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Abstract

Species extinctions are accelerating globally, yet the mechanisms that maintain local biodiversity
remain poorly understood. The extinction of species that feed on or are fed on by many others
(i.e. ‘hubs’) has traditionally been thought to cause the greatest threat of further biodiversity loss.
Very little attention has been paid to the strength of those feeding links (i.e. link weight) and the
prevalence of indirect interactions. Here, we used a dynamical model based on empirical energy
budget data to assess changes in ecosystem stability after simulating the loss of species according
to various extinction scenarios. Link weight and/or indirect effects had stronger effects on food-
web stability than the simple removal of ‘hubs’, demonstrating that both quantitative fluxes and
species dissipating their effects across many links should be of great concern in biodiversity con-
servation, and the potential for ‘hubs’ to act as keystone species may have been exaggerated to
date.
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INTRODUCTION

Biodiversity loss is a major threat to Earth’s ecosystems (Bar-
nosky et al. 2011) and it is crucial to identify and conserve
influential ‘keystone’ species or nodes, whose loss would cause
the cascading extinctions of many other species (Dunne et al.
2002; Jord�an 2009). Theoretical and empirical approaches to
studying the importance of interactions among species in
maintaining biodiversity recognise that there is a bi-directional
component to every interaction that gauges the separate
impacts of one species on the dynamics of another (May
1972; Tang et al. 2014). For every direct interaction, the con-
sumer will have a negative effect on the resource and the
resource will have a positive effect on the consumer. Simple
binary measures of interaction strength have been used to
identify ‘hubs’, i.e. highly connected nodes with a high-degree
centrality (Dunne et al. 2002; Memmott et al. 2004; Dunne &
Williams 2009). Selective removal of nodes with the most
trophic links in a network typically causes more secondary
extinctions than random removal of nodes (Dunne et al. 2002;
Memmott et al. 2004; Dunne & Williams 2009). However, this
index of node importance based on degree centrality ignores
two major components of food webs: the strength or weight
of the links and indirect effects (Scotti et al. 2007). This can
lead to an inaccurate ranking of species importance, such that

removing the most-connected nodes does not necessarily iden-
tify the most destructive extinction sequence (Allesina & Pas-
cual 2009).
There has been a tradition of binary descriptions in many

network studies, reflecting the relative ease of data collection,
but there is a growing appreciation that this qualitative net-
work structure is often uninformative (Jord�an et al. 2006). An
increasing number of studies now consider weighted networks
in ecology (Jord�an et al. 2006; Borrett 2013; Ulanowicz et al.
2014), which can dramatically alter the conclusions about
node importance (Scotti et al. 2007; Jord�an 2009). In many
quantitative food webs, link weights (i.e. the strength of
trophic interactions) have been estimated based on the bio-
mass, numbers of individuals or carbon flows between species
or compartments (Moore et al. 1993; Jord�an et al. 2006; Bor-
rett 2013). These quantitative approaches are arguably more
robust than binary methods, but are not without criticism
(Paine 1980). For example, controlled removal studies have
demonstrated empirically that material flow does not always
translate directly to the impacts that interaction strength pur-
ports to capture (Woodward et al. 2005).
Indirect effects describe the impact of one species on

another that is mediated by a third species (Montoya et al.
2009), and their importance for the maintenance of structure,
stability and biodiversity in food webs has been increasingly
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emphasised (Bukovinszky et al. 2008; Woodward et al. 2008;
Sanders et al. 2013). Both empirical (Sanders et al. 2013) and
theoretical (Stouffer & Bascompte 2011; S€aterberg et al. 2013)
studies show that secondary extinctions can occur even when
a species is more than one trophic link away from the primary
extinction. Recent studies that used a static structural
approach showed that direct and indirect indices provide quite
different rankings of node importance in networks (Scotti
et al. 2007; Jord�an 2009) and we do not know which of the
indices performs best at identifying keystone species for main-
taining biodiversity.
There are two main approaches to simulating the cascading

extinctions that occur after primary removals: topological and
dynamical analyses (Ekl€of & Ebenman 2006). Both approaches
have strengths and weaknesses: the former considers only bin-
ary network structure and so is easier to parameterise, whereas
the latter takes into account both link structure and changes in
species abundance through time (Curtsdotter et al. 2011). In
topological models, secondary extinctions emerge from bottom-
up cascades (Ekl€of & Ebenman 2006). In a natural system, the
loss of species can also cause top-down extinction cascades
(Elmhagen & Rushton 2007; S€aterberg et al. 2013), meaning
that the full range of indirect effects is not covered and food-
web robustness is often overestimated (Curtsdotter et al. 2011).
We chose the dynamical approach here and we simulated natu-
ral communities using parameter values derived from empirical
data, which should provide more realistic outcomes than can be
derived from simulating purely artificial communities (Curts-
dotter et al. 2011). Furthermore, both top-down and bottom-
up effects are possible in the dynamical approach, therefore
extinction cascades in both directions could be detected. We
expect the assessment of node importance indices using the
dynamical approach should bring new insights into the magni-
tude and extent of secondary extinctions.
We compared the performance of four different ranking sce-

