
for the shorter RFS prediction, the contribution of MRD data to the
multivariable model’s accuracy was more pronounced than for
the RFS model built initially (C-statistics of 0.78 and 0.65 for 6- and
12-month RFS without MRD data). As a caveat, there were only 18
events in the 6-month RFS analysis, limiting the inference that can be
drawn from the multivariable models; larger cohorts will be needed
to test this idea further. If confirmed, our studies may form the basis
for the development of relatively accurate shorter-term RFS
prediction models in which MRD data should be included.
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Germline heterozygous DDX41 variants in a subset of familial
myelodysplasia and acute myeloid leukemia
Leukemia (2016) 30, 2083–2086; doi:10.1038/leu.2016.124

Myelodysplasia (MDS) and acute myeloid leukemia (AML)
are mostly sporadic hematopoietic stem cell clonal disorders.
However, there are rare occurrences of familial MDS/AML where

there are two or more affected cases in the same family. To date,
germline heterozygous mutations have been identified in
10 genes (RUNX1, CEBPA, TERC, TERT, GATA2, SRP72, ANKRD26,
ACD, ETV6 and DDX41)1–10 associated with familial MDS/AML.
Over the last 15 years we have accrued 78 families in which
there are at least two cases of bone marrow failure and at least
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one of whom has MDS or AML. We have undertaken
a combination of whole-exome and targeted sequencing
to characterize these families. The targeted sequencing uses
a newly designed familial MDS/AML gene panel that includes
the above 10 listed genes. This analysis has enabled us to
identify four families harboring heterozygous germline DDX41
(DEAD-box helicase 41) variants (Figures 1a–d); three families
have novel frameshift variants (c.155dupA, c.1586_1587delCA
and c.719delTinsCG) and the fourth family has a recurrent
missense variant in the initiation codon (c.3G4A, rs141601766)
described previously by Lewinsohn et al.11 Collectively, these
four families comprise seven cases of MDS and two cases of
AML (age range, 40–70 years). These patients did not have any

extra-hematopoietic features and therefore represent ‘pure’
MDS/AML (Table 1).
At present, little is known about DDX41 function and its

role in hematopoiesis. However, Polprasert et al.10 showed
that the protein encoded by DDX41 interacts directly with
spliceosomal proteins and inactivation of tumor suppressors
can occur once this interaction is disrupted. It is known that
members of the DEAD/H box RNA helicase family can act as
oncogenes or tumor suppressors in other cancers, depending on
the specific protein interactions.12 In addition, alterations in
DDX41 can cause exon skipping or exon retention in the
RNA-splicing process resulting in alteration of specific genetic
isoforms.10

Figure 1. (a–d) Families with MDS–AML with variants in DDX41, their age at diagnosis and their respective Sanger sequencing traces. Affected
individuals are colored as follows: red, MDS; yellow, CML; black, AML; and green, other non-hematological cancer. (e) Schematic of DDX41
protein showing the heterozygous variants identified in this study. CML, chronic myeloid leukemia.
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Kirwan et al.3 demonstrated that familial MDS/AML patients
with germline variants in TERT and TERC have significantly shorter
telomeres compared with controls. To determine whether our
group of ‘pure’ MDS/AML patients with germline DDX41 variants
have a similar impact on telomere length, we measured peripheral
blood telomere length by monochrome multiplex quantitative
PCR method13 in our patients. Slightly shorter telomere length was
found in this group of patients harboring germline DDX41 variants
compared with age-matched controls (Po0.05, Supplementary
Figure S1). It will be important to investigate telomere length in
additional patients with DDX41 variants to substantiate these
observations.
In Family 1 (Figure 1a), a novel heterozygous germline variant

c.155dupA (p.Arg53Alafs*16 showed in Figure 1e) in DDX41
was identified in the 49-year-old female index case (III-1)
diagnosed with MDS, refractory anemia with excess blasts
(RAEB). Sanger sequencing revealed that her maternal uncle and
aunt who both developed RAEB also harbor this frameshift
variant (individuals II-2 and II-3, respectively). There are two
asymptomatic carriers (individuals II-1 and II-4), supporting
previous observations that haploinsufficiency for DDX41 shows
variable penetrance.11 Further family history included her father
(II-5) who died of chronic myeloid leukemia, unlikely to be related
to the DDX41 variant.
In Family 2 (Figure 1b), the index case is a 60-year-old

male (II-1) with AML harboring a novel heterozygous frame-
shift variant c.719delTinsCG (p.Ile240Thrfs*108), predicted
to cause truncation of the protein and consequent loss of
function. His mother died of AML (I-1). Segregation analysis was
not possible as there were no family samples available, however
the variant allele frequency in the index case is 0.494 indicating
a heterozygosity. This variant is located in the DEAD-box
domain of DDX41, in a highly conserved motif that includes the
ATP-binding site of DDX41 (Figure 1e).
The 58-year-old female index case in Family 3 (II-2 in

