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Abstract
Many cutting-edge technologies based on next-generation sequencing (NGS) have been

employed to identify candidate variants responsible for sensorineural hearing loss (SNHL).

However, these methods have limitations preventing their wide clinical use for primary

screening, in that they remain costly and it is not always suitable to analyze massive

amounts of data. Several different DNA chips have been developed for screening prevalent

mutations at a lower cost. However, most of these platforms do not offer the flexibility to add

or remove target mutations, thereby limiting their wider use in a field that requires frequent

updates. Therefore, we aimed to establish a simpler and more flexible molecular diagnostic

platform based on ethnicity-specific mutation spectrums of SNHL, which would enable

bypassing unnecessary filtering steps in a substantial portion of cases. In addition, we

expanded the screening platform to cover varying degrees of SNHL. With this aim, we

selected 11 variants of 5 genes (GJB2, SLC26A4,MTRNR1, TMPRSS3, and CDH23)
showing high prevalence with varying degrees in Koreans and developed the U-TOP™ HL

Genotyping Kit, a real-time PCR-based method using the MeltingArray technique and pep-

tide nucleic acid probes. The results of 271 DNA samples with wild type sequences or muta-

tions in homo- or heterozygote form were compared between the U-TOP™ HL Genotyping

Kit and Sanger sequencing. The positive and negative predictive values were 100%, and

this method showed perfect agreement with Sanger sequencing, with a Kappa value of

1.00. The U-TOP™ HL Genotyping Kit showed excellent performance in detecting varying

degrees and phenotypes of SNHL mutations in both homozygote and heterozygote forms,
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which are highly prevalent in the Korean population. This platform will serve as a useful and

cost-effective first-line screening tool for varying degrees of genetic SNHL and facilitate

genome-based personalized hearing rehabilitation for the Korean population.

Introduction
Sensorineural hearing loss (SNHL) is one of the most common congenital diseases with an
incidence of about 1 per 1,000 at birth and 1 per 300 by 4 years of age [1]. More than half of
congenital SNHL cases are caused by genetic etiologies, and the non-syndromic and autosomal
recessive form of SNHL is the most common [2].

Early detection of hearing loss is important for appropriate auditory rehabilitation. In this
sense, genetic diagnosis can play a significant role by facilitating a correct diagnosis and predic-
tion of auditory prognosis. Such information could help clinicians with making proper deci-
sions regarding when and how to rehabilitate, recommending guidelines needed to prevent
further aggravation and genetic counseling particularly in terms of the recurrent risk for
SNHL.

Despite the advances of new sequencing technologies, there is still a need for a simpler
screening technology with a more flexible platform as a first-line screening tool in clinical set-
tings. Even with the generalization of various next-generation sequencing (NGS) platforms, the
routine application of NGS for screening of hearing loss genes remains cost-prohibitive and
complicated to analyze [3]. Several DNA chips targeting hereditary SNHL have been commer-
cialized and offer clear advantages over NGS techniques, in terms of multiplexing [4]. How-
ever, once the chip is established, it is difficult to adjust target mutations. Novel ethnicity-
specific alleles related to hearing loss are frequently discovered. In addition, a need exists for
the ability to screen variants associated with varying degrees of SNHL because current screen-
ing methods have focused exclusively on pre-lingual, severe-to-profound hearing loss. Thus, it
is important to develop a flexible screening kit that reflects ethnicity, can be easily updated to
reflect sequence changes, and can cover a diverse degree of SNHL.

In this study, we employed MeltingArray technology (SeaSun Biomaterials, Daejeon,
Korea), a peptide nucleic acid (PNA) probe-based fluorescence melting-curve analysis system
that can be used in a conventional real-time PCR machine. Melting curve analysis using fluo-
rescently labeled allele-specific PNA probes can enable rapid and reliable detection of DNA
mutations including single nucleotide polymorphisms, insertions, and deletions [5]. PNA
probes are dual-labeled, random-coiled, self-quenching probes. The probes comprise a short
target-specific sequence, a fluorophore, and a dabsyl moiety attached at either end. In contrast
to other types of molecular probes, PNA probes are not degraded by DNA polymerase during
PCR elongation; thus, after PCR amplification, PNA probes can form stable duplexes with the
target, selectively [6].