narios (considering direct effects only, both direct and indirect
effects, weighted direct effects only and weighted direct and
indirect effects) at identifying taxa that maintain biodiversity.
Considering the importance of link weight and indirect effects,
we expect the nodes with large carbon flux or dissipating their
effects across many nodes would be influential. We hypothe-
sised that the indices considering weighted links and/or indi-
rect effects would perform better than the more traditional
measures: i.e. more secondary extinctions will be caused in
deletion sequences ordered by link weight, direct plus indirect
effects or both.

MATERIALS AND METHODS

Quantitative food webs

We analysed 20 of the 50 aquatic food webs from a recently
published database (see Table 1; Salas & Borrett 2011; Borrett
2013). The extraction criteria were as follows: (1) small net-
works (containing no more than 10 nodes) which are easily
collapsed were excluded; (2) each dataset was from a distinct
study system to avoid pseudoreplication of similar networks
from the same location (e.g. we randomly chose one web from
Florida Bay Dry Season and Florida Bay Wet Season).

The data for each food web include a list of taxa, the car-
bon biomass of each taxon (g C m�2), the carbon per unit
time of import, export and respiration of each taxon
(g C m�2 day�1) and the carbon flux between a pair of taxa
(g C m�2 day�1). The dataset was archived in the ‘enaR’
package in R (Borrett & Lau 2014). Nodes represent species,
trophic guilds, functional groups or non-living components of
the system in which matter is stored. Initially unbalanced food
webs, i.e. energy entering a taxon does not exactly balance the
output, were balanced using the AVG2 algorithm using estab-
lished procedures in Matlab 7.12.0 (Allesina & Bondavalli
2003). Our focal food webs exhibit a wide range of network
complexity, indicated by taxon richness (S = 12–125), binary
directed connectance (C = 0.094–0.366) and weighted directed
connectance (Cw = 0.029–0.184), but all of these were within
the range reported for other recently described catalogues (see
Table 1; cf. Williams & Martinez 2000; Ings et al. 2009). Bin-
ary directed connectance is a qualitative descriptor based on
binary networks, which measures the proportion of possible
links between taxa that are realised; weighted directed con-
nectance Cw is a quantitative descriptor based on Shannon’s
entropy (Bana�sek-Richter et al. 2009; see Appendix S1 for
details).

Food-web dynamics

The model was constructed based on energy budgets that
index the carbon fluxes entering and leaving each taxon. The
imports and exports via animal migration and water flows are
considered to be in balance and not to influence the food-web
dynamics, similar to many other dynamical models (Moore

Table 1 Original names and structural properties of the 20 empirical food

webs examined in the study

Food web Original name S* C† Cw
‡

Bothnian Bay Bothnian Bay 12 0.222 0.184

Baltic Sea Baltic Sea 15 0.173 0.184

Ems Estuary Ems Estuary 15 0.196 0.169

Swartkops Swartkops Estuary 15 0.169 0.121

Crystal River Crystal River (control) 21 0.186 0.070

Benguela Northern Benguela Upwelling 24 0.208 0.101

Neuse Estuary Neuse Estuary (late summer 1998) 30 0.138 0.062

Georges Bank Georges Bank 31 0.354 0.162

Gulf of Maine Gulf of Maine 31 0.345 0.148

Narragansett Narragansett Bay 32 0.154 0.093

Atlantic Bight Middle Atlantic Bight 32 0.366 0.156

New England Southern New England Bight 33 0.347 0.154

Chesapeake Chesapeake Bay 36 0.094 0.068

St. Marks St. Marks Seagrass, site 1 (Feb.) 51 0.103 0.086

Graminoids Graminoids (wet) 66 0.182 0.033

Cypress Cypress (wet) 68 0.118 0.060

Lake Oneida Lake Oneida (pre-ZM) 74 0.223 0.072

Bay of Quinte Bay of Quinte (pre-ZM) 74 0.211 0.056

Mangroves Mangroves (wet) 94 0.152 0.036

Florida Bay Florida Bay (wet) 125 0.124 0.029

*Number of taxa.
†Binary directed connectance, L/S2; where L is the number of trophic

