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ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a worldwide-distributed alphacoronavirus, but the pathogenesis of PEDV infection is
not fully characterized. During virus infection, type I interferon (IFN) is a key mediator of innate antiviral responses. Most coro-
naviruses develop some strategy for at least partially circumventing the IFN response by limiting the production of IFN and by
delaying the activation of the IFN response. However, the molecular mechanisms by which PEDV antagonizes the antiviral ef-
fects of interferon have not been fully characterized. Especially, how PEDV impacts IFN signaling components has yet to be elu-
cidated. In this study, we observed that PEDV was relatively resistant to treatment with type I IFN. Western blot analysis showed
that STAT1 expression was markedly reduced in PEDV-infected cells and that this reduction was not due to inhibition of STAT1
transcription. STAT1 downregulation was blocked by a proteasome inhibitor but not by an autophagy inhibitor, strongly impli-
cating the ubiquitin-proteasome targeting degradation system. Since PEDV infection-induced STAT1 degradation was evident
in cells pretreated with the general tyrosine kinase inhibitor, we conclude that STAT1 degradation is independent of the IFN sig-
naling pathway. Furthermore, we report that PEDV-induced STAT1 degradation inhibits IFN-� signal transduction pathways.
Pharmacological inhibition of STAT1 degradation rescued the ability of the host to suppress virus replication. Collectively, these
data show that PEDV is capable of subverting the type I interferon response by inducing STAT1 degradation.

IMPORTANCE

In this study, we show that PEDV is resistant to the antiviral effect of IFN. The molecular mechanism is the degradation of
STAT1 by PEDV infection in a proteasome-dependent manner. This PEDV infection-induced STAT1 degradation contributes to
PEDV replication. Our findings reveal a new mechanism evolved by PEDV to circumvent the host antiviral response.

Porcine epidemic diarrhea virus (PEDV) is an enveloped, pos-
itive-stranded RNA virus in the genus Alphacoronavirus, fam-

ily Coronaviridae, order Nidovirales (1, 2). PEDV is the causative
agent of porcine epidemic diarrhea (PED), an acute, highly con-
tagious, and devastating viral enteric disease with a high mortality
rate in suckling piglets. Since PED was first reported in England in
1971 (3), the disease has broken out frequently in many pig-pro-
ducing countries (4–9). Despite the availability of vaccines, out-
breaks continue to increase and pose problems for the swine in-
dustry, as well as public health concerns (10–12).

During viral infection, the innate immune response is often
activated, leading to the induction of type I interferon (IFN-I), or
alpha/beta interferon (IFN-�/�). IFN-�/� is a potent cytokine of
critical importance in controlling viral infections and priming
adaptive immune responses (13). The biological activities of IFN-I
are initiated by the binding of IFN-�/� to its cognate receptors on
the cell surface (14, 15). The binding of IFN-I to its receptors
activates JAK1 and Tyk2, which phosphorylate and activate the
signal transducer and activator of transcription (STAT) proteins,
STAT1 and STAT2. Upon phosphorylation, STAT1 and STAT2
form heterodimers and then associate with IRF-9 to form a tran-
scription factor complex, termed IFN-stimulated gene factor 3
(ISGF-3). The heterotrimer complexes translocate into the nu-
cleus and bind to the IFN-stimulated response elements to induce
the expression of IFN-stimulated genes, which establish an anti-
viral state (16–20).

To counter innate immune signaling, many viruses, including
coronaviruses, have evolved different strategies to prevent the ac-
tivation of antiviral effectors in host cells, particularly by minimiz-

