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ABSTRACT

Molecular evolutionary arms races between viruses and their hosts are important drivers of adaptation. These Red Queen dy-
namics have been frequently observed in primate retroviruses and their antagonists, host restriction factor genes, such as
APOBEC3F/G, TRIM5-�, SAMHD1, and BST-2. Host restriction factors have experienced some of the most intense and perva-
sive adaptive evolution documented in primates. Recently, two novel host factors, SERINC3 and SERINC5, were identified as the
targets of HIV-1 Nef, a protein crucial for the optimal infectivity of virus particles. Here, we compared the evolutionary finger-
prints of SERINC3 and SERINC5 to those of other primate restriction factors and to a set of other genes with diverse functions.
SERINC genes evolved in a manner distinct from the canonical arms race dynamics seen in the other restriction factors. Despite
their antiviral activity against HIV-1 and other retroviruses, SERINC3 and SERINC5 have a relatively uneventful evolutionary
history in primates.

IMPORTANCE

Restriction factors are host proteins that block viral infection and replication. Many viruses, like HIV-1 and related retroviruses,
evolved accessory proteins to counteract these restriction factors. The importance of these interactions is evidenced by the in-
tense adaptive selection pressures that dominate the evolutionary histories of both the host and viral genes involved in this so-
called arms race. The dynamics of these arms races can point to mechanisms by which these viral infections can be prevented.
Two human genes, SERINC3 and SERINC5, were recently identified as targets of an HIV-1 accessory protein important for viral
infectivity. Unexpectedly, we found that these SERINC genes, unlike other host restriction factor genes, show no evidence of a
recent evolutionary arms race with viral pathogens.

Evolutionary arms races give rise to intense selective pressures
that, while altering both genotype and phenotype, may not

result in long-term fitness gains (1). Over the evolutionary history
of our primate ancestors, the primacy of viral pathogens is evi-
denced by evolutionary arms races that have led to rapid evolu-
tionary change and extreme levels of directional and balancing
selection on antiviral genes (2, 3).

The compact genomes of primate lentiviruses, a family of
retroviruses including HIV, encode overlapping structural and
accessory proteins, several of which have evolved to avoid or to
counteract specific host proteins that inhibit viral replication
(so-called “restriction factors”). In HIV, Vif neutralizes
APOBEC3F and APOBEC3G, cytidine deaminases that induce
hypermutation in the viral genome (4–7); the viral capsid has
evolved to evade recognition by TRIM5-�, which prevents vi-
ral-core uncoating (8–10); Vpx (found in simian immunode-
ficiency viruses and HIV-2, a less prevalent form of HIV) an-
tagonizes SAMHD1 and prevents it from reducing the
concentration of cytoplasmic deoxynucleoside triphosphates
(dNTPs), crucial for reverse transcription (11, 12); and Vpu or
Nef prevents BST-2 (tetherin) from preventing viral-particle
release (13–16; for reviews, see references 17 and 18). Many of
these host proteins provide barriers to viral cross-species trans-
mission (19–23), supporting the theory that the intense posi-
tive selection documented in these host proteins is evidence of
an evolutionary arms race (24–28).

In humans, BST-2 has evolved to evade the neutralizing effects
of most Nef proteins. BST-2 antagonism in HIV-1 group M, the
virus responsible for the global HIV/AIDS pandemic, is instead