links.
‡weighted directed connectance (see Materials and Methods for calcula-

tion method).
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et al. 1993; Hudson & Reuman 2013). In general, the taxa in
the system can be divided into four categories (see Fig. S1):
producers, consumers, decomposers and non-living compart-
ments (i.e. detritus).
The change in biomass of producers can be described as:

dBi

dt
¼ riBiGi �

X

j¼herbi

UijBj � diBi ð1Þ

Here, ‘herbi’ are herbivorous taxa, r is the maximum specific
or intrinsic growth rate and Gi is the growth model, following
Gi ¼ 1� P

j¼pro

Bj=K. Here, ‘pro’ are producer taxa and K is the

carrying capacity. The value of K is considered as the total
initial producer biomass in the community multiplied by a
term 10k0. The carrying capacity coefficient k0 was set to fol-
low the distribution U[0, 3] (after Hudson & Reuman 2013).
Φij is the functional response when taxon j consumes taxon i
(see below for more details), and d is the specific death rate.
The biomass of producer taxon i is increased by photosynthe-
sis and decreased by intertaxon competition, consumption and
non-predatory death.
The change in biomass of consumers (including herbivores

and predators) can be depicted as:

dBi

dt
¼

X

j¼res

aiUjiBi �
X

j¼pred

UijBj � xiBi ð2Þ

Here, ‘res’ means resource taxon, ‘pred’ means predator taxon,
a is the assimilation efficiency and x is the respiration rate.
The biomass of consumer taxon i is increased by assimilation
of consumed resources and decreased by predation and respi-
ration.
The change in biomass of decomposers can be depicted as:

dBi

dt
¼

X

j¼det

aiUjiBi �
X

j¼pred

UijBj � xiBi ð3Þ

Here, ‘det’ are detrital taxa. The biomass of decomposer
taxon i is increased by assimilation of consumed detritus and
decreased by predation and respiration.

In some food webs, detritus has been divided into separate
compartments. For example, there are three detrital taxa in
the Florida Bay ecosystem: water particulate organic carbon
(POC), benthic POC and dissolved organic carbon. The
change in biomass of each detrital taxa can be described as:

dBi

dt
¼

X

j¼pro

pjidjBj þ
X

j¼con

ðpjiejBj

X

k¼res

UkjÞ þ
X

j¼det

cjiBj �
X

j¼dec

UijBj

�
X

j¼det

cijBi

ð4Þ
Here, ‘con’ are consumer taxa and ‘dec’ are decomposer taxa,
pji is the proportion of converted detritus i to the total
amount of detritus converted from taxon j, e = (1 � a) is the
egestion rate and cji is the conversion coefficient from detrital
taxon j to detrital taxon i. Here we consider that the amount
of faeces, i.e. the unassimilated fraction of prey killed, is pro-
portional to the amount of predation (Moore et al. 1993; de
Ruiter et al. 1995; Moore & de Ruiter 2012). The biomass
stored in detrital taxon i is increased by the dead bodies of
producer taxa, the faeces of consumer taxa and the conversion
from other detritus, and decreased by consumption of decom-
poser taxa and conversion into other detritus. The meanings
and calculations of the parameters listed above (except the
functional response Φ which was given below) can be found
in Table 2.

Functional forms

The functional response Φij was set to follow either a nonlin-
ear form or a linear form. The nonlinear form was set as fol-
lows (see Hudson & Reuman 2013):

Uij ¼ yjxijB
h
i

Hh
j þ qjBjH

h
j þ

P
k¼res

xkjB
h
k

ð5Þ

Here, yj is the maximum consumption rate of taxon j and xij

is the preference of taxon j for taxon i. For a consumer j,

Table 2 Details of the parameters used in the model

Symbol Meaning Value Unit

ri Maximum specific or intrinsic growth rate ðGPPi � RiÞ= Bið1� 1=10k0 Þ� �
day�1