ing IFN production and inhibiting IFN signaling (21, 22). Several
viral proteins acting as IFN-I antagonists have been identified in
members of the family Coronaviridae, including severe acute re-
spiratory syndrome coronavirus (SARS-CoV), Middle East respi-
ratory syndrome coronavirus, and mouse hepatitis virus (MHV)
(23–28). Additionally, coronaviruses, such as MHV, feline coro-
navirus, and infectious bronchitis virus (IBV), have been shown to
be relatively resistant to IFN treatment (29–31). As a member of
the Coronaviridae, PEDV also encodes some proteins that serve as
IFN-I antagonists (32, 33). However, how PEDV responds to in-
terferon is unknown. Our present work describes a mechanism of
virus-mediated IFN-I signaling inhibition. We show that PEDV
suppresses the IFN-I signaling pathway by inducing STAT1 deg-
radation in a proteasome-dependent manner. STAT1 plays an in-
dispensable role in innate antiviral immunity to PEDV infection.
In turn, PEDV subverts the JAK-STAT kinase by inducing STAT1
degradation.
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MATERIALS AND METHODS
Cells and viruses. Vero E6 cells (an African green monkey kidney cell line;
ATCC) and IPEC-J2 cells (a porcine small intestinal epithelial cell line,
donated by Yanming Zhang of Northwest A&F University, China) (34)
were cultured in Dulbecco’s minimum essential medium (DMEM; Life
Technologies) supplemented with 10% heat-inactivated fetal bovine se-
rum (FBS; Thermo Fisher) at 37°C under 5% CO2. The PEDV strain
CV777 (GenBank accession number KT323979) was preserved in Harbin
Veterinary Research Institute, Harbin, China. This virus was maintained
and titrated in Vero E6 cells as described previously (1) and was stored at
�80°C. Newcastle disease virus expressing green fluorescent protein
(NDV-GFP) (35) was grown in 9-day-old specific-pathogen-free embry-
onated chicken eggs and was stored at �80°C (36).

Virus infection, drug treatments, and transfection. Monolayers of
Vero E6 and IPEC-J2 cells were infected with PEDV strain CV777 at a
multiplicity of infection (MOI) of 0.1 for 1 h at 37°C. Unbound virus was
removed, and cells were maintained in complete medium for various
times until samples had been harvested. Some cell samples were treated
with IFN-� (PBL Assay Science) or IFN-� (R&D Systems) at the working
concentration as indicated. In additional experiments, Vero E6 and
IPEC-J2 cells were treated with the proteasome inhibitor MG132 (5 �M;
Sigma), bortezomib (80 nM), or lactacystin (20 �M; Sigma), the au-
tophagy inhibitor 3-methyladenine (3-MA) (5 mM; Sigma), the tyrosine
kinase inhibitor genistein (100 �M; Sigma), or the carrier control di-
methyl sulfoxide (DMSO) for 1 h before they were inoculated with a mock
infection control or PEDV. Cells were further cultured in the presence of
MG132, bortezomib, lactacystin, genistein, 3-MA, or DMSO for the indi-
cated times. For the overexpression of STAT1, the pcDNA3.1/STAT1 ex-
pression vector (2 �g/well) was transfected into Vero E6 cells. Plasmid
DNA was transfected with Lipofectamine 2000 (Invitrogen, USA) as rec-
ommended by the manufacturer. At 24 h posttransfection, cells were in-
fected with PEDV at an MOI of 0.1 for the indicated times.

IFA. An immunofluorescence assay (IFA) was performed as described
previously (37). Briefly, at 24 h or 48 h postinoculation, Vero E6 cells were
fixed and were stained with a mouse monoclonal antibody (MAb) against
the PEDV spike protein (3F12; Median Diagnostics, South Korea) for 1 h.
After three washes with phosphate-buffered saline (PBS), the cells
were stained with fluorescein isothiocyanate (FITC)-conjugated goat
anti-mouse IgG for another 1 h. After washing, fluorescence was visu-
alized with an Olympus inverted fluorescence microscope equipped
with a camera.

Western blot analysis. Western blot analysis was performed as de-
scribed previously with a slight modification (38). Typically, samples were
separated by SDS-PAGE under reducing conditions and were transferred
to a polyvinylidene difluoride (PVDF) membrane. After blocking, the
membranes were incubated first with a primary antibody and then with an
appropriate IRDye-conjugated secondary antibody (Li-Cor Biosciences,
Lincoln, NE). The membranes were scanned using an Odyssey instrument
(Li-Cor Biosciences) according to the manufacturer’s instructions.
Mouse MAb 2G3 against the PEDV nucleocapsid (N) protein was stocked
in our laboratory. The STAT1 rabbit polyclonal antibody, the STAT2

rabbit polyclonal antibody, and a phospho-STAT1 (Tyr701) (D4A7) rab-
bit MAb were purchased from Cell Signaling Technology, USA. A mouse
MAb against �-actin and a rabbit polyclonal antibody against ubiquitin
were purchased from Santa Cruz Biotechnology.