provided by the Vpu protein; only HIV-1 group O, like most sim-
ian lentiviruses, uses Nef (29). Nonetheless, Nef is crucial for effi-
cient viral replication and rapid disease progression in HIV-1
group M infections. One conserved function of Nef is the en-
hancement of virion infectivity (30). This phenotype had the po-
tential to be explained by antagonism of a cellular protein or pro-
teins that inhibit lentiviral infectivity. Recently, two independent
groups identified such proteins: SERINC5 and SERINC3 (31, 32).
The SERINC proteins are found in host cell membranes and, in
the absence of Nef, incorporate into the virion and seemingly
interfere with the transfer of the viral capsid into the newly in-
fected cell. Here, we investigated whether SERINC5 and SERINC3
were involved in arms races over their evolutionary history in
primates in a manner similar to those of other restriction factors
with antiretroviral functions.
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MATERIALS AND METHODS
Evolutionary fingerprinting using FUBAR. One way to characterize se-
lection acting on a gene is to examine the distribution of selection coeffi-
cients across all codon sites in that gene: an evolutionary fingerprint (33).
FUBAR, a popular tool for inferring positive or purifying selection at
individual sites, also infers the full joint distribution of synonymous (�)
and nonsynonymous (�) rates for the entire gene (34). The possible values
for � and � are finely discretized, forming a 20 by 20 grid of �-� pairs; the
probability for the ith pair is denoted �i, and �-� at each site is modeled as
an independent draw from �. Using a symmetric Dirichlet prior distribu-
tion, P(�), FUBAR infers the posterior distribution of �, given the se-
quence alignment, P(�|S), using Bayes theorem and Markov chain Monte
Carlo (MCMC) sampling. The posterior mean, �̂, can be plotted as a
surface to visualize the inferred distribution of selection coefficients.

FUBAR was originally designed for identifying sites under positive
selection, and the accuracy of �̂ is relatively unimportant for site-specific
inference, which governed some of the design choices behind FUBAR.
However, here, �̂ is the quantity of interest, so we modified FUBAR to use
a smoother grid and we sampled much more extensively: 10 MCMC
chains with 10 million samples each, discarding the first million as burn-
in. We obtained a smooth grid with � and � values ranging from 0 to 50
(to ensure extreme selective regimes were covered) but with progressively
increasing spacing, using the function (50 � k5)/195 where k is equal to {0,
1, . . ., 19}. Computing �̂ under these conditions produces smooth and
accurate evolutionary fingerprints.

We can use these evolutionary fingerprints to assess the similarity of
selective forces acting upon two genes. Since �̂ is a vector with 400 weights,
there are a number of ways to compute the similarity between �̂j and �̂k for
two genes, j and k. When an alignment is short (i.e., the number of codon
sites is small), the regularization from the Dirichlet prior over � sustains
nonnegligible support for �-� classes that are nevertheless unsupported
by any sites, lowering the peaks and raising the troughs of �̂, causing
artifactual divergence in many standard distribution similarity metrics.
We thus used the Pearson correlation between �̂j and �̂k, cor(�̂j, �̂k), which
can quantify how similar their shapes are without being affected by dif-
ferent degrees of regularization.

Using 1 � cor(�̂j, �̂k) as the distance between two genes, j and k, we
compute a distance matrix between all pairs of genes. Very small distances
indicated that the distributions over � and � were very similar. We per-
formed average-linkage hierarchical clustering to identify nested clusters
of genes with similar evolutionary fingerprints. Clustering and visualiza-
tion were performed with the HierarchicalClustering package in Math-
ematica 10 (https://www.wolfram.com/mathematica).

Sequence data. Alignments were downloaded from the University of
California, Santa Cruz, genome browser (35) from the alignment of 19
mammalian (16 primate) genomes with humans (http://hgdownload.soe
.ucsc.edu/goldenPath/hg38/multiz20way/). These alignments are avail-
able in Data Set S1 in the supplemental material. Only the 14 Simiiformes
(New World monkeys, Old World Monkeys, and apes) were included in
the analysis to account for the loss of signal for the evolutionary finger-
print deeper in the phylogeny: Papio anubis (olive baboon), Callithrix
jacchus (common marmoset), Chlorocebus sabaeus (African green mon-
key), Gorilla gorilla gorilla (western lowland gorilla), Homo sapiens (hu-
mans), Macaca mulatta (rhesus macaque), Macaca fascicularis (crab-eat-
ing macaque), Nasalis larvatus (proboscis monkey), Nomascus leucogenys
(northern white-cheeked gibbon), Pan paniscus (bonobo), Pan troglodytes
(chimpanzee), Pongo pygmaeus abelii (orangutan), Rhinopithecus roxel-
lana (golden snub-nosed monkey), and Saimiri boliviensis (squirrel mon-
key).

