, or the syn-
thesis of an entirely “unnatural” biopolymer.
One hypothesis is that the presence of endoge-
nous release factors leads to low overall incorpo-
ration efficiency for multiple ncAAs encoded
by nonsense codons. Huang et al. (2010) first
showed that up to three ncAAs could be genet-
ically incorporated into the same protein by
overexpression of the carboxy-terminal domain
of ribosomal protein L11 to reduce release factor
1 (RF1)-mediated termination of protein trans-
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Figure 1. Expanding the genetic code. (A) The site-specific incorporation of noncanonical amino acids (ncAAs) using an
orthogonal aminoacyl-tRNA synthetase (aaRS)/transfer RNA (tRNA) pair. (B) ncAAs described in this review. mRNA,
Messenger RNA.
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lation. Using an RF1 knockout strain, Johnson
et al. (2011) showed that up to 10 p-acetylphenyl-
alanines (pAcF; Fig. 1B1) could be incorporated
into the same protein, albeit in relatively low yield
(Fig. 2A). Knockout of RF1 improves ncAA in-
corporation in response to the amber codon;
however, impaired growth rates resulting from
RF1 deletion may limit the utility of this strain.

Recently, multiplex automated genome en-
gineering (MAGE) and conjugative assembly
genome engineering (CAGE) were used to re-
place all of the TAG stop codons in the E. coli
MG1655 genome with the TAA ochre nonsense
codon (Fig. 2A) (Lajoie et al. 2013); subse-
quently, RF1 was knocked out to generate
E. coli strain C321.DA. In the resulting genomi-
cally recoded organism (C321.DA), UAG was
reassigned from a nonsense codon to a sense
codon specific for an ncAA in the presence of
the cognate orthogonal tRNA/aaRS pair. As a
result of genome recoding, RF1 knockout is no
longer deleterious and robust ncAA incorpora-
tion was achieved in response to the amber co-
don (Lajoie et al. 2013). In addition, the sup-
pression efficiency of the four-base codon
UAGA, which starts with UAG, was significantly
increased in the C321.DA strain (Fig. 2B) (Chat-
terjee et al. 2014). This genomically recoded
strain was also used to generate a library of chro-
mosomally integrated aaRSs for the selection of
more efficient aaRS variants. The evolved aaRSs
showed increased ncAA-containing protein
production, enabling genetic incorporation of
30 ncAAs into a single protein (Amiram et al.
2015). An alternative approach to minimize the
effects of RF1-mediated translational termina-
tion is the generation of ribosome-mRNA pairs
that function in the presence of, but are orthog-
onal to, the endogenous translational machin-
ery. The use of orthogonal ribosome–mRNA
pairs in E. coli significantly increases the sup-
pression efficiency of ncAA incorporation, and
facilitates the use of frameshift codons and in-
corporation of multiple ncAAs into proteins
(Wang et al. 2007; Neumann et al. 2010a,b).

In mammalian cells, the pyrrolysyl pair from
archaea, and the tyrosyl and leucyl pairs from
E. coli have been widely used to genetically en-
code novel amino acids, including amino acids

with bio-orthogonal chemical reactivities (e.g.,
azido, alkynyl, and tetrazinyl), fluorescent
probes, PTMs, and photocaged amino acids
(Fig. 1B) (Wang et al. 2006b; Liu and Schultz
2010; Wan et al. 2014). These orthogonal tRNA/
aaRS pairs are either evolved in yeast (for
E. coli–derived pairs) or bacteria (for archaea-
derived pairs) and then transferred to vectors
with appropriate promoters for transient ex-
pression in the host cell, typically, HEK293 or
CHO cells. Yields of transiently expressed pro-
teins on the order of 5–20 mg/L are common,
and yields up to 1 g/L have been reported for
stable cell lines expressing mutant full-length
antibodies (Tian et al. 2014). However, the ap-
plication of this technology in mammalian cells
is limited by the inherent drawbacks of transient
transfection, including the relatively low trans-
fection efficiency of certain cell types (e.g., neu-
rons and embryonic stem cells) and the toxicity
of transfection reagents. To overcome these chal-
lenges, an enhanced suppression system deliv-
ered by a hybrid baculovirus has been reported
(Chatterjee et al. 2013c). This baculovirus-based
system significantly increases the incorporation
efficiency of ncAA into proteins in mammalian
cells and allows ncAAs to be encoded in embry-
onic stem cells, rat cardiac fibroblasts, and neu-
rons. This enhanced suppression system has
been used to incorporate up to three identical
ncAAs or two distinct ncAAs into a single pro-
tein in good yield (Xiao et al. 2013). For exam-
ple, in a full-length antibody, pAcF (Fig. 1B1)
was incorporated in response to a TAG codon in
the heavy chain and an azidolysine analog (AzK;
Fig. 1B34) was incorporated in response to a
TAA codon in the light chain, allowing the mu-
tant antibody to be selectively conjugated to a
drug and a fluorophore at these two distinct sites
(Xiao et al. 2013). Recently, a Methanosarcina
mazei pyrrolysyl aaRS/tRNA pair was stably in-
tegrated into the mammalian genome using the
PiggyBac transposon system, which enables ef-
ficient incorporation of ncAAs into target pro-
teins in diverse mammalian cells. The utility of
this system was shown by genetically incorpo-
rating six 1-N-acetyllysines (AcK; Fig. 1B59)
into histone H3 (Elsasser et al. 2016). Method-
ological advances have also allowed the genetic
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incorporation of ncAAs into proteins in various
multicellular organisms, including Caenorhab-
ditis elegans, Drosophila melanogaster, Arabidop-
sis thaliana, and Streptomyces venezuelae (Greiss
and Chin 2011; Bianco et al. 2012; Li et al. 2013;
Chin 2014; He et al. 2015). Most recently, we
have been able to genetically encode ncAAs in
Bacillus cereus, allowing the synthesis of riboso-
mally derived natural products from unnatural
building blocks (Luo et al. 2016).