K Carrying capacity 10k0
P
j¼pro

Bi g C m�2

di Natural specific death rate
P
j¼det

Fij=Bi day�1

ai Assimilation efficiency 1� P
j¼det

Fij=
P
j¼res

Fji Proportion (unitless)

xi Respiration rate Ri/Bi day�1

pji Proportion of converted detritus i in all the

converted detritus from producer or consumer taxon j

Fji=
P

k¼det

Fjk Proportion (unitless)

ei Egestion rate 1� ai Proportion (unitless)

cji Conversion coefficient from detritus j to detritus i Fji/Bj day�1

Our data (see Table 1) contain the values of GPPi (gross primary production), Ri (respiration), Bi (biomass) and Fij (carbon flux when taxon j consumes

taxon i). k0 is an undetermined parameter. Considering that carrying capacity K was within three orders of magnitude of total primary producer biomass

in the community being simulated (Hudson & Reuman 2013), we assumed k0 follows the distribution U[0, 3]. We ran 1000 separate simulations for each

food web, using different values of k0, chosen randomly from this distribution.
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xij / Fij=B
h
i . Fij is the carbon flux from taxon i to taxon j,

which was contained in the empirical data. Given thatP
i¼res

xij ¼ 1, we can calculate xij as:

xij ¼ Fij=B
h
iP

k¼res

Fkj=B
h
k

ð6Þ

Hj is the half-saturation density, which was one order of mag-
nitude either side of the mean of all biomasses in the commu-
nity being simulated (Hudson & Reuman 2013). That means
Hj ¼ 10bB. Here, b is a coefficient following the distribution
U[�1, 1]. qj is the predator interference coefficient, which was
randomly chosen from 0 to 100 (Hudson & Reuman 2013). h
is the hill exponent that regulates the shape of the curve from
Holling Type II (h = 1) to Holling Type III (h = 2). We chose
the value of h randomly from 1 to 2.
Notice that Fij = ΦijBj, combining eqn 5, and we can calcu-

late the value of yj by:

yj ¼
FijðHh

j þ qjBjH
h
j þ

P
k¼res

xkjB
h
kÞ

xijB
h
i Bj

ð7Þ

We ran 1000 simulations for each food web. The values of
parameter b, q and h for each simulation were chosen ran-
domly from their ranges, i.e. U[�1, 1] for b, U[0, 100] for q
and U[1, 2] for h.
To increase the generality of our model, we also applied the

linear functional response, i.e. the Holling Type I. The linear
form of the functional response Φij is as follows:

Uij ¼ fijBi ð8Þ
Here, fij is the feeding rate coefficient when taxon j consumes
taxon i. The value of fij can be obtained by:

fij ¼ Fij

BiBj
ð9Þ

Sequential node deletions

Following the framework of Scotti et al. (2007), but using the
whole food-web dynamical model, we compared four different
rankings based on the presence or absence of information on
indirect effects and weighted links. Here, we ordered nodes by
their: (1) maximum unweighted direct effect (Max.D); (2)
maximum unweighted direct plus indirect effect (Max.DI); (3)
maximum weighted direct effect (Max.wD) and (4) maximum
weighted direct plus indirect effect (Max.wDI). Unweighted
direct effect is defined as the degree centrality of a node (i.e.
the number of its direct neighbours including both consumers
and resources), whereas weighted direct effect of a node is
defined as the total amount of its inwards and outwards car-
bon fluxes. The unweighted direct plus indirect effect is the
mean of effects originating from one taxon in a binary net-
work, whereas weighted direct plus indirect effect has the
same meaning but in a weighted network.
The method for quantifying the direct plus indirect effects

has been used in both undirected (Jord�an et al. 2006; Jord�an
2009) and directed networks (Scotti et al. 2007). First, we cal-
culated the direct plus indirect effects in unweighted networks.

We defined an,ij as the effect of taxon j on taxon i when i can
be reached from j in n steps. The simplest case of calculating
an,ij is when n = 1:

a1;ij ¼ bij
PD

j¼1

bij

ð10Þ

where bij is the element of the qualitative feeding matrix.
Here, a1,i,j = 1/Di,out, if species j is a consumer and a1,i,j = 1/
Di,in, if species j is a resource. Di,in is the number of resources
for taxon i, whereas Di,out is the number of consumers for
taxon i. Furthermore, we define the n-step effect originating
from species i by the following formula:

rn;i ¼
XS

j¼1

an; ji ð11Þ

The direct and indirect effects originating from species i up to
n steps are considered as:

DIni ¼
Pn

m¼1

rm;i

n
¼

Pn

m¼1

PS

j¼1

am;ji

n
ð12Þ

which represents the sum of effects originating from species i
up to n steps averaged over by the maximum number of steps
considered. Here, we considered a maximum of five-step-long
indirect effects, i.e. n = 5. As the strength of indirect effects
decreases dramatically with distance (Berlow et al. 2009;
Borrett et al. 2010; Stouffer & Bascompte 2011), up to five
steps are sufficient to get their precise value (Scotti et al.
2007; Borrett et al. 2010). For a weighted network, all the
effects are defined in the same way as above except that
the value of bij is the amount of biomass flowing from taxon i
to taxon j.
We simulated taxon loss for each food web by sequentially

removing taxa. We used the Adaptive Runge–Kutta method
with adaptive step sizes to perform numerical simulations. In
each simulation, the empirical biomass data were employed
to give the initial biomass values. Thousand days were
simulated first, to allow transient dynamics caused by initial
effects to settle down and let the system reach steady state
(Hudson & Reuman 2013). Then we started the sequen-
tial deletions, which can be seen as a stepwise process:
1000 days were simulated after each deletion, and secondary
extinctions during this time were recorded. Before adding a
new step, the deletion sequences were updated, as the
extinctions in the former step would change network
structure and carbon fluxes among the surviving taxa. Dur-
ing the simulation, a species was considered to be extinct if
its biomass fell to < 10�30 g C m�2 (Berlow et al. 2009). We
did not remove any detrital nodes in the extinction sequence
(Staniczenko et al. 2010) to guarantee that energy cycling
would occur during the simulations, which thus continued
until only detrital nodes were left in the web. Note that an
established food web may persist for a long period with-
out autotrophs if detrital taxa have accumulated sufficient
carbon storage to sustain detritus-based organisms (see
Appendix S2).
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Measures of stability

We employed two indices to characterise the stability of food
webs: robustness (R50) and survival area (SA). Robustness
was quantified as the proportion of species subjected to pri-
mary removals that resulted in 50% of total species loss,
which is commonly used in such analyses (Dunne et al. 2002;
Dunne & Williams 2009; Curtsdotter et al. 2011). A higher
value of R50 means fewer secondary extinctions and thus
higher stability. SA is the area under the curve resulting from
plotting the number of surviving taxa, NP, having occurred at
a specific number of primary deletions, p. SA is calculated as

SA ¼
PSl

p¼1 Np

S2
l

ð13Þ

where Sl is the number of living taxa in the original food web.
The value of SA meets the term SA + EA = 1, where EA
means extinction area as used in prior studies (Allesina & Pas-
cual 2009; Curtsdotter et al. 2011). Here, we chose SA rather
than EA because it exhibits a positive relationship with stabil-
ity, i.e. a higher value of SA indicates higher stability. All
numerical simulations and calculations were carried out in
Matlab (version 7.12.0).

Statistical procedures

We conducted 1000 Monte-Carlo simulations for each web
and for each node-ordering index, with four parameters (h,
k0, b and q) varying randomly in each replicate (1000 repli-
cates 9 20 webs 9 4 indices = 80 000 simulations). We sepa-
rately compared the effects of the four indices (Max.D,
Max.DI, Max.wD and Max.wDI) on R50 and SA using a lin-
ear mixed effects model (LME) with a maximum-likelihood
estimator (function ‘lme’ with ‘method = ML’ within the
‘nlme’ package in R 3.2.3). Food-web identity was included in
the model as a random factor to correct for differences
between study systems. Post-hoc comparisons were applied
using the Tukey HSD test at a = 0.05 level of significance
(function ‘glht’ within the ‘multcomp’ package). As robustness
and connectance are logarithmically related (Dunne et al.
2002), we explored the relationship between stability and log
transformations of the measures of complexity (i.e. S, C and
Cw), using the functions ‘lm’ and ‘cor’ in the ‘stats’ package.

RESULTS

With the nonlinear functional response, the four deletion
orders produced significantly different values of R50 (Fig. 1a,
LME: F3,57 = 13.07, P < 0.001). Deletion orders Max.DI,
Max.wD and Max.wDI had significantly lower values of R50

than order Max.D (Tukey test, see Table S1). There was no
significant difference in R50 among the three deletion orders
Max.DI, Max.wD and Max.wDI (Tukey test, Table S1). The
four deletion orders also produced significantly different val-
ues of SA (Fig. 1b, LME: F3,57 = 12.072, P < 0.001). Again,
the three new indices led to significantly lower values of SA
than Max.D (Tukey test, Table S1). Using a linear functional
response led to significantly lower stability than the nonlinear
form (LME: F1,79 = 98.974, P < 0.001 for R50; F1,79 =