In this study, we aimed to develop a more efficient and adjustable genetic diagnostic kit
using this MeltingArray technique as a first-line screening tool against prevalent mutations in
Korean patients with varying degrees of SNHL.

Materials and Methods

Ethics statement
This study was approved by institutional review boards (IRBs) at Seoul National University
Bundang Hospital (SNUBH; Seongnam, South Korea)(IRB-E-1501/282-303 and IRB-B-1007-
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105-402) and Seoul National University Hospital (SNUH; Seoul, South Korea) (IRBY-H-0905-
041-281). We obtained written informed consent from all adult participants and from the
parents or guardians of children participants.

Selection of target SNHL mutations included in the diagnostic kit
We selected 11 variants from 5 genes (GJB2, SLC26A4,MTRNR1, TMPRSS3, and CDH23),
which are found frequently in Koreans and cause varying degrees and phenotypes of SNHL,
based on previous reports from several leading institutes in Korea as well as Japanese and Chi-
nese studies [3, 7–23]. Mutations in GJB2 and SLC26A4, which are the 2 most common deaf-
ness-related genes in Koreans, were chosen based on their frequency among Korean subjects
with severe-to-profound SNHL [7–14, unpublished data generated at SNUBH] except p.V37I
of GJB2. The p.V37I variant was selected owing to its being responsible up to 20% of postlin-
gual mild-to-moderate hearing loss in the Korean population and 20% of postnatal, permanent
childhood hearing loss in a Chinese population [13, 14]. The 1555A>G variant of mitochon-
drial 12S ribosomal RNA gene (MTRNR1), the most common causative mutation of aminogly-
coside-induced SNHL was chosen due to its potentially strong clinical implications, even
though it shows a relatively low prevalence. This variant was found in 1.4% of the individuals
comprising a Korean deaf population, while it appeared in approximately 3% of individuals
among Chinese and Japanese populations [15–19]. Notably we also included the recently
reported founder mutations, p.P240L of CDH23 and p.A306T of TMPRSS3 [20–23] (Table 1).

Participants
We collected samples from patients with SNHL and their family members who visited the oto-
laryngology clinics of SNUH and SNUBH fromMay 2010 through May 2015 and who under-
went genetic testing for causative mutations. From 854 participants, including 410 probands
who were diagnosed with SNHL of varying degrees, we obtained 127 positive samples that had
at least 1 of the 11 variants from the 5 genes in homozygous, single heterozygous, or compound
heterozygous forms, as confirmed by Sanger sequencing. Accordingly, 144 normal control sub-
jects who do not have any of 11 variants were also recruited. The calculation used to determine
the normal control sample size required to validate our diagnostic kit with statistical signifi-
cance is described below in the Statistical analysis section.

Validation of the real-time PCR-based MeltingArray genetic diagnostic
kit
To validate the performance of the molecular diagnostic kit using the MeltingArray technique,
referred to as the U-TOP™HL Genotyping Kit (SeaSun Biomaterials), we tested DNA samples
collected in the SNUH and SNUBH and compared the results obtained using the U-TOP™HL
Genotyping kit with those obtained by traditional Sanger sequencing. All operators were pro-
vided with randomly ordered samples, which were anonymized by code numbers and were
blinded in terms of previously reported genotypes.

Genomic DNA (gDNA) was isolated from whole blood samples using standard protocols
(Gentra Puregene Blood Kit, Catalog No. 158389; Qiagen, Venlo, Netherlands), according to
the manufacturer’s instructions. The stored gDNA samples had 260 nm/280 nm absorbance
ratios of over 1.5, coded, and randomly ordered before being provided in a single-blinded man-
ner to the operator for testing.