PROBES OF PROTEIN STRUCTURE

The site-specific incorporation of ncAAs with
unique spectroscopic properties provides a
powerful tool to explore protein structure
and dynamics. 13C/15N-labeled p-methoxyphe-
nylalanine (Fig. 1B2) and p-tifluoromethoxy-
phenylalanine (Fig. 1B13) have been genetically
incorporated into human fatty acid synthetase
to probe conformational changes that occur
on ligand binding by nuclear magnetic reso-
nance (NMR) (Cellitti et al. 2008). Similarly,
19F-labeled p-trifluoroethyl-phenylalanine (Fig.
1B14) was incorporated into nitroreductase
and histidinol dehydrogenase to probe struc-
tural changes that occur on substrate binding
(Jackson et al. 2007; Li et al. 2010). Further-
more, the site-specific incorporation of the
metal-binding ncAA, 2-amino-3-(8-hydroxy-
quinolin-3-yl)propanoic acid (Fig. 1B21), into
membrane proteins (CXCR1 and viroporin p7)
allowed long-range paramagnetic relaxation
measurements of intra- and intermolecular dis-
tance (Park et al. 2014). In related work, to fa-
cilitate electron paramagnetic resonance (EPR)
studies of proteins, a ketoxime-linked spin label
side chain has been site-specifically conjugated
to proteins through a reactive chemical handle
(Fleissner et al. 2009). However, direct incorpo-
ration of these probes is advantageous in many
cases and, thus, a spin-labeled ncAA (Fig. 1B51)
was recently incorporated into green fluorescent
protein (GFP) and thioredoxin in E. coli
(Schmidt et al. 2014).

Infrared (IR) spectroscopy is a valuable
technique that can be used to characterize pro-
tein structure, dynamics, and microenviron-
ment on a range of timescales. To this end,

ncAAs with unique IR signatures, including
p-cyano-phenylalanine (Fig. 1B15), p-azido-
phenylalanine (pAzF, Fig. 1B4), p-nitrophe-
nylalanine (pNO2F; Fig. 1B16), and 3-nitro-
tyrosine (3-NO2Y, Fig. 1B19) have been effi-
ciently incorporated into proteins (Schultz et
al. 2006; Taskent-Sezgin et al. 2009; Ye et al.
2009; Smith et al. 2011). To study protein dy-
namics and microenvironments, photocaged
2D-labeled o-nitrobenzyl-tyrosine (oNBTyr,
Fig. 1B46) enabled the site-specific deuteration
of Tyr100 within dihydrofolate reductase and
revealed that Tyr100 stabilizes the positive
charge of the nicotinamide moiety in the tran-
sition state (TS) via electrostatic interactions
(Groff et al. 2009). Photocaged lysine, cysteine,
and serine (Fig. 1B46–50) have all been genet-
ically incorporated into proteins, and can be
used to site-specifically deuterium-label these
amino acids as well (Liu and Schultz 2010; Davis
and Chin 2012).

Fluorescent proteins (FPs) have been widely
used to study protein expression, localization,
and conformation in living cells. By substituting
core residues in the chromophores of various
FPs with ncAAs, FP variants with distinct spec-
tral properties have been generated, including
FP sensors for monitoring pH, reducing and
oxidizing environments, and heavy metals
(Wang et al. 2003; Ai 2012; Chatterjee et al.
2013d; Niu and Guo 2013; Xiao et al. 2014).
For example, a fluorogenic biosensor sensitive
to oxidation was generated by substitution of
Tyr66 in GFP with p-borono-phenylalanine
(Fig. 1B11) (Wang et al. 2012; Chen et al.
2013). In the presence of oxidants, the mutant
chromophore is converted to the wild-type
chromophore with a change in fluorescence
quantum yield. However, fusion of an FP can
significantly perturb the structure and function
of a target protein, and is largely limited to the
amino and carboxyl termini (Zheng et al.
2014). The ability to site-specifically incorpo-
rate relatively small fluorescent amino acids at
defined sites within proteins would further in-
crease the utility of fluorescence spectroscopy to
study protein structure in vitro and in living
cells. Several fluorescent ncAAs have been ge-
netically incorporated into proteins in E. coli,