101.338, P < 0.001 for SA). The comparison of the four dele-
tion orders produced similar results to the nonlinear func-
tional response, however, with significantly different values of
R50 (Fig. S2a, LME: F3,57 = 12.520, P < 0.001) and SA
(Fig. S2b, LME: F3,57 = 25.048, P < 0.001), whereas Max.DI,
Max.wD and Max.wDI led to significantly lower stability
than Max.D (Tukey test, Table S1).
Further analyses showed that different values of the four

free parameters (h, k0, b and q) in the nonlinear functional
form did not alter our major conclusion for both R50 and SA
(Figs S3–S6), i.e. deletions in Max.D led to significantly
higher stability than the three new indices in all groups
(Tukey test). With the linear functional response, the change
in the only free parameter (k0) also did not alter this conclu-
sion (Fig. S7).
There was no significant difference in the connectivity of

nodes that went secondarily extinct compared with the aver-
age value of those that remained (Fig. 2a; t19 = 0.31,
P = 0.762 for Max.D; t19 = 0.44, P = 0.667 for Max.DI;
t19 = 1.65, P = 0.115 for Max.wD and t19 = 1.44, P = 0.167
for Max.wDI). There was a significant difference in the link
weight of nodes that went secondarily extinct compared with
the average value of those that remained (Fig. 2b;
t19 = � 14.47, P < 0.001 for Max.D; t19 = � 12.66, P < 0.001
for Max.DI; t19 = � 19.03, P < 0.001 for Max.wD and
t19 = � 18.40, P < 0.001 for Max.wDI). Most (54–71%) sec-
ondary extinctions were caused by indirect effects (the pink,
yellow and purple groups in Fig. 2c). Bottom-up cascades,
which are the only cause of collateral losses in the topological
approach, accounted for about 40% of secondary extinctions
(the red and pink groups in Fig. 2c).
Across all 20 food webs, the stability indicated by R50 and

SA under the four deletion orders with the nonlinear func-
tional response varied significantly with S and Cw, but rarely
with C (Table 3 and Fig. 3). More specifically, R50 and SA
decreased with increasing Log S (except SA in Max.D) and
with decreasing Log Cw (Table 3). There was no significant
effect of the different deletion orders on the slopes of Log R50

vs. Log S (Two-way ANOVA: F3,72 = 0.31, P = 0.821) and Log
Cw (F3,72 = 0.07, P = 0.977). Similarly, there was no signifi-
cant effect of the different deletion orders on the slopes of
Log SA vs. Log S (F3,72 = 0.34, P = 0.795) and Log Cw

(F3,72 = 0.09, P = 0.968). The same patterns emerged from the
dynamical models based on a linear functional response
(Fig. S8). Although food-web stability increased with decreas-
ing food-web size, we found that the inevitable decrease in the
size of a food web during the deletion process seldom affected
our conclusion (see Appendix S3).

DISCUSSION

In the last few decades, the influence of random loss of nodes
(‘error’) and selective loss of the most-connected nodes (‘at-
tack’) has been investigated in many real-world networks, e.g.
the Internet (Albert et al. 2000). All of these networks exhibit
high fragility against the removal of the most-connected nodes
(i.e. ‘hubs’), which in an ecological context suggests these
nodes would represent keystone species that play an impor-
tant role in maintaining biodiversity (Dunne et al. 2002;
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Memmott et al. 2004; Dunne & Williams 2009). However, this
conclusion is drawn based on topological approaches that
always underestimate the amount of secondary extinctions

(Curtsdotter et al. 2011). Recent studies using a static struc-
tural approach have found that node ordering would be
altered when considering link weight or indirect effects
(Jord�an et al. 2006; Scotti et al. 2007; Bauer et al. 2010), sug-
gesting the possibility of more useful centrality indices. Using
a food-web dynamical model derived from empirical energy
budget data, we found that network stability was significantly
lower when deletions were ordered by indirect effects, link
weight or both, compared with the ordering by unweighted
degree centrality (see Fig. 1). Furthermore, poorly connected
nodes faced the same extinction risk as highly connected
nodes, whereas nodes with low link weight were more likely
to go extinct secondarily (see Fig. 2a,b), indicating the failure
of degree centrality and the importance of weighted indices.
Over 50% of secondarily extinct nodes were not directly con-
nected to the removed nodes (see Fig. 2c), emphasising the
need to consider indirect effects. These findings suggest that
indices considering link weight and indirect effects are better
descriptors of centrality in food webs than the traditional bin-
ary, direct-link measure. Moreover, our findings were robust
to different forms of the functional response and different val-
ues of the hill exponent, carrying capacity coefficient, half-
saturation coefficient and predator interference coefficient,
suggesting a high level of generality.
The uneven distribution of interaction strengths in food