Real-time PCR. Real-time PCR was performed using the U-TOP™HL Genotyping Kit
(SeaSun Biomaterials) with a CFX96 Real-Time PCR Detection system (Bio-Rad, Hercules,
CA, USA). Eleven mutations in 5 SNHL genes were examined using this kit according to the
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manufacturer’s manual. Briefly, 3 individual real-time PCR reactions were performed in 20-μl
reactions containing 10 μl of 2× qPCR PreMix (SeaSun Biomaterials), 7 μl of primer and detec-
tion PNA probe mixture (HL set A, B, C), and 3 μL of DNA template (15 ng/μl) (Table 2). The
reaction conditions for amplification and melting point analysis were 95°C for 10 min; 42
cycles of 95°C for 30 s, 58°C for 45 s, and 72°C for 45 s; followed by melting point analysis.
Melting point analysis was performed using a denaturation step of 95°C for 5 min; touch-
down, 1-min hybridization steps of 75°C, 55°C, and 45°C; and a stepwise temperature increase
from 20 to 85°C at 1°C/step, with a 5 s interval between each step. The data were analyzed
using Bio-Rad CFX manager v1.6 software (Bio-Rad). Mutations were characterized by the
fluorescence signal of detection probes and corresponding melting temperatures (Tm), accord-
ing to the standard table provided by the kit manufacturer.

Table 1. Non-syndromic hearing loss genes and the related mutations detected with real-time PCR.

Gene OMIM Mutation Wild
type

Mutant type Phenotypes Frequency in
Koreans

Frequency of
each variant
(among total
variants from
the gene)

Reference

Homozygote Heterozygote

GJB2 DFNB1A p.V37I TCGTT TCATT TCG/ATT postlingual mild to
moderate hearing
loss

16.9% (22/130)
of arNSHL

9.8% (4/41) Kim et al,
2015 [13]

c.235delC* CCCTG CC-TG CCC/-TG wide range of hearing
loss with low
frequency residual
hearing

39.0%(16/41)

c.299delAT CATGA C—GA CAT/—GA prelingual severe to
profound arNSHL

p.R143W TCCGG TCTGG TCC/TGG prelingual severe to
profound arNSHL

26.8%(11/41)

SLC26A4 DFNB4 p.H723R* CCATG CCGTG CCA/GTG pre- or perilingual
onset fluctuating and
progressive arNSHL
with EVA, Pendred
syndrome

6.5% (6/92) of
recessive deaf
[8]

40–61% (18/45-
63/103) [9,12]

Park et al,
2003 and
2005 [8, 9],
Rah et al,
2014 [12]

c.IVS7-
2A>G*

TCAGA TCGGA TCA/GGA 20–21% (9/45-
22/103) [9,12]

p.T410M CACGG CATGG CAC/TGG

p.L676Q ACTGC ACAGC ACT/AGC

MTRNR1 1555A>G AGACA AGGCA AGA/GCA aminoglycoside-
induced and NSHL,
maternal
transmission

1.4% (5/356,
frequency of
1555A>G)

Bae et al,
2008 [16],
Jeong et al,
2004 [17]

TMPRSS3 DFNB8/
10

p.A306T TCGCC TCACC TCG/ACC down sloping type or
prelingual hearing
loss with some
residual hearing

5.9%(3/51) of
arNSHL or
11.2%(3/27) of
NSHL with low
frequency
residual hearing

50% (3/6) Chung al,
2014 [20]

CDH23 DFNB12 p.P240L* GCCTT GCTTT GCC/TTT prelingual severe to
profound arNSHL

3.1%(4/128) of
pediatric severe
to profound
sporadic or
arNSHL

85.7%(6/8) Kim et al,
2015 [21]

* founder mutations in Korean

Bold and underlined letters indicate base pairs where the mutations occur.