H. Xiao and P.G. Schultz
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including a hydroxycoumarin-derived amino
acid (7HC, Fig. 1B42) and acridon-2-ylalanine
(Fig. 1B45) (Wang et al. 2006a; Speight et al.
2013). 7HC was inserted into bacterial tubulin
FtsZ and used to track FtsZ localization during
cell division (Charbon et al. 2011). This fluoro-
phore was also substituted for Trp 564 in acti-
vator of transcription 3 to monitor the phos-
phorylation state of Tyr705 (Lacey et al. 2011).
To determine protein localization in yeast and
mammalian cells, 2-amino-3-(5-(dimethyla-
mino)naphthalene-1-sulfonamido) propanoic
acid (Fig. 1B43) and 3-(6-acetylnaphthalen-
2-ylamino)-2-aminopropanoic acid (Anap;
Fig. 1B44) have been used by a number of
groups (Summerer et al. 2006; Lee et al. 2009;
Chatterjee et al. 2013a). Anap was successfully
used to detect conformational changes on li-
gand binding to glutamine-binding protein
(QBP) and dynamic internal pore opening in
voltage-gated potassium channels (KV) in oo-
cytes (Fig. 3B,C) (Lee et al. 2009; Kalstrup and
Blunck 2013). These latter experiments under-
score the ability to probe local changes in struc-
ture or environment by the site-specific inser-
tion of smaller fluorophores. An important
advance in this regard will be the genetic encod-

ing of probes with improved photostability and
longer wavelengths.

PROBING PROTEIN FUNCTION WITH ncAAs

Genetically encoded ncAAs can also be used as
mechanistic probes. For example, ncAAs have
been used in mechanistic studies of class I ribo-
nucleotide reductases (Cotruvo and Stubbe
2011). The site-specific incorporation of a re-
dox active probe, 3-aminotyrosine (Fig. 1B18),
in place of transiently oxidized Tyr356, Tyr730,
and Tyr731 residues was used to probe the role
of these amino acids in long-range proton cou-
pled electron transfer (PCET) (Seyedsayamdost
et al. 2007; Minnihan et al. 2011a). To measure
perturbations to the pKas of redox-active tyro-
sines within the PCET pathway, 3-NO2Y (Fig.
1B19), was substituted for Tyr122, Tyr730, and
Tyr731 (Yokoyama et al. 2010). This radical
transfer mechanism was also explored using a
number of fluorotyrosines (Fig. 1B20) with dis-
tinct EPR properties (Minnihan et al. 2011b).
Recently, ncAAs have even been used as direct
structural probes of the transition states (TSs)
of chemical reactions. Specifically, the X-ray
crystal structure of the planar TS configuration

H2N CO2H

N
N

Phe112Phe112

BpyAlaBpyAla

Glu159Glu159

Ser180Ser180

Asp184Asp184

CoCo

F
lu

or
es

ce
nc

e 
in

te
ns

ity
 (

A
U

)
F

lu
or

es
ce

nc
e 

in
te

ns
ity

 (
A

U
)

Wavelength, nmWavelength, nm

0
380 420 460 500 540

10

20

30

40

50

60

70

80
100 nM

50 nM

20 nM

7.5 nM

2.5 nM

0 nM

AnapAnap mCherrymCherry OverlapOverlap

G
rp

94
 (

S
er

12
7A

na
p)

G
rp

94
 (

Le
u7

A
na

p)
G

al
T

1
 (

Le
u3

A
na

p)

Computational
design

A B C

H2N CO2H

O

=

QBP (N160Anap)

HN

Gln

Figure 3. Some applications of noncanonical amino acids (ncAAs). (A) X-ray crystal structure of a BipyAla-
containing metalloprotein generated by computational design (protein data bank [PDB] code 4IWW). (B)
Fluorescence intensities of glutamine-binding protein (QBP) (Asn160Anap) with different concentrations of
Gln. (C) Subcellular localization of endoplasmic and Golgi-residue proteins in HEK293 cells visualized using
Anap. Scale bars, 10 mm.

Expanding the Genetic Code

Cite this article as Cold Spring Harb Perspect Biol 2016;8:a023945 7



for rotation about the central C-C bond of bi-
phenyl was directly observed by genetically in-
troducing p-biphenylalanine (BiPhe; Fig. 1B8)
into a site in Pyrococcus abyssi threonyl-tRNA
synthetase that was designed to bind BiPhe in a
planar TS configuration (Pearson et al. 2015).
After several rounds of optimization, the crystal
structure of the designed protein at 2.05 Å res-
olution revealed a planar biphenyl TS configu-
ration stabilized by van der Waals interactions
with side chains in the pocket.