We analyzed five restriction factor genes (APOBEC3F [human NCBI ref-
erence NM_145298], APOBEC3G [NM_021822], BST-2 [NM_004335],
TRIM5-� [NM_033034], SAMHD1 [NM_015474]); two SERINC genes
[SERINC3 (NM_006811] and SERINC5 isoform 1 [NM_001174072],
SERINC5 isoform 2 [NM_001174071]); a canonically positively selected
gene (lysozyme [NM_000239]); and nine well-characterized genes
(AVPR1a [NM_000706], FITM2 [NM_001080472], FOXP2 isoform 1
[NM_014491], OPN1LW [NM_020061], oxytocin [NM_000916], Poke-
mon [NM_001256455], RB1 [NM_000321], rhodopsin [NM_000539],
and SonicHedgehog isoform 2 [NM_000193]) (ideonexus; http:
//ideonexus.com/2008/05/13/the-top-10-human-genes/).

RESULTS AND DISCUSSION

We adapted FUBAR (34), a rapid Bayesian selection analysis tool,
to characterize the evolutionary fingerprints (33) of the SERINC5
and SERINC3 genes across 14 primate species and compared their
evolutionary profiles with (i) the five above-mentioned restriction
factor genes; (ii) the lysozyme gene, a canonical, positively selected
gene in primates; and (iii) nine other genes with diverse, well-
characterized functions.

Average-linkage hierarchical clustering of these evolutionary
fingerprints revealed three distinct clusters (Fig. 1A). One cluster
contained the canonical APOBEC3G, APOBEC3F, BST-2, and
TRIM5-� restriction factor genes, each of which has been previ-
ously documented to be engaged in an evolutionary arms race
(17). These results suggest the existence of an evolutionary finger-

FIG 1 Evolutionary fingerprints of restriction factors and other well-characterized genes. (A) Evolutionary fingerprinting analysis detected three clusters:
canonical arms race genes (red), positively selected genes (green), and SERINC/other genes (blue/black). Notably, the SERINC genes do not cluster with
the canonical arms race genes. (B) Average evolutionary fingerprints for the SERINC genes (blue) and the canonical arms race genes (red), confirming that the
canonical arms race genes have strong support for sites with high nonsynonymous (�)-to-synonymous (�) rate ratios, whereas the SERINC genes do not.
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print common to restriction factor genes involved in evolutionary
arms races. A second cluster contained the SAMHD1 and ly-
sozyme genes, two genes documented to be under strong positive
selection in some primate lineages (24, 36). The third cluster con-
tained the rest of the included genes, with no especially notable
signatures of positive selection. Importantly, the third cluster con-
tained both the SERINC5 and SERINC3 genes (31, 32).

We found a high proportion of positively selected sites (i.e., the
nonsynonymous-substitution rate [�] was greater than the syn-
onymous-substitution rate [�]) in the restriction factor genes en-
gaged in evolutionary arms races: 12.2% to 23.9% of codon sites
(Table 1). SAMHD1 and lysozyme also had signals for positive
selection: 5.6% and 7.4% of codon sites, respectively. The SERINC
proteins had lower proportions of codon sites under positive se-

TABLE 2 Codons in SERINC genes with evidence of positive selection based on FUBAR analysis

Gene Codona � � Prob[� � �]b Bayes factor

SERINC3 50 0.771 3.888 0.879 12.200
102 1.026 4.417 0.870 11.240
166 1.886 4.770 0.808 7.083
170 0.823 7.717 0.949 30.994
253 0.919 10.022 0.953 34.127
274 0.808 4.977 0.897 14.687
346 0.841 4.566 0.889 13.413
380 0.985 8.810 0.946 29.361
383 0.930 4.216 0.873 11.495
406 0.824 4.347 0.885 12.941
449 0.772 4.840 0.901 15.217
469 0.925 4.212 0.873 11.536

SERINC5-iso1c 225 0.780 3.120 0.852 12.992
241 0.378 2.479 0.838 11.645
251 1.192 4.669 0.861 13.906

SERINC5-iso2c 215 0.523 2.301 0.804 8.732
225 0.710 2.970 0.857 12.751
241 0.359 2.539 0.848 11.873
251 1.430 4.672 0.848 11.866
417 1.129 3.310 0.831 10.500

a Codon sites correspond to alignments available in Data Set S1 in the supplemental material.
b Prob[� � �], probability that � was less than �.
c Different transcript variants (isoforms) of SERINC5 have been reported.