arNSHL autosomal recessive nonsyndromic hearing loss

doi:10.1371/journal.pone.0161756.t001

Real-Time PCR Detection of Hearing-Loss Mutations

PLOS ONE | DOI:10.1371/journal.pone.0161756 September 1, 2016 4 / 16



Sanger sequencing. Sanger sequencing was performed as follows. A total of 8 sets of prim-
ers indicated in Table 3 were used to amplify gDNA regions containing the mutations. Poly-
merase chain reaction (PCR) was performed in 20-μl reactions containing 3 μL purified gDNA
(15 ng/μl), 10 μl 2× qPCR PreMix (SeaSun Biomaterials), and 0.5 μl each of a forward and
reverse primer (10 mM). Subsequently, thermocycling was performed using 40 cycles at 95°C
for 30 s, 58°C for 45 s, 72°C for 45 s, with a final elongation step performed at 72°C for 5 min.
The products were electrophoresed on a 2% agarose gel and visualized with ethidium bromide
staining under ultraviolet light to verify their sizes and assess their quantities. PCR products
were sequenced using the ABI BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosys-
tems, Waltham, MA, USA), according to the manufacturer’s instructions. The sequencing
primers were the same as the PCR primers. Sequencing reaction products were electrophoresed
on an ABI 3500XL genetic analyzer (Applied Biosystems). Sequence data were analyzed using
an ABI 3500XL DNA Analyzer (Applied Biosystems). All gDNA samples were examined indi-
vidually with each of the 8 sets of primers in both directions.

Statistical analysis
To evaluate the performance of the U-TOP™HL Genotyping Kit, the positive predictive value
(PPV), negative predictive value (NPV), and 95% confidence intervals (CI) for the PPV and
NPV were calculated.

The 1-sample, non-inferiority test was used at a significance level of 0.05 and a statistical
power of 80%. The average of PPV and NPV were obtained from 12 reference articles where
methods using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry or

Table 2. List of sequences of primers and PNA probes used in real-time PCR.

Gene Mutation Direct-ion Primer PNA Probe

Primer Sequence (5' - 3') Size (bp) Probe Sequence (5' - 3') Fluo-resce-nce

GJB2 p.V37I F GGGGTGTGAACAAACACTCCA 161 CCACAACGAGGATC FAM

R ATCTCCCCACACCTCCTTTGC

c.235delC F ACGATCACTACTTCCCCATCTCC 145 CAGGGCCCATAGCCG Cy5

c.299delAT R CTCTTTATCTCCCCCTTGATGAAC CATGTCTCCGGTA HEX

p.R143W F GGTGGACCTACACAAGCAGCA 90 GATGACCCGGAAGAA Texas Red

R TGGAGAAGCCGTCGTACATGA

SLC16A4 p.T410M F TTTGGGATCAGCAACATCTTCTC 154 TCCCGCACGGCCGTC FAM

R CCATTCCTCGACTTGTTCTCTGA CCGCATGG FAM

p.L676Q F CAATCCATAGCCTTGTGCTTGAC 151 AGATCACTGCGGG HEX

R TTGCAATACTGGACAACCCACAT

p.H723R F AGCCTGGGCAATAGAATGAGACT 229 GGTCCATGATGCTA Texas Red

R AAATGGAACCTTGACCCTCTTGA

c.IVS7-2A>G F CACAAAATCCCAGTCCCTATTCC 221 TTTTATTTCAGACGATAA Cy5

R CCCTTGGGATGGATTTAACAATG

MTRNR1 1555A>G F GGTCGAAGGTGGATTTAGCAG 202 ACGACTTGTCTCCTCTA HEX

R GCTACACTCTGGTTCGTCCAA

TMPRSS3 p.A306T F ATTTCAGCTTGTACCTCCCCAAG 189 ATGACATCGCCCTTATG Cy5

R ACCCAGATGTACCATTGAACGTG

CDH23 p.P240L F ACTTGGCCATCATCATCACAGAT 162 AACCTGCCTTACAGC Texas Red

R CCCTAACAGGAGCTCAGAAGGAA

F: forward direction, R: reverse direction

doi:10.1371/journal.pone.0161756.t002
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real-time PCR were compared with Sanger sequencing in detecting mutations of GJB2 or other
human genes. The average PPV and NPV were 96.7% and 92.5%, respectively, and the differ-
ences from the lower margin of the 95% CI (δ, the non-inferiority margin) were -4.7% and
-6.5% respectively [24–35]. Based on the reference articles, the sizes of positive and normal
samples were calculated using the equation below, considering a 10% dropout rate.

n ¼ ðZa=2 þ ZbÞ2pð1� pÞ
ðd� jp� p0jÞ2

p = the average PPV and NPV values from the reference articles
p0 = the expected PPV and NPV for this study (equivalence)
Zα/2 = 1.96
Zβ = 0.842
In addition, to assess the agreement between 2 tests, we calculated the kappa (κ) statistic,

which is widely considered to reflect almost perfect agreement when the kappa value is between
0.81 and 1.00 [36].