Photocaged ncAAs can be used to control
the temporal and spatial activity of proteins in
living cells. To this end, photocaged tyrosine,
lysine, cysteine, and serine have been genetically
encoded in E. coli, yeast, and mammalian cells
(Fig. 1B46–50) (Liu and Schultz 2010; Davis
and Chin 2012). In an early example, 4,5-di-
methoxy-2-nitrobenzyl-serine (Fig. 1B50) was
substituted for Ser114 and Ser128 in the yeast
transcription factor Pho4 (Lemke et al. 2007).
Uncaging and subsequent phosphorylation of
these two sites, which are involved in nuclear
export of Pho4, was triggered by a laser pulse
and monitored in real time. Similarly, a photo-
caged lysine, 1-N-[(1-(6-nitrobenzo[d][1,3]-
dioxol-5-yl)ethoxy)-carbonyl]lysine (Fig. 1B47),
was used to control the nuclear import of p53
(Gautieret al. 2010). This same lysine analog was
also used to control the activation of mitogen-
associated protein kinase (MAPK) signaling in
mammalian cells by photocaging the MAPK ki-
nase MEK1 (Gautier et al. 2011); and a photo-
caged tyrosine, oNBTyr (Fig. 1B46), has been
used to control phosphorylation of Tyr 701 in
human signal transducer and activator of tran-
scription 1 (STAT1) and thereby activate the Ja-
nus kinase/STAT signal transduction pathway
(Arbely et al. 2012). Recently, a photocaged cys-
teine (Fig. 1B48) was genetically incorporated
into the pore of the inwardly rectifying potassi-
um channel Kir2.1 to generate a light-activated
ion channel in the embryonic mouse neocortex
(Kang et al. 2013). Photocaged ncAAs have been
also used in other studies, including develop-
ment of light-responsive FPs, light-induced
transcription using a light-activated RNA poly-
merase, photocleavage of the polypeptide back-
bone, and photoactivatable intein-mediated

protein splicing (Peters et al. 2009; Groff et al.
2010; Hemphill et al. 2013; Ren et al. 2015).

To map protein interactions, several ncAAs
containing UV-induced cross-linking moieties,
including benzophenone, azides, and diazirines
(Fig. 1B52, 4, and 53), have been site-specifically
incorporated into proteins in both prokaryotic
and eukaryotic cells (Liu and Schultz 2010; Da-
vis and Chin 2012). The formation of covalent
cross-links by UV-irradiation is especially im-
portant for studying relatively weak protein
interactions that are not stable to immunopre-
cipitation or cell lysis, and also allows one to
probe intra- or interprotein contacts between
specific residues. Numerous studies have been
performed using these photo-cross-linking
ncAAs, including probing interactions of chap-
erones with substrates, conformational changes
in RNA polymerases, interactions among com-
ponents within signal transduction pathways,
and membrane protein interactions (Schlieker
et al. 2004; Mori and Ito 2006; Chen et al. 2007;
Mohibullah and Hahn 2008; Ieva and Bernstein
2009; Okuda and Tokuda 2009; Tagami et al.
2010). The use of ncAAs to selectively form co-
valent bonds not only provides valuable infor-
mation regarding molecular interactions, but
also allows the design of covalent protein-based
agonists, antagonists, or inhibitors. For exam-
ple, p-vinylsulfonamido-phenylalanine (Fig.
1B54), which contains an aza-Michael acceptor
that can alkylate nearby cysteine or lysine resi-
dues, was site-specifically introduced into Her-
ceptin; the mutant antibody selectively formed
a covalent complex with a specific surface lysine
of the oncogenic receptor tyrosine kinase ErbB2
on live cells (Furman et al. 2014). In addition,
a number of ncAAs containing electrophilic re-
active handles (Fig. 1B55 and 56) have been
reported by Lei and his coworkers and used
to form specific inter- or intramolecular cross-
links in proteins (Chen et al. 2014; Xiang et al.
2014).