Quantitative RT-PCR. Quantitative reverse transcription-PCR (RT-
PCR) analyses were carried out as described previously with a slight mod-
ification (39). At 24 h or 48 h post-PEDV infection, total RNA was ex-
tracted from cells and was subjected to quantitative RT-PCR using the
specific primers listed in Table 1. Relative quantification was performed
by the ��CT method (40). Briefly, cycle threshold (CT) values were nor-
malized to that for �-actin mRNA (the internal standard). The normal-
ized values were designated �CT, which was calculated, e.g., as CT-

(STAT1) � CT(�-actin). Fold changes were determined by 2���CT,
where ��CT is �CT(PEDV) � �CT(mock infection control).

TCID50 assay. The virus samples collected were clarified by centrifu-
gation at 8,000 � g for 10 min prior to titration. Fifty percent tissue culture
infective dose (TCID50) assays were performed on Vero E6 cells according
to the method of Reed and Muench, as described previously (41). Briefly,
cell monolayers (104 cells per well) in 96-well tissue culture plates (Corn-
ing, USA) were inoculated with 100 �l 10-fold serial dilutions of each
virus stock and were incubated for 4 days prior to observation of the
presence of cytopathic effect.

Immunoprecipitation assay. Vero E6 cells were infected with PEDV
as described above. The infected cells were harvested at 24 h postinfection,
washed three times with cold PBS (pH 7.4), and lysed with Pierce IP lysis
buffer (Thermo Scientific, Rockford, IL). Clarified extracts were first pre-
cleared with protein A/G beads (SC-2003; Santa Cruz) and then incubated
with protein A/G beads plus a rabbit polyclonal antibody against STAT1

TABLE 1 Primers for PCR used in this study

Primer
name Cells Primer sequence (5=¡ 3=)
STAT1-F Vero E6 TCCGTTTTCATGACCTCCTGT
STAT1-R Vero E6 CTGAATATTCCCCGACTGAGC
STAT1-F IPEC-J2 TCCGTTTTCATGACCTTCTGT
STAT1-R IPEC-J2 CTGAATATTCCCTGACTGAGT
�-actin-F Vero E6 AGGCTCTCTTCCAACCTTCCTT
�-actin-R Vero E6 CGTACAGGTCTTTACGGATGTCCA
�-actin-F IPEC-J2 CAAGCAACCACAGCCACAA
�-actin-R IPEC-J2 AGGATGGAGCCGCCGATC

FIG 1 PEDV infection is resistant to IFN-�. (A) Vero E6 cells were infected
either with NDV-GFP at an MOI of 0.01, as a control, or with PEDV at an MOI
of 0.1 for 24 h. Subsequently, 1,000 IU/ml or 10,000 IU/ml of IFN-� was added
to the medium. At 24 h post-IFN-� treatment, PEDV-infected cells were
stained with a MAb to PEDV spike protein as described in Materials and
Methods. NDV-GFP-infected cells were observed directly under a fluores-
cence microscope. (B) PEDV-infected Vero E6 cells were grown for 24 h in the
presence of various concentrations of IFN-� as indicated. Supernatant sam-
ples were collected, and titers were determined. Data represent the means of
duplicate measurements (	SD) of virus titers from three independent exper-
iments. *, P 
 0.05. The P value was calculated using Student’s t test.
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FIG 2 STAT1, but not STAT2, is downregulated in PEDV-infected cells. (A and B) PEDV infection reduces the expression levels of STAT1, but not STAT2, in
Vero E6 and IPEC-J2 cells. Cells were infected with PEDV at an MOI of 0.1 for 24 h or 48 h. Detergent lysates collected from Vero E6 (A) or IPEC-J2 (B) cells were
directly subjected to reducing SDS-PAGE and immunoblotting with antibodies to STAT1, STAT2, or �-actin (loading control). Densitometric data for
STAT1/actin, STAT2/actin, and STAT1/N ratios from three independent experiments are expressed as means 	 SD. (C) An IFA and a Western blot assay verified
that UV-inactivated PEDV was replication defective. PEDV S protein was stained with MAb 3F12, followed by FITC-conjugated goat anti-mouse IgG. Vero E6
cells were inoculated with a mock infection control, PEDV, or UV-inactivated PEDV at an MOI of 1 for 24 h. Cells were lysed and were analyzed by Western
blotting with a MAb against PEDV N protein. (D) The levels of STAT1 protein were not reduced by UV-inactivated PEDV in cells. Vero E6 and IPEC-J2 cells were
inoculated with UV-inactivated PEDV at an MOI of 0.1 for 24 h or 48 h. Western blotting was used to detect the levels of STAT1 protein. Densitometric data for
STAT1/actin ratios from three independent experiments are expressed as means 	 SD. *, P 
 0.05. The P value was calculated using Student’s t test.
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(Cell Signaling Technology, USA) for 4 h. The beads were first washed
with lysis buffer and then boiled in sample buffer. The immunoprecipi-
tated proteins were subjected to reducing SDS-PAGE and were blotted
with a rabbit polyclonal antibody against ubiquitin (Santa Cruz, CA).

