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Abstract

DNA repair pathways maintain genomic integrity and stability, and dysfunction of DNA repair leads to cancer. We hypothesize 
that functional genetic variants in DNA repair genes are associated with risk of lung cancer. We performed a large-scale meta-
analysis of 123,371 single nucleotide polymorphisms (SNPs) in 169 DNA repair genes obtained from six previously published 
genome-wide association studies (GWASs) of 12 160 lung cancer cases and 16 838 controls. We calculated odds ratios (ORs) 
with 95% confidence intervals (CIs) using the logistic regression model and used the false discovery rate (FDR) method for 
correction of multiple testing. As a result, 14 SNPs had a significant odds ratio (OR) for lung cancer risk with PFDR < 0.05, of 
which rs3115672 in MSH5 (OR = 1.20, 95% CI = 1.14–1.27) and rs114596632 in GTF2H4 (OR = 1.19, 95% CI = 1.12–1.25) at 6q21.33 
were the most statistically significant (Pcombined = 3.99 × 10−11 and Pcombined = 5.40 × 10−10, respectively). The MSH5 rs3115672, but 
not GTF2H4 rs114596632, was strongly correlated with MSH5 rs3131379 in that region (r2 = 1.000 and r2 = 0.539, respectively) 
as reported in a previous GWAS. Importantly, however, the GTF2H4 rs114596632 T, but not MSH5 rs3115672 T, allele was 
significantly associated with both decreased DNA repair capacity phenotype and decreased mRNA expression levels. These 
provided evidence that functional genetic variants of GTF2H4 confer susceptibility to lung cancer.

Introduction
Lung cancer remains a major cause of cancer morbidity and 
mortality worldwide (1). Although most lung cancer is attrib-
uted to tobacco smoking, accumulative evidence suggests that 

inherited genetic factors also play a pivotal role in lung cancer 
development (2,3). Notably, individuals with a family history 
of lung cancer have an increased risk, compared with those 
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without a family history (4). Previous genome-wide association 
studies (GWASs) in populations of European descent have con-
sistently identified common single nucleotide polymorphisms 
(SNPs) that confer risk of lung cancer at three independent loci 
at 5p15.33, 15q25.1 and 6p21.33 (5–8). A more recent GWAS analy-
sis conducted by the Transdisciplinary Research In Cancer of the 
Lung (TRICL) consortium identified two additional rare variants 
in BRCA2 and CHEK2 with large effects on susceptibility to lung 
squamous cell carcinomas (9). These findings have advanced 
our knowledge of the genetic basis of lung cancer and provided 
new evidence of the involvement of additional biological path-
ways and relevance of DNA repair in the etiology of lung cancer. 
However, these reported loci only account for a fraction of the 
familial relative risk of lung cancer in Europeans, suggesting that 
the majority of missing heritability remain to be determined (10).

Because the reported loci by GWAS require a stringent genome-
wide significance threshold and they are likely to reflect only the 
tip of the iceberg in the genetic etiology of lung cancer, many 
complementary approaches have been applied to the post-GWAS 
analysis for identifying the missing heritability of the disease, 
such as pathway-based association analysis (11–13). The pathway-
based hypothesis tests for associations of genetic variants in bio-
logical pathway genes with the disease risk, in which the genes 
are involved in complex molecular networks, cellular pathways 
and cross-talks. Investigating SNPs in a biological pathway rather 
than individual genes may provide a better chance to identify the 
genes and mechanisms underlying disease pathogenesis (11).

 Many of the biological pathways identified to date have been 
proposed as important candidate pathways for lung carcinogene-
sis, including DNA repair pathways, a critical defense mechanism 
against human carcinogenesis (14). DNA damage is caused by 
both endogenous oxygen free radicals from metabolic processes 
and exogenous (both chemical and physical) mutagens. The DNA 
repair process is an important mechanism to maintain genomic 
stability and integrity, and unrepaired or incorrectly repaired DNA 
may result in mutation fixation, thus leading to cancer develop-
ment (15). In humans, a total of 15 DNA repair pathways have 
been characterized according to their unique repair processes, 
such as base excision repair (BER), nucleotide excision repair 
(NER), mismatch repair (MMR), double-strand break repair (DSBR), 
direct reversion repair (DRR), and DNA polymerases (15,16).