webs (O’Gorman et al. 2010) provides a cautionary note when
interpreting results derived from analyses of simple binary
networks (Bana�sek-Richter et al. 2009). It is generally
assumed that specialised species tend to have strong connec-
tions, whereas generalised species have weak interactions
(Wootton & Emmerson 2005) and hence weaker net effects
(Montoya et al. 2009; O’Gorman et al. 2010) and different
contributions to network structure and stability relative to
poorly connected species. We found that species removals
ordered by link weight led to a > 30% reduction in network
stability relative to direct unweighted orderings. This conclu-
sion is important because it suggests that studies focused
solely on direct, unweighted indices for identifying key species
in food webs may have severely overestimated the relative
importance of degree centrality and, although successfully
identifying topologically important nodes, they may fail to
detect functionally important ones. Notice that considering
weights did not add anything to the conclusion as long as

Figure 1 Stability of the 20 food webs to species loss in four deletion sequences (mean � SEM). Here, stability is represented by (a) robustness, R50, the

fraction of taxa that have to be removed to induce ≥ 50% total taxon loss, and (b) survival area, SA, the area under the curve resulting from plotting the

number of surviving taxa. The stars directly above the error bars denote significant differences in stability between the focal deletion orders and the control

order (Max.D): ***P < 0.001.

Figure 2 (a–b) Comparison of the types of nodes that went secondarily

extinct with those surviving. The nodes going secondarily extinct were

significantly different (denoted by stars) from the surviving nodes in (a)

number of links or (b) link weight if the confidence intervals around the

logarithm of the ratio between the value of the secondarily extinct nodes

and the average value of all surviving nodes did not overlap with zero. (c)

Trophic categories of nodes that caused the secondary extinctions. The

percentage of secondary extinctions for each trophic category across the

1000 simulations of all 20 food webs is shown, along with an illustration

of what each of the trophic categories imply.
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indirect effects were considered, which might be caused by the
significant correlation between Max.DI and Max.wDI in 18 of
the 20 food webs (Spearman rank correlation = 0.557 �
0.037; mean � SEM).
Most empirical studies only contain qualitative food-web

data due to logistical constraints in collecting quantitative
information on link weights, although the situation is improv-
ing (Ings et al. 2009). Our results show that food-web stability
is significantly lower after removals ordered by both
unweighted direct and indirect effects than by direct effects
alone. Thus, in the absence of quantitative data, an under-
standing of indirect effects will give a more realistic view of
species importance than in a network constructed solely from
direct-link information. This is perhaps unsurprising, given
that indirect effects can often be stronger than direct effects in
food webs (Werner & Peacor 2003; Salas & Borrett 2011).
Trophic cascades and apparent competition are the best

known examples of indirect effects (Montoya et al. 2009).
Indirect effects have also been regarded as important drivers
of secondary extinctions in a recent empirical study (Sanders
et al. 2013). In our study, indirect effects accounted for over
50% of the secondary extinctions (Fig. 2c). This implies that
not only neighbouring links but also neighbours of neighbours
need to be considered to better understand how species losses
propagate. For example, in the well-studied Chesapeake
ecosystem, zooplankton have the most direct links to other
taxa, whereas bacteria in sediment POC have the strongest
direct plus indirect and weighted effects (see Table S2 for the
other food webs).
The hypothesis that diversity may give rise to ecosystem sta-

bility has led to more than half a century of heated debate in
ecology (May 1972; Tilman et al. 2006). Many experiments
have shown that higher diversity is associated with a reduc-
tion in temporal variability (i.e. increased temporal stability;

Table 3 Stability of food webs under four different species deletion sequences as a function of three measures of food-web complexity

Stability Deletion sequences

Log S Log C Log Cw

Slope P r2 Slope P r2 Slope P r2

R50 Max.D � 0.067 0.043 0.21 0.201 < 0.001 0.69 0.096 0.008 0.33

Max.DI � 0.092 0.002 0.41 0.081 0.141 0.12 0.076 0.040 0.21

Max.wD � 0.072 0.022 0.26 0.065 0.238 0.08 0.085 0.016 0.28

Max.wDI � 0.094 0.007 0.34 0.112 0.065 0.18 0.106 0.008 0.33

SA Max.D � 0.053 0.083 0.16 0.186 < 0.001 0.71 0.082 0.013 0.30

Max.DI � 0.083 0.001 0.45 0.096 0.035 0.22 0.078 0.010 0.31

Max.wD � 0.064 0.030 0.23 0.065 0.209 0.09 0.081 0.015 0.29

Max.wDI � 0.081 0.012 0.30 0.107 0.051 0.20 0.095 0.009 0.33

Linear regressions of robustness, R50 (the fraction of species that have to be removed to induce ≥ 50% total species loss), and survival area, SA (the area

under the curve resulting from plotting the number of survival taxa), of 20 food webs to species loss following four deletion sequences as a function of the

logarithm of taxon richness (S), binary directed connectance (C) and weighted directed connectance (Cw). Significant results (P < 0.05) are shown in bold.