Statistical analysis. Variables are expressed as means 	 standard de-
viations (SD). Statistical analyses were performed using Student’s t test. A
P value of 
0.05 was considered significant.

RESULTS
PEDV infection is relatively resistant to IFN-�. Our previous
work demonstrated that PEDV infection fails to activate IFN-I
induction in Vero E6 cells (33). In the present study, we tested
directly whether IFN-I could inhibit established PEDV infection.
Vero E6 cells were infected either with PEDV for 24 h, to establish
replication, or with an IFN-sensitive virus, NDV-GFP, as a control
(42). The cells were then cultured further in the presence of IFN-�
at 1,000 IU/ml or 10,000 IU/ml for 24 h, and the effect of IFN-� on
the virus infection was analyzed by an IFA. We observed that a
high concentration of IFN-� slightly decreased the level of PEDV
infection, whereas NDV-GFP exhibited more sensitivity to IFN-�
treatment (Fig. 1A). To investigate the degree of PEDV resistance
to IFN-�, we treated Vero E6 cells with increasing concentrations
of IFN-� and determined the effect on PEDV infectivity by virus
titration. As shown in Fig. 1B, the titer of PEDV decreased only at
a high concentration of IFN-� (�1,000 U/ml) (Fig. 1B), a pattern
similar to that for other coronaviruses (27, 31, 43, 44). These data
suggest that established PEDV infection is resistant to IFN-�
treatment.

PEDV replication induces STAT1 degradation. The basic sig-

naling pathway activated in response to IFN-I has been reviewed
comprehensively (45). The key component in this signaling path-
way is JAK-STAT (46). To examine the effect of PEDV infection
on the JAK-STAT system, Vero E6 and IPEC-J2 cells were infected
with PEDV. At 24 h and 48 h postinfection, endogenous STAT1
and STAT2 proteins were detected by Western blotting. As shown
in Fig. 2A, STAT1 levels in PEDV-infected Vero E6 cells were
significantly lower than those in uninfected cells, a reduction that
seems to depend on viral replication, while STAT2 levels remained
constant throughout the experiment. Similar results were ob-
tained using IPEC-J2 cells (Fig. 2B). These data indicate that
PEDV infection induced STAT1 downregulation but not STAT2
downregulation.

The downregulation of STAT1 by PEDV infection could be
caused by incoming virions or by viral replication products. To
test whether viral replication is needed for the interference effect,
we inactivated PEDV virions by UV illumination and verified the
inactivation by IFA and Western blotting after inoculation of Vero
E6 cells (Fig. 2C). When the UV-inactivated virus was used to
inoculate Vero E6 cells, STAT1 expression levels were similar to
those in mock-inoculated cells (Fig. 2D). Similar results were ob-
served in IPEC-J2 cells. These results indicate that active PEDV
replication was needed for the downregulation of STAT1 in Vero
E6 and IPEC-J2 cells.

To further examine the effect of PEDV on STAT1 and to ad-
dress the possibility that PEDV infection downregulates STAT1 by
inhibiting STAT1 transcription, relative levels of STAT1 mRNA
were assessed by quantitative RT-PCR. IFN-�, which is known to
stimulate STAT1 transcription (47, 48), was used as a positive
control. We observed that IFN-� appropriately induced increases
in STAT1 mRNA levels in Vero E6 and IPEC-J2 cells (Fig. 3A and
B). The levels of STAT1 mRNA were also increased in PEDV-
inoculated Vero E6 cells at 24 h and 48 h postinoculation (Fig. 3A).
Similar results were obtained with IPEC-J2 cells (Fig. 3B). These
data indicate that PEDV replication leads to the degradation of
STAT1. However, we cannot formally rule out the possibility that
posttranscriptional regulation of STAT1 gene expression may be
involved in STAT1 downregulation, and this possibility should be
further investigated.