Although a few previous studies, including ours, have inves-
tigated associations between SNPs in DNA repair pathway genes 
and lung cancer risk, only a limited number of SNPs and candi-
date genes in the pathways with some small effects on cancer 
risk have been reported (17–23), due to the limited sample sizes 
and number of SNPs queried in these prior studies. Here, we 
examined the associations between genetic variants in 169 DNA 
repair genes and lung cancer risk comprehensively by using a 
large-scale meta-analysis, including 12 160 cases and 16 838 con-
trols derived from six previously published lung cancer GWASs.

Methods

Study populations
We conducted a pooled analysis of datasets from six previously published 
GWASs of lung cancer in 12 160 lung cancer cases and 16 838 controls of 
European ancestry. The present study was part of the TRICL consortium 
established in 2008 and associated with the International Lung Cancer 
Consortium (ILCCO). The six studies included in this analysis were: the 
Institute of Cancer Research (ICR) GWAS; the MD Anderson Cancer Center 
(MDACC) GWAS; the International Agency for Research on Cancer (IARC) 
GWAS; the National Cancer Institute (NCI) GWAS; the Samuel Lunenfeld 
Research Institute study (SLRI) GWAS; and the Germany Lung Cancer 
study (GLC), which have been published previously (9,24). The detailed 
recruitments of cases and controls recruitments and their characteris-
tics are summarized in Supplementary Table 1, available at Carcinogenesis 
Online. Lung cancer diagnosis in these studies was primarily pathologi-
cally confirmed with a small proportion of patients diagnosed by clini-
cal history and imaging. Written informed consent was obtained from 
each participant, and this study was approved by the institutional review 
boards for each of the participating institutions.

Selection of genes and SNPs from the DNA repair 
pathways
The selection process of the genes and SNPs is shown in Figure  1. We 
selected 169 candidate genes from 15 main DNA repair pathways from 
the publically available database MSigDB (Supplementary Table 2 is avail-
able at Carcinogenesis Online), which has compiled gene sets from a variety 
of resources, such as Kyoto Encyclopedia of Genes and Genomes (KEGG), 
Gene Ontology (GO), and others (25). Additional genes involved in DNA 
repair were obtained from previously published literature (15,16,26). 
A total of 123,371 SNPs within these selected genes from 2 kb upstream to 
2 kb downstream were extracted based on CEU data from 1000 Genomes 
Project (March 2012). Quality control for SNPs fit the following two criteria: 
(i) SNPs located on autosomal chromosomes; (ii) minor allelic frequency 
(MAF) ≥ 5% in the CEU populations. As a result, 16 702 SNPs in 157 genes 
were included after quality control processing. Some additional SNPs were 
excluded due to low quality of imputation in the individual GWASs, leav-
ing a set of 14 100 SNPs from the pooled lung cancer GWASs.

Putative functional SNPs were predicted by a web-based tool, SNPinfo, 
which has incorporated functional predictions of protein structure, gene 
regulation, splicing and microRNA (miRNA) binding, with consideration 
of whether the alternative alleles of a SNP were likely to have differen-
tial effects on gene function (27). Most functional SNPs could be further 
validated by an independent software package FunciSNP (28). Only one 
SNP was selected when multiple SNPs showed strong pair-wise linkage 
disequilibrium (LD) r2 ≥ 0.8. After this filtering, a total of 826 putative func-
tional SNPs in 12 160 cases and 16 838 were retained in the final analysis.

DNA repair capacity analysis
The analysis of DNA repair capacity (DRC) was performed using the host-
cell reactivation assay for 869 control subjects from the MDACC study, as 
described previously (29). The host-cell reactivation assay measures the 
activity of the CAT gene, a bacterial drug resistance gene, in cells that have 
been transfected with BPDE-treated plasmids. Before the plasmid trans-
fection, cultured T lymphocytes were isolated from whole peripheral blood 
samples stimulated by phytohemagglutinin. The activity of the repaired 
CAT gene was quantified using a scintillation counter to determine the 
formation of [3H]monoacetylated and [3H]diacetylated chloramphenicols 
by adding the chloramphenicol and [3H]acetyl-CoA in the cell extracts. 
DRC was defined as the ratio of the CAT activity of cells transfected with 
BPDE-treated plasmids (treated) to that of cells transfected with untreated 
plasmids (untreated): DRC = treated/untreated × 100% (29–31).