PTMs can alter protein function, folding,
and stability, and thereby regulate numerous bi-
ological processes in the cell. The ability to site-
specifically incorporate these PTMs into target
proteins provides a valuable tool to study their
function. Several tyrosine analogs, including
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p-sulfo-tyrosine (pSY; Fig. 1B58) and p-car-
boxymethylphenylalanine (pCMF; Fig. 1B57),
have been genetically encoded to mimic tyrosine
PTMs (Liu and Schultz 2006; Xie et al. 2007).
Site-specific incorporation of pSY allowed for
the preparation of high-affinity sulfo-hirudin
and various sulfated antibodies to the human
immunodeficiency virus (HIV) protein GP120
(Liu et al. 2007). Recently, pCMF was used to
mimic phosphoTyr291 in protein arginine
methyltransferase 1, which plays a role in sub-
strate recognition (Rust et al. 2014). A similar
strategy has been used to study the function of
lysine PTMs within histones. For example, 1-N-
acetyllysine (AcK; Fig. 1B59), 1-N-methyllysine
(MeK; Fig. 1B60), 1-N,N-dimethyllysine (Fig.
1B61), 1-N-crotonyllysine (Fig. 1B62), and 1-
N-2-hydroxyisobutyryllysine (Fig. 1B63) have
all been site-specifically incorporated into his-
tone proteins (Neumann et al. 2008; Nguyen
et al. 2009, 2010; Kim et al. 2012b; Xiao et al.
2015b). Site-specific substitution of AcK for
H3K56 revealed that H3K56 has no direct effect
on the compaction of chromatin, but leads to
an increase in DNA breathing (Neumann et al.
2009); and the substitution of MeK for H3K9
allowed determination of its effects on the bind-
ing specificity of heterochromatin protein 1
(Nguyen et al. 2009).

THE DESIGN OF PROTEINS WITH NOVEL
PROPERTIES USING ncAAs

There is considerable interest in the site-specific
modification of proteins with biological probes,
polyethylene glycols (PEGs), drugs, and other
polypeptides/proteins for a range of applica-
tions, including the generation of antibody–
drug conjugates (ADCs) and bispecific antibod-
ies. Unfortunately, it is difficult to do chemistry
on proteins with the same degree of control over
structure that chemists have with small mole-
cules. Typically, the modification of proteins in-
volves the electrophilic modification of cysteine
or lysine residues, which in the case of large,
disulfide cross-linked proteins like antibodies,
results in chemically heterogeneous products
with varying stoichiometries and sites of mod-
ification. This heterogeneity makes it difficult to

optimize the properties of the resulting conju-
gates. The site-specific incorporation of ncAAs
with bioorthogonal chemical reactivity enables
the preparation of homogenous, chemically de-
fined macromolecules. For example, homoge-
nous therapeutic proteins with defined PEG
modifications have been prepared by the site-
specific incorporation of pAcF (Fig. 1B1), fol-
lowed by efficient conjugation to alkoxyamine-
derivatized PEG by oxime ligation (Cho et al.
2011). Using this strategy, PEG-conjugated hu-
man growth hormone, human fibroblast growth
factor 21, and bovine granulocyte colony–stim-
ulating factor (GCSF) were prepared and shown
in clinical studies to have significantly enhanced
serum half-lives while preserving a high degree
of biological activity, with little or no observed
immunogenicity (Cho et al. 2011; Mu et al.
2012).

ADCs have emerged as a promising new
class of drugs, as evidenced by the clinical effi-
cacy of trastuzumab emtansine for the treat-
ment of Her2-positive breast cancer (Sun et al.
2014; Wals and Ovaa 2014). ADCs allow highly
cytotoxic drugs to be selectively delivered to the
target tumor, thus, increasing therapeutic effi-
cacy and reducing adverse systemic side effects
(Fig. 4). Most ADCs are based on the reactivity
of cysteine and lysine residues, which often re-
sult in heterogeneous products. Recently, we
prepared homogenous ADCs by the site-specif-
ic incorporation of pAcF (Fig. 1B1) into Her-
ceptin and conjugation of the mutant antibody
to an alkoxy-amine auristatin derivative in good
yield (Axup et al. 2012) (a similar ADC devel-
oped by Ambrx (San Diego, CA) has entered
clinical trials; Tian et al. 2014). Complete regres-
sion of Her2-positive tumors in mouse xeno-
graft models was observed without overt toxic-
ity. Importantly, the site and stoichiometry of
conjugation were found to affect the pharmaco-
kinetics and efficacy of the ADC. Similarly, site-
specific ADCs have been generated that target
CXCR4-positive metastatic cancer cells, and this
technology is now being applied outside of
oncology in the preparation of ADCs for the
treatment of inflammatory, autoimmune, and
metabolic disease (Kularatne et al. 2014). Other
constructs, including antibodies conjugated to
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imaging probes or two different drugs with syn-
ergistic effects, are being explored. Furthermore,
the utility of site-specific antibody conjugation
was also shown in antibody small-interfering
RNA (siRNA) conjugation, which significantly
increases the selectivity and efficiency of siRNA
delivery (Fig. 4) (Lu et al. 2013).