PEDV promotes STAT1 degradation via the ubiquitin-pro-
teasome system. In eukaryotic cells, there are two major intracel-
lular protein degradation pathways: the ubiquitin-proteasome
system and autophagy (49). The proteasomal degradation path-
way has high selectivity, and the proteasome generally recognizes
ubiquitinated substrates (50). In contrast, autophagy is a highly
conserved process for degrading redundant cellular components
by encircling them with a membrane, followed by fusion of the
vesicle with lysosomes (51). Therefore, to determine the mecha-
nism by which PEDV induces STAT1 degradation, the expression
levels of STAT1 protein were examined in cells treated with a
protease inhibitor, MG132 (52–54). As shown in Fig. 4A, treat-
ment with MG132 blocked STAT1 degradation in PEDV-infected
Vero E6 and IPEC-J2 cells, suggesting proteasome-mediated deg-
radation of STAT1 by PEDV. Since ubiquitinated proteins are
targeted for proteasomal degradation (55), we examined protein
ubiquitination in PEDV-infected cells. Lysates from Vero E6 cells
infected with PEDV were immunoprecipitated for STAT1 and
immunoblotted for ubiquitin. Actin, an endogenous cell protein,
served as an input control. We observed that PEDV infection en-
hanced the levels of ubiquitinated STAT1 (Fig. 4B). Additionally,

FIG 3 PEDV infection activates the transcription of STAT1. Vero E6 and
IPEC-J2 cells were infected with PEDV at an MOI of 0.1 for 24 h or 48 h. Cells
were treated with IFN-� at 10 IU/ml as a positive control. Total RNA was
extracted from cells, and STAT1 mRNA levels were assessed by quantitative
RT-PCR using the primers listed in Table 1. Three independent experiments
were performed in triplicate, and values are means 	 SD for all three experi-
ments. *, P 
 0.05. The P value was calculated using Student’s t test.
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we analyzed whether autophagy was involved in STAT1 degrada-
tion. To accomplish this, we exposed the cells to 3-MA, which is
commonly used to inhibit autophagy (56, 57). We observed
STAT1 degradation in virus-infected Vero E6 and IPEC-J2 cells,
and 3-MA treatment did not inhibit STAT1 degradation (Fig. 4C).
These data indicate that PEDV induces STAT1 degradation
through the ubiquitin-proteasome system.

Established PEDV infection interrupts STAT1 phosphoryla-
tion. Phosphorylation of STAT1 on tyrosine 701 is required for
full activation of STAT1 (58, 59). To determine the effect of PEDV
infection on STAT1 activation, phosphorylated STAT1 (p-
STAT1) was initially examined in PEDV-infected cells at different
time points. Western blot analysis showed that phosphorylated
STAT1 levels were increased at early time points (1 to 24 h postin-

FIG 4 PEDV-induced STAT1 downregulation occurs through proteasome-mediated degradation but not through an autophagy mechanism. (A) Cells were first
treated with the proteasome inhibitor MG132 or the carrier control DMSO for 1 h and were then either infected with PEDV at an MOI of 0.1 or left uninfected.
Cells were further cultured in the absence or presence of MG132 for various times as indicated. Detergent lysates were collected from cells and were subjected to
reducing SDS-PAGE and immunoblotting with a STAT1 antibody. Densitometric data for STAT1/actin ratios from three independent experiments are expressed
as means 	 SD. (B) PEDV infection induced the ubiquitination (Ub) of STAT1. Vero E6 cells were infected with PEDV at an MOI of 0.1 for 24 h. Detergent lysates
were first immunoprecipitated with a STAT1 antibody as described in Materials and Methods and then subjected to reducing SDS-PAGE and immunoblotting
with a rabbit polyclonal anti-Ub antibody. Detergent lysates blotted with the actin antibody were used as an input protein control. Densitometric data for Ub
STAT1/actin ratios from three independent experiments are expressed as means 	 SD. (C) Vero E6 and IPEC-J2 cells were treated either with 3-MA (5 mM) or
with the carrier control DMSO for 4 h prior to PEDV infection. At 24 h or 48 h postinfection, cell lysates were subjected to blotting with a STAT1 antibody.
Densitometric data for STAT1/actin ratios from three independent experiments are expressed as means 	 SD. *, P 
 0.05. The P value was calculated using
Student’s t test.
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fection) and decreased after 24 h postinfection (Fig. 5A). These
results suggested that the IFN response is activated at an early stage
of virus infection and is then decreased at late stages of infection.
We thus examined whether established PEDV infection can in-
hibit STAT1 phosphorylation to block the IFN signaling pathway.
Exogenous administration of recombinant IFN-� was used as the
positive control, since the ability of IFN-� to induce STAT1 phos-
phorylation has been well documented previously (60). Vero E6
and IPEC-J2 cells were infected with PEDV for 36 h and were then
treated with IFN-� for 30 min. As shown in Fig. 5B, IFN-�-driven
p-STAT1 was barely detectable in PEDV-infected cells, in contrast to
a strong p-STAT1 band in uninfected IFN-�-treated cells, indicating
that PEDV-infected cells failed to activate STAT1 in IFN-�-treated
cells. The results indicate that established PEDV infection interrupts
the IFN-I-mediated JAK/STAT1 signaling pathway.