Expression analysis
Expression quantitative trait locus (eQTL) analysis was performed to 
determine the correlations between genotypes of the identified SNPs and 
expression levels of the nearby genes using several publically available 
datasets. The data used for eQTLs were obtained from lymphoblostoid 
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cell lines derived from 270 individuals from four ethnic populations (CEU: 
90 Utah residents from northern and western Europe; CHB: 45 unrelated 
Han Chinese in Beijing; JPT: 45 unrelated Japanese in Tokyo; YRI: 90 Yoruba 
in Ibadan, Nigeria), and the DNA samples from these cell lines were also 
used for genotyping (32).

We further performed an RNA expression analysis by using lung 
cancer data from The Cancer Genome Atlas (TCGA) database (http://can-
cergenome.nih.gov/) (RNASeqV2.Level_3.1.8.0). In the TCGA database, 489 
subjects had lung adenocarcinoma and 489 had lung squamous cell carci-
noma, of which 57 and 50 had matching adjacent normal samples, respec-
tively. Differential gene expression was measured only in paired tumor 
and normal tissues. All individuals included in the TCGA data analysis 
were of European descents.

Statistical analysis
In each of six lung cancer GWASs, SNP genotyping assays were com-
pleted using Illumina HumanHap 300 BeadChips, HumanHap 550 or 
610 Quad arrays. We imputed unmeasured genotypes using data from 
the 1000 Genomes Project (phase I integrated release 3, March 2012) as 
the reference using IMPUTE2, MACH or minimac software as previously 
reported (9). The SLRI and GLC studies followed the same protocol for 
imputation as has previously been followed by MDACC (9). A  series of 
quality control steps were performed before meta-analysis of the results 
from imputation for each study. Specifically, only imputed SNPs with an 
information measure ≥0.40 with IMPUTE2 or an RSQR ≥ 0.30 with MACH 
were included for further analysis. The association between each SNP 
and lung cancer risk was estimated using an additive genetic model in 
the logistic regression. The pooled odds ratio (OR) and 95% confidence 
interval (CI) were calculated by the Mantel-Haenszel procedure assumed 
a fixed-effects model. A  random-effects model was used if there was 
significant heterogeneity (P  <  0.05). The between-study heterogeneity 
was calculated based on Cochran’s Q statistics and I2. The false discov-
ery rate (FDR) method was used to correct for multiple comparisons. 
Recombination rates (cM/Mb) across the 6p21.33 region were estimated 
from HapMap (Build 35 coordinates). Haploview 4.2 was applied to infer 
the LD structure of the genome derived from 1000 Genomes Project 
CEU individuals. Human leukocyte antigen (HLA) genotypes of HLA-A, 

HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 genes were sequenced by the 
1000 Genomes Project (33) and the results were used to evaluate LD 
between SNPs and HLA alleles. The relationship between the SNPs and 
corresponding gene expression was examined using a linear regression 
model. We used Gene Relationships Across Implicated Loci (GRAIL) to 
identify subsets of highly related genes in DNA pathways from 37 genes 
associated with lung cancer risk (34). PLINK1.07 was used for primary 
statistical analysis of the GWAS datasets.

Results
As shown in the Manhattan plot of Figure 2 derived from the 
additive genetic model of the meta-analysis of the 826 SNPs 
for 12 160 cases and 16 838 controls, suggestive evidence for an 
association was found for many regions harboring DNA repair 
genes throughout the genome. Across all the genetic variants, 
multiple signals were nominally associated with lung cancer 
risk at P < 1.0 × 10−7 on chromosome 6. Overall, 67 SNPs achieved 
a significant association of P  <  0.05 (Supplementary Table  3 
is available at Carcinogenesis Online). However, only 14 SNPs 
remained statistically significant after the FDR correction (PFDR 
< 0.05) (Table 1). Notably, four SNPs in three genes had the same 
direction of effects across all six lung cancer GWASs (rs3115672 
in MSH5, rs114596632 in GTF2H4, and rs1056503 and rs2035990 in 
XRCC4) (Table 2 and Figure 3). There was no evidence of between-
study heterogeneity for these four SNPs.