Figure 1c) with MDS, has a novel frameshift deletion variant
c.1586-1587delCA (p.Thr529Argfs*12) in the helicase domain

of DDX41 (Figure 1e), which is again predicted to cause
truncation of the protein. Her brother has tongue cancer (II-4),
her mother has MDS (I-1) and her father has stomach cancer
(I-2). In the absence of samples of the index case’s parents,
Sanger sequencing was undertaken on samples from her
siblings and children. The siblings (II-3 and II-4) of the index
case do not harbor the variant c.1586-1587delCA, whilst
her daughter (III-2) is an asymptomatic carrier. This suggests
that the index case and her mother (both with MDS) have
disease associated with the DDX41 variant, while the
non-hematological cancers seen in her brother (II-4) and father
(I-2) are unrelated to DDX41.
The index case of Family 4 (Figure 1d) is a 41-year-old

female (II-1) diagnosed with MDS/RAEB. Her father (I-2) was
also diagnosed with MDS at the age of 64 years. The heterozygous
missense variant c.3G4A (p.Met1Ile—rs141601766, showed in
Figure 1e) in DDX41, which segregated with disease in these two
individuals, has been reported in The Exome Aggregation
Consortium (ExAC) database in 6/117 464 alleles (http://exac.
broadinstitute.org/, accessed 31 March 2016). Interestingly,
both cases with the c.3G4A variant also carried a linked
5′-untranslated region variant (c.-44G4A showed in Figure 1d)
previously observed by Lewinsohn et al.11 They also demonstrated
that human embryonic kidney 293 cells (HEK-293) cells ectopically
expressing the Met1Ile mutant protein used an alternative
translation initiation site yielding a smaller DDX41 protein when
compared with the full-length of 70 kDa. Their experiments suggest
that this isoform may occur naturally and has an altered location.
The recurrence of the Met1Ile variant in the ExAC

database poses an interesting question as to the causative
role of DDX41 variants in MDS/AML. Excluding any non-
canonical and dubious calls in this database, loss of function
(LOF) variants (including Met1Ile) are seen to occur at a
cumulative frequency of 1 in 1189 people (46 LOF variants in
an average of 109 354 alleles). This is in stark contrast to the few
LOF variants reported in RUNX1 (6), CEPBA (0), GATA2 (0) and
ETV6 (1). We also note that in a screen of 1034 patients

Table 1. Characteristics and family history of index cases

Family Case Age (years) Diagnosis Relationship to index Nucleotide Amino acid

1 I-1 NA Asymptomatic Grandmother NA NA
I-2 NA Asymptomatic Grandfather NA NA
II-1 77 Asymptomatic Maternal aunt c.155dupA p.Arg53Alafs*16
II-2 69 MDS Maternal uncle c.155dupA p.Arg53Alafs*16
II-3 66 MDS Maternal aunt c.155dupA p.Arg53Alafs*16
II-4 NA Asymptomatic Mother NA NA
II-5 NA CML Father NA NA
III-1 49 MDS Index case c.155dupA p.Arg53Alafs*16

2 I-1 NA AML Mother NA NA
I-2 NA Asymptomatic Father NA NA
II-1 60 AML Index case c.719delTinsCG p.Ile240Thrfs*108

3 I-1 NA MDS Mother NA NA
I-2 NA Stomach cancer Father NA NA
II-1 NA Asymptomatic Husband NA NA
II-2 58 MDS Index case c.1586-1587delCA p.Thr529Argfs*12
II-3 NA Asymptomatic Sister NV NV
II-4 56 Tongue cancer Brother NV NV
III-1 NA Asymptomatic Son NV NV
III-2 NA Asymptomatic Daughter c.1586-1587delCA p.Thr529Argfs*12

4 I-1 NA Asymptomatic Mother NA NA
I-2 64 MDS Father c.3G4A p.Met1Ile

c.-44G4A Met1Ile NA
II-1 41 MDS Index case c.3G4A p.Met1Ile

c.-44G4A Met1Ile NA

Abbreviations: AML, acute myeloid leukemia; CML, chronic myeloid leukemia; MDS, myelodysplastic syndrome; NA, not available; NV, does not have the
variant.
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with MDS and secondary AML, 7 patients (1 in 148) had
germline LOF variants in DDX41 (ref. 10). These data indicate
that rather than establishing a causal Mendelian link between
germline LOF DDX41 variants and MDS/AML, it is better to
think of them as genetic risk factors. Comparing the frequency
of LOF DDX41 variants seen in MDS and secondary AML with
the frequency seen in ExAC we obtain an odds ratio of 8.05
(P = 5.65 × 10 − 5, Fisher’s exact test). Allowing for a 1/100
probability of getting the disease, this would translate
to a relative risk of 7.51. It is inevitable therefore, that
MDS/AML driven by DDX41 LOF variants will sometimes appear
as familial.
In summary, we report on novel germline heterozygous

DDX41 variants exhibiting variable penetrance in families with
MDS/AML and tendency to short telomeres. Our analysis
suggests that rather than establishing a causal Mendelian link
between DDX41 germline LOF variants and MDS/AML it is
appropriate to consider these as genetic risk factors.
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Post-transplant cyclophosphamide-based haplo-identical
transplantation as alternative to matched sibling or unrelated
donor transplantation for non-Hodgkin lymphoma: a registry
study by the European society for blood and marrow
transplantation
Leukemia (2016) 30, 2086–2089; doi:10.1038/leu.2016.125

Allogeneic hematopoietic stem cell transplantation (alloSCT) is
a valuable treatment option with curative potential for patients with
relapsed and refractory non-Hodgkin's lymphoma (NHL),1 but its
use has been limited by matched donor availability. Haplo-identical

stem cell transplantation (haplo-SCT) has been developed to
address this limitation. Virtually all patients have a haplotype-
mismatched family donor, who is immediately available. The recent
development of haplo-SCT protocols, involving high-dose post-
transplant cyclophosphamide (ptCY) given early after graft infusion2

has led to a continuously growing popularity of haplo-SCT. Although
the data in myeloid diseases and Hodgkin’s lymphoma is
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