Both phosphorylated and nonphosphorylated forms of
STAT1 are degraded by PEDV. Previous research demonstrated
that the level of phosphorylated STAT1 is usually turned down by
ubiquitin-proteasome system-mediated degradation (61). Given
that phosphorylated STAT1 expression is reduced by PEDV infec-
tion at late stages, we determined whether only phosphorylated
forms of STAT1 were targeted for degradation. IFN-� was used as
a positive control (Fig. 6A and B). For this purpose, cells were
pretreated with genistein, a Src family-selective tyrosine kinase
inhibitor (62), to inhibit STAT1 phosphorylation in response to
IFN-�. It was clear from the results that both phosphorylated and
nonphosphorylated forms of STAT1 were degraded in PEDV-in-
fected Vero E6 (Fig. 6A) and IPEC-J2 (Fig. 6B) cells.

PEDV inhibits IFN-� signaling by reducing the levels of
phosphorylated STAT1. To determine whether IFN signaling
transduction was inhibited in PEDV-infected cells, we performed
a Western blot analysis of STAT1 phosphorylation in Vero E6 cells
(Fig. 7A). As expected, treatment with IFN-� induced STAT1
phosphorylation in Vero E6 cells. p-STAT1 levels in response to
IFN-� were significantly lower in PEDV-infected cells than in un-
infected cells. In contrast, p-STAT1 levels in response to IFN-�
were slightly reduced in Vero E6 cells at early time points; these
signals might be transmitted through a distinct but overlapping
pathway (63). In order to ensure that these observations were not
limited to the specific cell type used, we repeated these experi-
ments with IPEC-J2 cells. We found that p-STAT1 levels were
reduced in PEDV-infected cells in response to IFN-� as well as in
response to IFN-� (Fig. 7B). These data indicate that the STAT1-
related components of the IFN signal transduction pathway are
targets for PEDV inhibition.

STAT1 plays a critical role in the control of PEDV replica-
tion. Given that STAT1 degradation is induced by PEDV infec-
tion, and since the degradation of STAT1 has been shown to con-
tribute to the blockage of IFN signaling (54, 60), we investigated
whether STAT1 has an antiviral effect on PEDV replication. To
accomplish this, we treated Vero E6 cells with the protease inhib-
itor MG132, which can significantly inhibit STAT1 degradation in
PEDV-infected cells (Fig. 4A). Using an IFA, we observed that the
percentage of PEDV-infected Vero E6 cells was lower for MG132-
treated cells than for cells treated with the carrier DMSO (Fig. 8A).
The reduction in the titers of progeny virus in MG132-treated cells

FIG 5 Established PEDV infection inhibits STAT1 phosphorylation. (A) Vero E6 and IPEC-J2 cells were infected with PEDV at an MOI of 0.1 for 12, 24, 30, 36,
48, or 55 h. Cell lysates were collected and were subjected to blotting with a phospho-STAT1 (Tyr701) antibody. Densitometric data for p-STAT1/actin ratios
from three independent experiments are expressed as means 	 SD. (B) Vero E6 and IPEC-J2 cells were first infected with PEDV at an MOI of 0.1 for 36 h and
then treated with IFN-� (10 U/ml). At 30 min post-IFN-� treatment, cells were lysed and were subjected to Western blotting with the antibody against
phospho-STAT1 (Tyr701). Densitometric data for p-STAT1/actin ratios from three independent experiments are expressed as means 	 SD. *, P 
 0.05. The P
value was calculated using Student’s t test.
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was confirmed by measuring the TCID50 (Fig. 8B). Additionally,
Vero E6 cells were treated with two other proteasome inhibitors,
bortezomib and lactacystin (64), followed by infection with
PEDV. As shown in Fig. 8C and D, the titers of progeny virus in
PEDV-infected Vero E6 cells were significantly lower in cells
treated with either inhibitor than in control-treated cells. To fur-
ther confirm the role of STAT1 in PEDV replication, we overex-
pressed STAT1 in Vero E6 cells and then infected cells with PEDV.
We observed that STAT1 overexpression significantly inhibited
PEDV replication (Fig. 8E). These observations suggest that ubiq-
uitin-proteasome-mediated STAT1 degradation promotes PEDV
replication.