Another example of use of ncAAs in the
preparation of therapeutic proteins is the gen-
eration of bispecific antibodies that selectively
deliver cytotoxic T cells to tumor cells (Fig. 4)
(Byrne et al. 2013). Bispecific antibodies are
typically prepared as genetic fusions or hetero-
dimers, which limits the possible relative spatial
orientations of the two antibody variable do-
mains and may affect stability, efficacy, and se-
lectivity (Bluemel et al. 2010; Moore et al. 2011).
Again, the use of genetically encoded ncAAs
with bio-orthogonal reactivity allows far more
control over the relative orientation and dis-
tance of the two antibody fragments (Kim
et al. 2012a). To illustrate this notion, pAcF-
containing anti-Her2 and anti-CD3 Fabs were
expressed in E. coli and each was conjugated to
short polyethylene linkers terminated with

either an azide or cyclooctyne group (Cao et al.
2015). These two Fabs were then conjugated via
a copper-free click reaction to afford a bispecific
antibody that binds the CD3 protein on T cells
and Her2 on tumor cells to form an immu-
nological synapse. The resulting anti-HER2/
anti-CD3 bispecific antibody showed good se-
lectivity and high potency with Her2-positive
tumor cells in vitro and showed excellent effica-
cy against both high and low Her2-positive tu-
mors in rodent xenografts in the presence of
purified peripheral blood mononuclear cells.
Similarly, bispecifics have been made that target
CD33 and CLL1 for the treatment of acute my-
elogenous leukemia (Lu et al. 2014). Tumor-
specific small molecules can also be used to re-
cruit cytotoxic T cells to tumor cells (Murelli
et al. 2009; Kularatne et al. 2010). For example,
2-[3-(1,3-dicarboxy propyl)-ureido] pentane-
dioic acid, a small molecule that selectively
binds PSMA, which is overexpressed in pros-
tate cancer, was site-specifically conjugated to
anti-CD3 to generate a PSMA-targeting small
molecule–antibody conjugate (SMAC) (Fig. 4)
(Kim et al. 2013). The optimized SMAC showed

Cytosolic drug siRNA

Cytotoxins

Antibody–drug
conjugate

Bispecific antibody Small molecule–antibody
conjugate

Antibody–siRNA
conjugate

Cell 
death

Figure 4. Overview of noncanonical amino acid (ncAA)-containing antibody conjugates. siRNA, Small inter-
fering RNA.
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excellent selectivity and cytotoxicity (EC50 �
100 pM) against patient-derived PSMA-posi-
tive prostate cancer cells both in vitro and in
vivo and is being advanced to clinical develop-
ment. A similar strategy was used to recruit
T cells to ovarian cancer cells using a folate-
anti-CD3 bispecific construct (Kularatne et al.
2013).

Despite the impressive clinical efficacy of
chimeric antigen receptor (CAR)-T-cell thera-
py, the lack of control in the activation and ex-
pansion and in the termination of conventional
CAR-T cells has greatly limited its application.
To overcome this challenge, a CAR was engi-
neered that binds the bio-orthogonal ligand
fluorescein isothiocyanate (FITC). The result-
ing transduced CAR-T cells are inactive until a
switch molecule, consisting of an FITC-conju-
gated site specifically to a tumor-targeting anti-
body, are dosed. It was shown that the ability to
control the site and stoichiometry of FITC con-
jugation using ncAAs dramatically impacts ef-
fective immunological synapse formation and,
as a consequence, in vitro and in vivo activity.
These switch molecules allowed dose titration of
the CAR-T-cell response and resulted in com-
plete clearance of tumors in rodent xenografts
with significantly reduced cytokine levels; the
CAR-T-cell response could also be terminated
by simply removing the switch. Finally, this sin-
gle universal CAR can be used for heterogeneous
tumors with distinct antigens (or reoccurring
tumors with altered antigen expression) by sim-
ply using multiple switch molecules. Thus, this
platform (which also includes a recombinant
version using peptide neoepitopes) should de-
crease the acute and chronic toxicity associated
with this promising new cell therapy, simplify its
application, and allow it to be used with both
liquid and solid tumors (Ma et al. 2016).

ncAA mutagenesis has also been used for
the generation of therapeutic vaccines to break
immunological tolerance against a native pro-
tein (Sun et al. 2014; Wals and Ovaa 2014). Re-
placement of a single tyrosine residue (Tyr86) of
murine tumor necrosis factora (mTNF-a) with
pNO2F (Fig. 1B16) induced a high-titer, long-
lived antibody response to both the mutant and
native mTNF-a in vaccinated mice (Gruene-