SNP rs3115672 is located in intron 3 of MSH5 at 6q21.33, near 
the SNP rs3131379, which has been reported in a previous GWAS 
(5). We also observed strong support for an association between 
rs3131379 and lung cancer risk across studies (P  =  5.36 × 10−11) 
(Figure  2C). In the 1000 Genomes Project CEU individuals, 
rs3115672 is in perfect LD with rs3131379 (r2 = 1.00), suggesting 
that they reflect the same signal in this region (Supplementary 
Table 4 is available at Carcinogenesis Online).

Figure 1. Schematic flow for selecting putative functional genetic variants in DNA repair genes.
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Additionally, one SNP, rs114596632 within in an intron of 
GTF2H4, reached the genome-wide significance (P  =  5.40 × 10−10 
and PFDR  =  2.23 × 10−7). Although rs114596632 is located in the 
same 6q21.33 region as the reported MSH5 SNP rs3131379 and its 
completed LD SNP rs115549526 in BAG6, it is located over 700-kb 
upstream from them. A LD analysis revealed that rs114596632 is 
only moderately correlated with rs3131379 (r2 = 0.539) (Figure 2C 
and Supplementary Table  4 is available at Carcinogenesis 
Online). The recombination rates across the region including 
rs114596632 and rs3131379 showed that rs114596632 is an inde-
pendent susceptibility locus (Supplementary Figure  1 is avail-
able at Carcinogenesis Online). As the significant SNP rs114596632 
appeared to be located at 6p21.3, in the HLA region, we further 
performed a LD analysis for the association between rs114596632 
and HLA alleles that have been analyzed as a part of the 1000 
Genomes Project CEU individuals. We found that rs114596632 
is in moderate LD with HLA-B*0801 (r2 = 0.592) and HLA-C*0701 
(r2  =  0.675), suggesting that some HLA alleles may be partially 

tagged by this newly identified SNP rs114596632 (Supplementary 
Table 5 is available at Carcinogenesis Online). These HLA alleles 
form the ‘8.1 haplotype’, which extends for 4.7 million base pairs 
and is among the longest known haplotypes in humans (35). 
However, the HLA-B*0801 and HLA-C*0701 had only weak LD with 
the reported SNP rs3131379 in MSH5 (data not shown).

We also evaluated mRNA expressions levels of GTF2H4 in 
lung cancer cases from publicly available TCGA datasets. As 
shown in Supplementary Figure  2, available at Carcinogenesis 
Online, the expression levels of GTF2H4 was significantly higher 
in tumor tissues than in adjacent normal tissues among lung 
adenocarcinoma (P = 9.27 × 10−13) and lung squamous cell carci-
noma (P = 4.64 × 10−14) from the TCGA database.

 In addition to the two most significant SNPs at 6p, two other 
SNPs in XRCC4 also showed a suggestive association with lung 
cancer risk (P  =  6.23 × 10−5 for rs1056503, and P  =  3.63 × 10−4 for 
rs2035990) (Table 1). SNPs rs1056503 and rs2035990 were mod-
erately correlated with each other (r2  =  0.390). We previously 

Figure 2. Association results of SNPs in DNA repair genes and lung cancer risk. (A) Manhattan plot of association results of 826 putative functional SNPs (r2 < 0.8 with 

each SNP) in DNA repair genes. Scatter plot of P values in the −log10 scale includes original P values and (B) FDR-corrected P values obtained from the meta-analysis 

of six lung cancer GWASs. Horizontal line represents the threshold of PFDR = 0.05. (C) Region association of all SNPs (functional and non-functional) in 6p21.33, which 

showed a moderate LD between GTF2H4 SNP rs114596632 and MSH5 rs3115672, as well as two other reported SNPs (rs3131379 in MSH5 and rs115549526 in BAG6).
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reported that another SNP rs2075685 in XRCC4 was associated 
with lung cancer risk (19), but rs1056503 and rs2035990 were not 
correlated with that SNP (r2 = 0).