DISCUSSION

The first line of host defense against viruses is the innate immune
system, in which the interferons are a group of secreted cytokines
that exert antiviral effects. To establish productive infection, vi-
ruses must circumvent the powerful immune defense mecha-
nisms, including those induced by interferons. PEDV, like other
coronaviruses (24, 28, 33), appears to have evolved several mech-
anisms to circumvent the host innate immune response. These
antagonistic strategies have developed on at least three levels: in-
hibition of RIG-I-mediated IFN production pathways (65), dis-
ruption of IFN induction cascades (12, 66), and inhibition of
IRF-3, a protein that itself induces IFN gene transcription (33, 67).

The experiments described in this paper demonstrate that PEDV
infection inhibits the IFN response signaling pathway by inducing
the degradation of STAT1. This is a unique example of a corona-
virus that directly degrades an IFN response protein to enable its
survival, highlighting the multifaceted control of host innate im-
munity by coronaviruses.

To circumvent the IFN response, different viruses have evolved
a great diversity of molecular mechanisms. We and others have
previously reported that PEDV infection does not stimulate the
production of IFN-I in Vero E6 cells (33, 65, 67), which may be
crucial to the pathogenesis of this virus. Another way in which
viruses evade the IFN response is to block the actions of IFNs (47,
63). In this study, we found that PEDV is relatively resistant to
treatment with IFN-I, suggesting that this virus has also developed
another strategy to prevent the biological activities of IFNs. These
activities are initiated by the binding of IFN-I to its cognate recep-
tors, resulting in the activation of the JAK/STAT pathway (15).
The data from our virus infection model indicate that STAT1 is an
antiviral signal transduction molecule against PEDV infection and
that PEDV replication blocks IFN signaling by degrading STAT1.
Similarly, several members of the virus family Paramyxoviridae
target STAT proteins as a means to evade IFN antiviral signaling
(52, 68–70). Therefore, we concluded that PEDV specifically in-
hibits IFN-I signaling by degrading the expression of STAT1 pro-

FIG 6 Both phosphorylated and nonphosphorylated forms of STAT1 are degraded by PEDV. Vero E6 and IPEC-J2 cells were pretreated with the kinase inhibitor
genistein (100 �M) or the carrier control DMSO for 1 h and were then incubated either with PEDV at an MOI of 0.1 or with a mock infection control. Cells were
cultured in the presence or absence of genistein for a further 36 h. Detergent lysates collected from Vero E6 (A) and IPEC-J2 (B) cells were directly subjected to
reducing SDS-PAGE and immunoblotting with a STAT1 antibody or a phospho-STAT1 (Tyr701) antibody. Densitometric data for p-STAT1/actin or STAT1/
actin ratios from three independent experiments are expressed as means 	 SD. *, P 
 0.05. The P value was calculated using Student’s t test.
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FIG 7 PEDV inhibits the type I interferon pathway. Vero E6 and IPEC-J2 cells were either mock infected or infected with PEDV at an MOI of 0.1 for 36 h; they
were then treated with IFN-� (10 U/ml) or IFN-� (10 U/ml) for different times as indicated. Vero E6 (A) and IPEC-J2 (B) cells were collected and lysed and were
then subjected to Western blot analysis with an anti-STAT1 antibody or an anti-phospho-STAT1 (Tyr701) antibody. Densitometric data for p-STAT1/actin
ratios from three independent experiments are expressed as means 	 SD. *, P 
 0.05. The P value was calculated using Student’s t test.
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tein. However, differential STAT targeting has also been observed
with some rubulaviruses. For example, human parainfluenza vi-
rus 2 most frequently targets STAT2 (71). Moreover, it has been
observed that mumps virus has acquired a unique ability to target
both STAT1 and STAT3 for destruction (72).