Results
We tested 271 gDNA specimens (127 samples with mutations and 144 control samples) using
both the U-TOP™HL Genotyping Kit and Sanger sequencing. The U-TOPHL Genotyping Kit
showed distinct melting curves specific to each allele, with Tm values for each diagnostic melting
peak detected exactly as predicted. Sanger sequencing enabled detection of 153 mutations from
127 samples, and these results were replicated using the U-TOP™HL Genotyping Kit (S1 Table
and Table 4). The 153 mutations identified consisted of 135 heterozygous and 18 homozygous
mutations. The p.H723R variant of SLC26A4was the most common, and c.235delC of GJB2was
the most commonly detected among samples with a homozygous mutation (Table 5). Among
127 positive samples, 18 samples carried homozygous target variants while 88 samples carried

Table 3. List of primer sequences used in Sanger sequencing.

Gene Mutation Direction Primer

Primer Sequence (5' - 3') Size (bp)

GJB2 p.V37I, c.235delC, c.299delAT, p.R143W F GGGGTGTGAACAAACACTCCA 456

R TGGAGAAGCCGTCGTACATGA

SLC16A4 p.T410M F GGATCAGCAACATCTTCTCAGGA 158

R CTCTGTTGCCATTCCTCGACTT

p.L676Q F CAATCCATAGCCTTGTGCTTGAC 151

R TTGCAATACTGGACAACCCACAT

p.H723R F AGCCTGGGCAATAGAATGAGACT 229

R AAATGGAACCTTGACCCTCTTGA

c.IVS7-2A>G F CACAAAATCCCAGTCCCTATTCC 221

R CCCTTGGGATGGATTTAACAATG

MTRNR1 1555A>G F GGTCGAAGGTGGATTTAGCAG 202

R GCTACACTCTGGTTCGTCCAA

TMPRSS3 p.A306T F ATTTCAGCTTGTACCTCCCCAAG 189

R ACCCAGATGTACCATTGAACGTG

CDH23 p.P240L F ACTTGGCCATCATCATCACAGAT 162

R CCCTAACAGGAGCTCAGAAGGAA

F: forward direction, R: reverse direction

doi:10.1371/journal.pone.0161756.t003
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one or more single heterozygous target variants. The other 21 samples were compound heterozy-
gotes of one of the five target genes. Two or more different target variants were detected in 25
samples and 21 were compound heterozygotes of either GJB2 or SLC26A4 (Table 6).

Fig 1 shows representative melting peaks for each variant in a homozygous and heterozy-
gous state, as well as those of the wild type sequences. In addition to heterozygous mutations,
homozygous mutations were clearly detectable with a single melting peak at Tm that was dis-
tinct from that of the wild type sequence.

The PPV was 100.0% (95% CI: 97.1%–100.0%) and the NPV was 100.0% (95% CI: 97.4%–
100.0%), without any false negative or false positive results. The differences in the PPV and NPV
from the lower margin of the 95% CI were 2.9% and 2.6%, respectively, and these were lower
than predetermined non-inferiority margins from the references (4.7% and 6.5%, respectively).
Thus, we can conclude that performance of the U-TOP™HL Genotyping Kit was similar to
Sanger sequencing. The lower margins of the 95% CI of the PPV and NPV were 97.1% and
97.4%, respectively, and these were higher than 95.3% and 93.5%. These data confirmed that the
PPV and NPV of U-TOP™HLGenotyping Kit were comparable to those from the references.

The Kappa value was 1.00, as calculated using the equation below. Therefore, the results
with U-TOP™HL Genotyping Kit showed perfect agreement with the Sanger sequencing
results (Table 7).

k ¼ 2ðad � bcÞ
ðaþ bÞðbþ dÞ þ ðaþ cÞðcþ dÞ ¼

2ð127� 144Þ � ð0� 0Þ
ð127þ 0Þð0þ 144Þ þ ð127þ 0Þð0þ 144Þ ¼ 1:00

Table 4. Test results of the U-TOP™ HL Genotyping Kit and Sanger sequencing.