We also had the data on the DNA (NER) repair capacity (DRC) 
assay with cultured peripheral blood T-lymphocytes from 869 
controls (29) whose DNA were used for the GWAS analysis, with 
which we further analyzed the genotype–phenotype correlation 
in the present study. As shown in Table 3, there was a significant 
association between the genotypes of the GTF2H4 (a NER gene) 
rs114596632 and the DRC phenotype in these 869 control subjects, 
with the T allele carriers having a lower DRC than the C allele car-
riers (P = 0.032). Consistently, the T allele was also correlated with 
decreased mRNA expression of GTF2H4 in the 270 lymphoblastoid 
cell lines from HapMap. In contrast, the SNP rs3115672 in MSH5 
were not significantly associated with both this DRC phenotype, 
nor with the mRNA expression of MSH5 (Table 3).

Significant correlation was also observed between the XRCC4 
SNP rs1056503 and the gene expression levels, with higher expres-
sion in individuals with the TT genotype [P = 1.65 × 10−8 in all pop-
ulations (n = 270), and P = 0.006 in the CEU population (n = 90)] 
(Supplementary Figure 3 is available at Carcinogenesis Online).

We also used the GRAIL method for the literature-based 
pathway analysis to explore the connections between 37 signifi-
cant DNA repair genes. Overall, 16 regions had significant GRAIL 
P  <  1.35 × 10−3 (0.05/37) (Supplementary Table  6 is available at 
Carcinogenesis Online). Pairwise associations for genes in the iden-
tified region are presented in Supplementary Figure  4, available 
at Carcinogenesis Online, showing that there were multiple strong 
connections identified in the literature between these DNA repair 
genes. Notably, the associated GTF2H4 gene has a strong literature-
based connection with ERCC2 and MMS19, the previously known 
NER genes. Most of the keywords describing the functional connec-
tions in the pathway analysis were ‘repair’, ‘damage’ and ‘excision’.

Discussion
In this largest lung cancer GWAS meta-analysis among 28 998 
Europeans, we identified a novel genome-wide significant 

susceptibility variant rs114596632 in the DNA repair gene GTF2H4 
at 6p21.33. In addition, we confirmed two previously reported lung 
cancer-associated SNPs in DNA repair genes MSH5 and XRCC4 in 
the combined analysis. Interestingly, The GTF2H4 SNP rs114596632 
was found to have an effect on the DRC phenotype in removing 
BPDE-DNA adducts in cultured cells and the mRNA expression 
levels of GTF2H4 in the established cell lines. Further GRAIL path-
way analysis revealed that GTF2H4 had a strong connection with 
multiple NER genes. Our findings highlight the significant role of 
DNA repair genes in the development of lung cancer.

DNA repair is a complicated biological process, consisting of 
several distinct but often connected pathways, that plays a funda-
mental role in maintaining genomic stability and integrity. Defects 
in the complex DNA repair machinery can lead to point mutations 
as well as chromosomal aberrations, which increase the risk of can-
cer (36). Several types of cancer, including lung cancer, are charac-
terized by defective DNA repair, indicating the critical role of DNA 
repair in the pathogenesis and development of lung cancer (37,38).

Previous association studies in candidate genes have 
explored associations between DNA repair gene SNPs and lung 
cancer susceptibility, but the results were inconsistent (39,40). 
Recently, the pathway-based analysis on previously published 
GWAS data revealed distinct genes and pathways associated 
with lung cancer risk (41,42). However, their findings were based 
on only one GWAS in an Asian population, which need to be 
validated and extended in other populations to evaluate the 
robustness of the findings. In our current DNA repair pathway 
analysis that used a large sample size aggregated across six pub-
lished GWASs, we found that rs114596632 in GTF2H4 was asso-
ciated with lung cancer risk. We have an adequate statistical 
power (>80%) to detect the observed association of rs114596632. 
Also, the effect of rs114596632 on lung cancer risk had the 
same direction across all of the six GWASs, suggesting that the 
observed association was consistent and reliable.