wald et al. 2008). Mechanistic studies revealed
that the ncAA mutation generated a T-cell neo-
epitope, which led to a polyclonal antibody re-
sponse to the autologous antigen (Gauba et al.
2011). Similar results were obtained with other
mutant antigens containing ncAAs, including
complement component 5a and proprotein
convertase subtilisin/kexin type 9. It was also
shown that the naturally posttranslationally
modified amino acids nitrotyrosine and sulfo-
tyrosine also break immunological tolerance,
supporting the hypothesis that such PTMs, in-
duced by viruses or inflammation, could be an
underlying cause of autoimmune disease. Re-
cently, an HIV-1 virus that requires ncAA trans-
lational machinery for replication has been re-
ported by Wang et al. (2014). Multiple amber
codons were introduced at permissive sites of
the Gag gene; in the presence of an amber sup-
pressor tRNA/aaRS pair and specific ncAA,
full-length Gag protein is generated leading to
the assembly of infective virus. However, none
of these ncAA translational components are
naturally present in humans, thus making the
virus unable to reproduce in human cells. This
strategy is also being used to create other vac-
cines—several pyrrolysine analogs have been in-
corporated into the surface protein of human
hepatitis D virus, and MjTyrRS/tRNA has
been used to encode a number of tyrosine ana-
logs in Mycobacterium smegmatis and tubercu-
losis (Wang et al. 2010; Lin et al. 2013). Using a
similar strategy, a live-attenuated tuberculosis
vaccine is being explored in our laboratory
that is dependent on the presence of an ncAA
for growth ex vivo, but dies in the absence of the
ncAA. Surprisingly, it has not yet been possible
to isolate a revertant for some sites of suppres-
sion. Alternatively, one could exploit a strategy
developed by Church and coworkers, who used
an ncAA-based synthetic system to control un-
intended proliferation of genetically modified
organisms (Mandell et al. 2015). A synthetic
essential gene that requires the ncAA BiPhe
(Fig. 1B8) for translation, folding, and function
was generated by computational design. Substi-
tution of the wild-type gene with this synthe-
tic gene in the E. coli genome provides a novel
biocontainment mechanism against mutation-
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al escape, environmental supplementation, and
horizontal gene transfer.

ncAAs have also been used in the prepara-
tion of biomaterials with improved or novel
properties. For example, a reversible biome-
chano-responsive surface was generated via
covalently coating pAzF (Fig. 1B4)-containing
GFPs onto polydimethylsiloxane with PEG
brushes (Longo et al. 2015). A reversible de-
crease in fluorescence intensity was observed
on applying mechanical stress to the surface.
To prepare homogenous protein–polymer con-
jugates, an ncAA with a polymer initiator side
chain was genetically incorporated into proteins
in E. coli. The designed amino acid, 4-(20-bro-
moisobutyramido)-phenylalanine (Fig. 1B24)
can serve as an initiator in atom-transfer radi-
cal polymerization and provides a stable link
between target proteins and polymers (Peeler
et al. 2010). Metal ion-binding amino acids
may allow the generation of enzymes with novel
functions, including oxygen transport, electron
transfer, and catalytic activity. One such exam-
ple is the computational design of a metal ion-
binding site in the protein using (2,20-bipyri-
din-5yl)-alanine (BpyAla; Fig. 1B22) (Fig. 3A)
(Mills et al. 2013). Using the software Rosetta,
Mills et al. (2013) generated a BpyAla-contain-
ing metalloprotein with high affinity (Kd for
Zn2þ is � 37 pM) against a number of divalent
cations. The three-dimensional structure deter-
mined by X-ray crystallography was very close
to that of the design model (Fig. 3A).

PROTEIN EVOLUTION WITH ncAAs

Advances in methods for incorporation ncAAs
now make it possible to ask whether additional
amino acids can confer an evolutionary advan-
tage to a host organism in response to selec-
tive pressure. For example, an in vitro antibody
phage display system was developed in which
ncAAs were available for directed evolution.
A germline antibody library containing six ran-
domized residues in CDR3H was subjected to
affinity-based phage panning for binding to
gp120, an HIV protein that naturally binds
the sulfated cytokine receptor CCR5 (Liu et al.
2008). When sulfotyrosine (pSY; Fig. 1B58) was

genetically encoded in the host strain for phage
production, the highest affinity antibodies iden-
tified in the panning experiment all contained
sulfotyrosine in CDRH3. A similar phage dis-
play system was used to select a Zn(II)-finger-
like domain in which two histidine residues in-
volved in Zn binding were substituted with the
ncAA, bipyridylalanine (BpyAla; Fig. 1B22). To
alter the metal ion-binding site, five residues in
the amino terminus of Zif268 zinc-finger pro-
tein, including the two histidines, were random-
ized. Panning this library against the DNA
recognition site revealed a mutant in which
the wild-type Zn(II) site was replaced with a
unique 4-bipyridylalanine.Fe(II) site with no
impact on DNA affinity and selectivity (Kang
et al. 2014). More recently, a bacterial selection
scheme was used to identify cyclic peptides that
inhibit HIV protease. Using a split intein sys-
tem, a library of ncAA-containing ribosomal
cyclic peptides was generated in E. coli. This
library was further subjected to a selection based
on survival of E. coli in response to proteolyt-
ic stress. A p-benzoylphenylalanine)-containing
(Fig. 1B52) peptide that forms a covalent bond
with the 1-amino group of Lys14 on the HIV
protease and destabilizes the soluble cytoplas-
mic protein was isolated as the most potent hit
(Young et al. 2011). And recently, Hammerling
et al. (2014) generated bacteriophage T7 with an
expanded genetic code by passaging phage on
an E. coli host in which the amber codon was
reassigned to 3-iodotyrosine (Fig. 1B17). After
serial transfers of lytic phage, it was found that
substitution of 3-iodotyrosine in the type II hol-
ing protein of bacteriophage T7 leads to in-
creased phage fitness (Hammerling et al. 2014).