Sanger sequencing

GJB2 SLC26A4 MTRNR1 TMPRSS3 CDH23 Wild
type

Total

p.
V37I

c.299delAT c.235delC p.
R143W

p.
T410M

p.
L676Q

p.
H723R

c.IVS7-
2A>G

1555A>G p.A306T p.P240L

Real-
time
PCR

GJB2 p.V37I 15 0 0 0 0 0 0 0 0 0 0 0 15

c.299delAT 0 10 0 0 0 0 0 0 0 0 0 0 10

c.235delC 0 0 24 0 0 0 0 0 0 0 0 0 24

p.R143W 0 0 0 12 0 0 0 0 0 0 0 0 12

SLC26A4 p.T410M 0 0 0 0 8 0 0 0 0 0 0 0 8

p.L676Q 0 0 0 0 0 7 0 0 0 0 0 0 7

p.H723R 0 0 0 0 0 0 35 0 0 0 0 0 35

c.IVS7-
2A>G

0 0 0 0 0 0 0 18 0 0 0 0 18

MTRNR1 1555A>G 0 0 0 0 0 0 0 0 4 0 0 0 4

TMPRSS3 p.A306T 0 0 0 0 0 0 0 0 0 8 0 0 8

CDH23 p.P240L 0 0 0 0 0 0 0 0 0 0 12 0 12

Wild type 0 0 0 0 0 0 0 0 0 0 0 144 144

Total 15 10 24 12 8 7 35 18 4 8 12 144 297

doi:10.1371/journal.pone.0161756.t004

Table 5. Distribution of mutations detected by the U-TOP™HL Genotyping Kit, according to the variants and genotypes.

Genotype GJB2 SLC26A4 MTRNR1 TMPRSS3 CDH23 Total

p.V37I c.299delAT c.235delC p.R143W p.T410M p.L676Q p.H723R c.IVS7-2A>G 1555A>G p.A306T p.P240L

Heterozygote 14 10 19 12 8 7 32 15 0 8 10 135

Homozygote 1 0 5 0 0 0 3 3 4 0 2 18

Total 15 10 24 12 8 7 35 18 4 8 12 153

doi:10.1371/journal.pone.0161756.t005
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To predict a detection rate of this kit among various degrees and types of SNHL, we
employed our entire SNHL cohort with such a distribution. We counted the number of pro-
bands who had at least one of 11 variants from 5 genes from 410 probands of our entire SNHL
cohort to predict the degree to which these selected variants would account for a diverse spec-
trum of SNHL in a Korean ethnicity. Among the 410 probands, 83 had one or more of the 11
variants studied, with a detection rate of 20.2%.

To extrapolate the predicted detection rate for prelingual SNHL by this kit from our data,
we counted the number of subjects with prelingual SNHL and also the number of subjects car-
rying any of the nine target variants of the GJB2, SLC26A4 and CDH23 genes selected for our
U-TOP™HL Genotyping Kit. A total of 218 prelingual SNHL subjects were included in our
SNHL cohort, and 35.8% (78/218) of these cases were caused by the nine target variants in this
kit. Furthermore, these nine target variants accounted for 89.7% (78/87) of 87 prelingual SNHL
caused by these 3 genes, showing a significant usefulness of this kit to easily screen prelingual
SNHL cases.

Discussion
Early diagnosis and auditory rehabilitation of hearing loss in children is very important; how-
ever, it is not always feasible, especially in cases of autosomal recessive SNHL. A child with

Table 6. Genotyping results of subjects with two or more different mutations.