Currently, there are two major distinct intracellular degrada-
tion pathways, i.e., autophagy and the ubiquitin-proteasome sys-
tem (73). Thus, to determine whether both pathways are involved
in the degradation of STAT1, we pharmacologically inhibited the
formation of autophagy but did not block STAT1 degradation;
proteasomal inhibition with MG132 prevented the degradation of
STAT1. Previous research demonstrated that hepatitis C virus and
simian virus 5 selectively degrade STAT1 in a proteasome-depen-
dent manner (52, 54, 60). Although STAT1 degradation was con-
firmed in PEDV-infected cells, we do not know whether this coro-
navirus utilizes its proteins to induce STAT1 degradation directly.
Further work is needed to answer this question conclusively.

However, whatever the mechanism for STAT1 degradation by
PEDV, it is independent of the IFN signaling pathway, since both
phosphorylated and nonphosphorylated forms of STAT1 are de-
graded in PEDV-infected cells. Overall, our findings clearly dem-
onstrate that PEDV infection-induced STAT1 degradation is me-
diated by the ubiquitin-proteasome system.

Previous reports showed that STAT1 is involved in the upregu-
lation of genes due to signaling by type I or type II interferons (74).
Therefore, to determine whether STAT1 degradation affects both
types of IFN signaling pathways, we first infected cells with PEDV
and then treated them either with IFN-� or with IFN-�. We found
that STAT1 degradation in PEDV-infected cells blocked both
IFN-I signaling and IFN-II signaling. The observation that STAT1
degradation occurs in PEDV-infected cells suggests that this will
result in the ability of the virus to partially overcome the IFN
response. Thus, we inhibited STAT1 degradation with three pro-
teasome inhibitors—MG132, bortezomib, and lactacystin—to

FIG 8 STAT1 degradation promotes PEDV replication. (A) Immunofluorescent assay to detect PEDV infection. Vero E6 cells were treated with MG132 at 5 �M
for 1 h before inoculation with PEDV CV777. Cells were further cultured in the absence or presence of MG132 as described above. At 24 h or 48 h after
inoculation, the cell monolayers were fixed and were examined for PEDV infection by an IFA with a MAb (3F12) against PEDV spike protein. (B) Blocking STAT1
degradation with MG132 inhibits PEDV replication. Vero E6 cells were treated with MG132 as mentioned above. At 24 h or 48 h postinfection, the progeny
viruses were recovered from culture fluids. The virus titer was determined by the TCID50 assay. Results represent means 	 SD for three independent experiments.
(C and D) Blocking STAT1 degradation with bortezomib (C) or lactacystin (D) inhibits PEDV replication. Vero E6 cells were treated with bortezomib at 80 nM
or lactacystin at 20 �M during PEDV infection. The virus titer was determined by the TCID50 assay. (E) Overexpression of STAT1 decreases PEDV replication.
Vero E6 cells were transfected with the pcDNA3.1/STAT1 or pcDNA3.1 vector prior to PEDV inoculation. At 24 h posttransfection, Vero E6 cells were infected
with PEDV for 24 h or 48 h. Results represent means 	 SD for three independent experiments. *, P 
 0.05. The P value was calculated using Student’s t test.
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confirm our hypothesis. We observed that blocking STAT1 deg-
radation rescues the ability of the host to suppress PEDV replica-
tion. Additionally, STAT1 overexpression also rescued the antivi-
ral ability of host cells. Similarly, the replication of several other
coronaviruses, including MHV, SARS-CoV, IBV, and feline en-
teric coronavirus, is affected upon impairment of proteasomal
activity (31, 75–78). Other viruses, such as hepatitis C virus and
simian virus 5, have evolved similar mechanisms for the evasion of
host defenses (52, 79). Our data suggest that different viruses may
use similar mechanisms to circumvent IFN action and inhibit the
JAK/STAT signaling pathway.

In conclusion, we have shown that STAT1 expression is re-
duced in PEDV-infected Vero E6 and IPEC-J2 cells. We have also
provided evidence of PEDV-mediated ubiquitination and pro-
teasomal degradation of STAT1, outlining a basic viral im-
mune evasion mechanism used by PEDV to block the IFN re-
ceptor-mediated JAK/STAT pathway in virus-infected cells.
This PEDV-mediated immune evasion strategy may highlight a
potential target pathway for therapeutic restoration of the antivi-
ral immune response.
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