TABLE 1 Proportions of positively and negatively selected sites using FUBAR

Functional category Gene name
No. of sites under positive
selection/totala

% sites under
positive selection

No. of sites under negative
selection/totalb

% sites under
negative selection

Restriction factor APOBEC3F 55/373 14.7 47/373 12.6
APOBEC3G 80/383 20.9 40/383 10.4
BST-2 22/180 12.2 22/180 12.2
SAMHD1 35/626 5.6 85/626 13.6
TRIM5-� 118/493 23.9 62/493 12.6

SERINC SERINC3 12/473 2.5 66/473 14.0
SERINC5-iso1c 3/461 0.7 102/461 22.1
SERINC5-iso2c 5/420 1.2 92/420 21.9

Other AVPR1a 2/418 0.5 114/418 27.3
FITM2 2/262 0.8 52/262 19.8
FOXP2 0/715 0.0 70/715 9.8
Lysozyme 11/148 7.4 17/148 11.5
OPN1LW 3/364 0.8 91/364 25.0
OXTR 0/389 0.0 97/389 24.9
RB1 8/928 0.9 134/928 14.4
Rhodopsin 0/348 0.0 78/348 22.4
SHH 3/462 0.6 96/462 20.8
Zbtb7 5/539 0.9 98/539 18.2

a The number of codon sites in which the probability that � was greater than � was greater than 0.80.
b The number of codon sites in which the probability that � was greater than � was greater than 0.80.
c Different transcript variants (isoforms) of SERINC5 have been reported.

Lack of Arms Race in Primate SERINC Proteins
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lection: 0.7% to 2.5% (Table 2 lists specific sites). By this crude
metric, the evolutionary history of SERINC proteins in primates
looks more like that of the other well-characterized genes than
that of the other restriction factor genes or a canonical positively
selected gene.

To highlight the nature of the difference between the canonical
arms race genes and the SERINC genes, we plotted the average
evolutionary fingerprint surface for the restriction factor arms
race genes and the SERINC genes (Fig. 1B). The arms race genes
have a large proportion of sites with higher nonsynonymous-sub-
stitution rates (�), whereas the SERINC genes show a predomi-
nance of purifying selection. The same pattern can be seen in the
fingerprint surfaces for individual genes within each cluster,
which exhibit substantial within-cluster uniformity (Fig. 2).

Despite the biological interaction between the SERINCs and
Nef, we did not detect a signal of arms race dynamics typical of
other restriction factors. This finding seems to reflect a rather
uneventful evolutionary history of the SERINC5 and SERINC3
genes. Why would these genes fail to show evidence of strong
positive selection despite their apparently broad antiviral spec-
trum, which encompasses genetically distant retroviruses, includ-
ing HIV-1, murine leukemia virus, and equine infectious anemia
virus (A. Chande, presented at the 2016 meeting on retroviruses,
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 23 to 28
May 2016)? One possibility is that evolutionary constraints on the
SERINCs imposed by their other cellular functions make escape,
and a subsequent arms race, impossible. Alternatively, the es-
cape dynamics may be limited to a small fraction of sites in the
SERINCs, masking the signal for detecting arms race dynamics; in
other words, the relatively few sites in the SERINCs under positive
selection might indeed be important for interaction with viral
antagonists. Another possibility is that an arms race may have
occurred, but not one that involved changes at the codon level. For
example, BST-2 experienced a 5-amino-acid deletion in humans
that counteracts its restriction by most lentiviral Nef proteins (25),
and the TRIM genes have undergone gene fusion to acquire a
novel protein domain with novel capsid specificity (Trim-Cyp)
(37). Finally, the importance of the antiretroviral function of the
SERINC proteins may be a relatively novel evolutionary advance,

and the arms race between these cellular proteins and viral coun-
termeasures is just about to begin.
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