(a) (b)

(c) (d)

Figure 3 Stability in nonlinear functional response simulations indicated by robustness, R50 (top panels), and survival area, SA (bottom panels), as a

function of the taxon richness, S (left panels), and weighted directed connectance, Cw (right panels), of each food web. Logarithmic fits to the four datasets

are shown, with different colours and markers indicating different deletion orders.
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Tilman et al. 2006; Cardinale et al. 2009), but the opposite
may be true when considering other measures of stability
(Donohue et al. 2013). Our study demonstrated a negative
relationship between species richness and the robustness of
food webs to secondary extinction under all four of the dele-
tion scenarios, suggesting that even species-rich ecosystems
can be vulnerable to cascading extinctions. A possible expla-
nation for this is density compensation, i.e. population densi-
ties decrease with increasing species richness because of the
increased intensity of interspecific competition (Borrvall &
Ebenman 2008; Kaneryd et al. 2012). Our data showed a
strong negative correlation between average biomass densities
and taxon richness (Fig. S9, Pearson correlation coefficient
r = � 0.95, P < 0.001), which supported this hypothesis. As a
consequence, species are more easily excluded because they
are closer to their extinction threshold, a finding consistent
with previous dynamical analyses (Borrvall & Ebenman 2008;
Kaneryd et al. 2012).
We found a strong positive relationship between weighted

directed connectance, Cw, and food-web stability, but a
surprisingly weak relationship with binary directed con-
nectance, C. This stands in contrast to earlier topological
analyses (Dunne et al. 2002; Dunne & Williams 2009) con-
ducted on binary networks of direct links. When topological
approaches are used, highly connected communities are robust
to species loss because species with many binary links are
unlikely to become isolated and thus go extinct. Using a
dynamical approach, however, highly connected nodes face a
similar extinction risk as poorly connected nodes (Fig. 2a). In
this case, the density of weighted carbon flows plays an
increasingly important role, where the loss of a particularly
strong link may result in a node receiving insufficient energy
to persist in the network, even if it retains several weak
connections to other nodes. Therefore, the nodes with lower
link weight would have a significantly higher risk of going sec-
ondarily extinct (Fig. 2b). This is also consistent with recent
findings that increasing the energy threshold for consumer sec-
ondary extinction would nullify the previously positive rela-
tionship between robustness and binary directed connectance
(Thierry et al. 2011; Bellingeri & Bodini 2013). The dynamical
approach, through the weighting of links refines our under-
standing of the factors affecting network stability in ways that
topological analyses cannot do because they assign equal
importance to all connections in the network (Ekl€of & Eben-
man 2006; Curtsdotter et al. 2011).
Moreover, in the topological approach, nodes are considered

to be extinct only when they lose all their resources, so all sec-
ondary extinctions emerge from bottom-up cascades (Ekl€of &
Ebenman 2006). In dynamical approaches, however, a node
cannot persist if it receives insufficient energy, even though it
still has resources. This is in agreement with a recent study (Bel-
lingeri & Bodini 2013), which investigated the effects of the
thresholds of minimum energy requirement for species survival
on the robustness of food webs. Top-down effects and other
effects mediated by exploitative and apparent competition can
also play an important role (Elmhagen & Rushton 2007; S€ater-
berg et al. 2013). In our study, bottom-up effects only
accounted for about half of all the secondary extinctions
(Fig. 2c), highlighting the potential for dynamical analyses to

identify a significant proportion of secondary extinctions that
would otherwise be missed with topological approaches.
As we enter the age of the sixth mass extinction (Barnosky

et al. 2011), we need efficient indices to quantify the relative
importance of species to develop new management policies for
prioritising key populations to be conserved (Waldron et al.
2013). Our study contributes towards potential solutions and
may help ecologists to outline a better conservation policy
based on the functional importance of species, rather than
qualitative metrics such as rarity or ‘hubs’. By quantifying
link weights (or in the absence of quantitative link data, by
considering indirect effects) we can improve the accuracy of
keystone species identification (Jord�an et al. 2008). The extent
to which our methods help in detecting more accurate indices
remains to be seen, but we posit that it will improve the
designs of subsequent experiments or dynamical simulation
studies.
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