GTF2H4, a general transcription factor IIH (TFIIH) subunit 4, is 
involved in both the NER process of DNA repair and transcription 
control interacting with variable factors important in carcino-
genesis (43). The well-known NER pathway, consisting of at least 

Table 1. Associations between 14 SNPs and lung cancer risk with P < 0.05 after FDR-correction

SNP Chr Positiona Gene Alleleb EAFc OR (95% CI)d Pd PFDR
e Effectsf Phete

g I2

rs3115672 6 31727897 MSH5 C/T 0.106 1.20 (1.14–1.27) 3.99E-11 3.30E-08 + + + + + + 0.266 22.30
rs114596632 6 30879987 GTF2H4 C/T 0.114 1.19 (1.12–1.25) 5.40E-10 2.23E-07 + + + + + + 0.462 0.00
rs3748522 12 1058688 RAD52 C/A 0.481 0.92 (0.89–0.95) 2.11E-06 5.81E-04 − − − − + + 0.108 44.61
rs11571475 12 1022352 RAD52 A/G 0.134 0.90 (0.85–0.95) 3.32E-05 6.86E-03 − − − − + − 0.641 0.00
rs1056503 5 82648977 XRCC4 T/G 0.120 1.11 (1.06–1.18) 6.23E-05 8.02E-03 + + + + + + 0.515 0.00
rs506120 15 43802024 TP53BP1 C/T 0.279 0.92 (0.89–0.96) 6.53E-05 8.02E-03 − − − − + − 0.420 0.00
rs11571376 12 1059556 RAD52 C/G 0.290 0.92 (0.89–0.96) 6.96E-05 8.02E-03 − + − − − − 0.113 43.82
rs12563994 1 155244092 CLK2 C/T 0.243 1.09 (1.04–1.13) 7.77E-05 8.02E-03 + − + + − + 0.200 31.39
rs7334543 13 32973276 BRCA2 A/G 0.256 0.93 (0.89–0.96) 1.49E-04 1.37E-02 − − − − + − 0.208 30.32
rs707937 6 31731014 MSH5 C/G 0.180 0.91 (0.87–0.96) 2.30E-04 1.90E-02 − − + − − − 0.234 26.79
rs2035990 5 82649467 XRCC4 T/C 0.069 1.13 (1.06–1.21) 3.63E-04 2.73E-02 + + + + + + 0.106 44.97
rs28628574 15 43802038 TP53BP1 A/C 0.103 0.90 (0.85–0.95) 4.05E-04 2.79E-02 − − + − − − 0.960 0.00
rs9534160 13 32888021 BRCA2 G/A 0.049 1.15 (1.06–1.25) 7.65E-04 4.56E-02 + + + + + − 0.433 0.00
rs4246215 11 61564299 FEN1 G/T 0.358 0.94 (0.91–0.97) 7.73E-04 4.56E-02 − − − − − + 0.120 42.76

SNP, single nucleotide polymorphisms; FDR, false discovery rate; Chr, chromosome.
aBased on NCBI build 37 of the human genome.
bReference allele/effect allele.
cEffect allele frequency.
dMeta-analysis additive model P-value based on six lung cancer GWASs.
eFalse discovery rate (FDR) correction.
fEffects by study: ICR, MDACC, IARC, NCI, SLRI and GLC, respectively. + represents OR > 1.00, and − represents OR < 1.00.
gP value for heterogeneity.
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25 major genes, that mainly repairs bulky DNA lesions such as 
pyrimidine dimers and chemical adducts (44). The NER-specific 
factors can be released from the core TFIIH, thereby promoting 
the excision of the damaged oligonucleotide (45). Prior studies 
of genetic variants in GTF2H4 have observed that they are asso-
ciated with risk of multiple sclerosis and cervical cancer but 
not aspirin-exacerbated respiratory disease (46–48). The eQTL 
analysis indicated that rs114596632 T allele was significantly 
associated with decreased mRNA expression levels of GTF2H4 in 
normal lymphoblastoid cell lines. Furthermore, bioinformatics 
prediction revealed that rs114596632 in GTF2H4 might be located 
in an enrichment of predicted motif ZEB1, an E-box transcrip-
tional repressor known to induce epithelial to mesenchymal 
transition in lung cancer (49). It is known that reduced protein 
function due to SNPs in DNA repair genes can result in reduced 
DRC for carcinogenic adducts and oxidative lesions (29). Notably, 
we found that the cancer-free individuals with the rs114596632 T 
risk allele had a diminished DRC, who may be at risk of tobacco-
induced lung cancer. With these consistent genotype-phenotype 
correlations, we proposed that the rs114596632 T allele might dis-
turb the binding efficiency of the motif ZEB1, thereby decreasing 
the expression of GTF2H4 and cellular DRC and thus contributing 
to the risk of lung cancer. However, because the exact molecular 
mechanism underlying the association of rs114596632 in GTF2H4 
with lung cancer risk has not been fully understood, further 
studies including fine-mapping, next generation sequencing and 
detailed functional analyses are warranted.