However, a more general rapid in vitro di-
rected evolution for novel functional proteins
with ncAAs has remained elusive. To this end,
we recently developed a novel in vitro system
with ncAAs in which a number of different
ncAAs were randomly substituted at each of
144 of the 286 residues in TEM-1 b-lactamase
based on the X-ray crystal structure (Fig. 5A)
(Xiao et al. 2015a). To simplify construction of
a b-lactamase library containing a variety of
structurally distinct ncAAs, a polyspecific ami-
noacyl-tRNA synthetase was used that is orthog-
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Figure 5. Directed evolution by noncanonical amino acid (ncAA) mutagenesis. (A) A TAG-scanned library was trans-
formed into cells expressing a polyspecific amber suppressor aminoacyl-tRNA synthetase (aaRS)/transfer RNA (tRNA)
pair and a growth selection was performed with various ncAAs. (B) X-ray crystal structure of ligand-free wild-type
b-lactamase (protein data bank [PDB] code 1BTL). (C) X-ray crystal structure of ligand-free Val216AcrF mutant en-
zyme (PDB code 4ZJ1). (D) X-ray crystal structure of cephalexin (CEX) acyl-enzyme intermediate for the Val216AcrF
mutant enzyme (PDB code 4ZJ3). (E) Overlay of active site residues of cephalexin-bound and ligand-free Val216AcrF
mutant enzyme.
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onal to the endogenous translational machinery
of E. coli, and selectively incorporates 10 distinct
ncAAs in response to the amber nonsense codon
(Fig. 5A). A screen for growth on the b-lactam
antibiotic cephalexin afforded a unique p-acryl-
amidophenylalanine mutation at Val216 that
leads to an increase in catalytic efficiency by in-
creasing kcat without significantly affecting KM.
This increase in activity is not recapitulated by
substitution with any of the canonical amino
acids at residue 216. A comparison of the X-ray
crystal structures of the cephalexin complexes of
deacylation-defective wild-type and Val216p-
AcrPhe mutant b-lactamases suggests that this
mutation leads to changes in active site confor-
mation with increased complementarity to the
putative reaction TS (Fig. 5B–E). More recently,
the impact of ncAA substitution on Phe66,
Leu162, and Thr189 of TEM-1 b-lactamase
have been systematically studied by Tack et al.
(2016), and it has been shown that enzyme ac-
tivity can be made strictly dependent on the
presence of a ncAA. Using a temperature-depen-
dent growth selection system, ncAAs containing
long-side-chain thiols that can pair with cys-
teines to afford extended disulfide bonds have
been used to identify enzymes showing en-
hanced thermostability. A mutant enzyme was
identified that is cross-linked by one such ex-
tended disulfide bond and is stabilized by 9˚C.
In addition, a protein has been isolated that
appears to form a covalent adduct between a
Cys- and keto-containing ncAA and is stabilized
by .25˚C. These experiments provide more
evidence that additional amino acids can confer
an evolutionary advantage to a host organism in
response to selective pressure.

CONCLUSIONS AND PERSPECTIVES

The canonical 20 amino acid genetic code has
significantly limited the chemical diversity of
proteins throughout evolution. Nature has add-
ed additional chemistries to proteins by the use
of cofactors and PTMs and, in a small number
of cases, pyrrolysine and selenocysteine. Using a
relative simple strategy, we and others have been
able to augment the natural protein biosyn-
thetic machinery with a large number of ncAAs

with novel chemical, physical, and biological
properties. These new amino acids have been
genetically encoded in both prokaryotic and eu-
karyotic organisms with excellent fidelity and,
in some cases, efficiencies that allow mutant
proteins to be produced on a commercial scale.
This expanded genetic code has provided pow-
erful new tools to probe protein structure and
function both in vitro and in living cells, and is
allowing the rational design and evolution of
proteins with useful new properties for a variety
of applications, including the creation of new
medicines. Many opportunities exist to further
expand and exploit this technology, including
methods for the generation of proteins consist-
ing of a large number (or entirely) of distinct
ncAAs, methods to evolve whole proteomes
with novel properties rather than individual
proteins, the use of computational methods to-
gether with ncAAs to generate new function,
and the use of this technology to create a new
generation of therapeutic proteins whose phar-
macology can be optimized with medicinal
chemistry like control over chemical structure
and homogeneity. Clearly, the synergistic use of
tools and principles from both chemistry and
biology has made it possible to remove the con-
straints of nature’s 20 amino acid genetic code.
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