A number of studies have demonstrated associations 
between the HLA region and many types of cancer, including 
lung cancer (11,50–52). The underlying mechanism for these 
associations is still unknown; however, our HLA association 
analysis revealed that rs114596632 was only partially tagged by 
HLA-B*0801 and HLA-C*0701, suggesting a possible joint effect 
of the HLA immune system and DNA repair in the pathogen-
esis and risk of lung cancer (53). Although further sequencing 
in large lung cancer cases and control subjects is needed and 
currently under way to determine association between the HLA 
region and lung cancer risk, additional mechanistic studies of 
the role played by GTF2H4 in lung carcinogenesis are warranted.

To date, many studies have shown a consistent association 
between MSH5 and risk of lung cancer (5,24,54). MSH5 repre-
sents a strong candidate for lung cancer susceptibility, as it is 
involved in MMR and meiotic recombination (55). Interestingly, 
another unreported MSH5 SNP rs3115672 was also found to be 
associated with risk of lung cancer in the present study, which 
confirmed the important role of MSH5 in the etiology of lung 
cancer. However, this newly identified rs3115672 and previ-
ously reported rs3131379 are in complete LD in MSH5 (r2 = 1.00), 
suggesting a completely consistent susceptibility locus in this 
region. Interestingly, the SNP rs114596632 in GTF2H4 is located 
828 kb upstream of MSH5, but the LD and recombination hot-
spot analyses revealed that rs114596632 was in moderate LD 
with rs3131379 in MSH5. Further phenotype correlation analysis 
showed that rs114596632 in GTF2H4, but not rs3131379 in MSH5, 
was associated with the DRC phenotype and mRNA expression, 
possibly revealing that GTF2H4 had an independent role of DNA 
repair capacity that modulates risk of lung cancer.

In the present study, two SNPs in XRCC4 were found to be 
associated with lung cancer risk. In the non-homologous end 
joining (NHEJ) pathway, XRCC4 forms a complex with LIG4, sta-
bilizing and stimulating LIG4 activity (56). Deficiency of XRCC4 in 
mice results in embryonic lethality associated with severe dys-
function of apoptosis of the newborns (57). Two published stud-
ies and ours have reported that SNPs in XRCC4 were involved Ta
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in the susceptibility of lung cancer; importantly, our previous 
study identified a functional SNP rs2075685 in the XRCC4 pro-
moter, whose variant allele was associated with an increased 
XRCC4 expression (19). Our two newly identified XRCC4 SNPs 
rs1056503 and rs2035990 have only a weak LD with rs2075685, 
suggesting that these XRCC4 SNPs may be independent casual 
SNPs. MirSNP prediction revealed that rs2035990 located in the 
3′-UTR of XRCC4, a microRNA-567 binding region, might result 
in gene dysregulation (58). Meanwhile, although rs1056503 in 
XRCC4 is a synonymous SNP, the G allele was associated with 
both lung cancer risk and lower mRNA expression levels in the 
present study. Therefore, further studies are needed to investi-
gate biological mechanisms underlying the observed associa-
tions between SNPs in XRCC4 and lung cancer risk.

In conclusion, our large meta-analysis of published GWASs 
among 28 998 Europeans identified a new lung cancer suscepti-
bility locus in GTF2H4 and also provide some evidence support-
ing two previously reported loci in MSH5 and XRCC4. Given our 
findings of a novel GTF2H4 variant are biologically plausible, our 

results provide some new insight into genetic architecture and 
carcinogenesis mechanisms of lung cancer.

Supplementary material
Supplementary Tables 1–6 and Figures 1–4 can be found at 
http://carcin.oxfordjournals.org/
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Pa Padj
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