Gene Mutation Patients ID No of
specimenGene 1 Gene 2

SLC26A4
+SLC26A4

SLC26A4:p.
H723R/c.IVS7-
2A>G

SB104-196, SB129-222,
SNUH192-432-J154,
SNUH33-74, SB214-419

15

SLC26A4:p.
L676Q/p.H723R

SB16-35, SB28-61,
SNUH154-334, SB16-34

SLC26A4:p.
T410M/p.H723R

SNUH129-267, SNUH133-
276, SNUH179-398, SB23-
55, SB221-432

SLC26A4:p.
T410M/c.IVS7-
2A>G

SB23-54

GJB2+GJB2 GJB2:c.235delC/
p.R143W

SNUH70-160, SNUH185-
419-J152

5

GJB2:p.V37I/p.
R143W

SNUH95-209, SNUH95-256

GJB2:p.V37I/
c.235delC

SNUH42-94

GJB2
+SLC26A4

GJB2:p.V37I (het) SLC26A4:c.IVS7-
2A>G (het)

SNUH162-356 3

GJB2:p.V37I (het) SLC26A4:c.IVS7-
2A>G (homo)

SNUH162-355

GJB2:c.235delC
(het)

SLC26A4:p.H723R
(het)

SNUH35-76

GJB2
+MTRNR1

GJB2:p.R143W
(het)

MTRNR1:1555A>G
(homo)

SNUH60-139 1

GJB2+GJB2
+SLC26A4

GJB2:c.299delAT/
c.235delC

SLC26A4:p.H723R
(het)

SNUH35-75 1

Total 25

Het: single heterozygote, Homo: homozygote

doi:10.1371/journal.pone.0161756.t006
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hearing impairment would be unexpected for such parents because they and their relatives usu-
ally have normal hearing and in most cases, the child would not be comorbid with other abnor-
mal phenotypes. An unanticipated hearing deficiency might result in delayed detection and
intervention against hearing loss in children, thereby leading to poorer outcomes if the critical
period of language development is missed. The genetic diagnosis of hearing loss helps clinicians

Fig 1. Representing melting peaks of eleven variants. Lines colored in red, green, and blue indicate
homozygous mutant, heterozygous mutant, and wild type sequences, respectively for eleven variants. Each HL
set occupied 1 well and contained 3 or 4 PNA probes labeled with fluorophores for detection in the FAM, HEX,
Texas Red, and Cy5 channels.

doi:10.1371/journal.pone.0161756.g001
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and patients to delineate the characteristics of hearing loss with greater clarity. In this study, we
sought to facilitate accurate diagnosis of genetic hearing loss by establishing a more convenient
and time-efficient genetic diagnostic kit in reference to known genetic information for the
Korean population.

In terms of efficiency, the U-TOP™HL Genotyping Kit offers advantages over other meth-
ods, such as direct sequencing and DNA chips. Firstly, this kit utilizes the conventional real-
time PCR machine that is commonly used in many laboratories. Additional expensive equip-
ment is not necessary. Mutations in hearing loss-associated genes are distinguished in 1 well
with 3 or 4 different fluorescent dyes, as well as by the shapes of melting peaks that appear at
specific melting temperatures to differentiate the genotypes. Accordingly, the analysis of 11
variants requires only 3 wells, with 3 or 4 mutations assayed per well. Therefore, this kit offers
the merits of high throughput and multiplexing with a small amount of sample. Moreover, the
use of real-time PCR and PNA probes have advantages in terms of flexibility over DNA chips,
which have been mainly developed as screening tools, because we can easily alter the targeted
mutations by adding or removing PNA probes and primers. With increasing attention being
paid to genetic diagnosis and advancements in related technologies, new causative SNHL
mutations are being discovered, and their inferred clinical significance in primary screening is
constantly changing. The kit developed in this study is expected to fulfill the need for a low-
cost screening method with enhanced flexibility and efficiency.

Recently, Sagong et al. reported the development of a screening method for hearing loss
mutations using multiplex SNaPshot minisequencing, which is also rapid and offers easy data
analysis [37]. This method also requires relatively universal equipment and comprises short
steps: a thermocycler is used for PCR and single base extension reactions, and a DNA
sequencer is used for electrophoresis and analysis. In addition, similar to real-time PCR, inde-
pendent amplification with specific primers for target variants allows researchers to easily
incorporate other mutations of interest. However, the U-TOP™HL Genotyping Kit still has a
critical advantage over multiplex SNaPshot minisequencing in that the U-TOP™HL Genotyp-
ing Kit requires only a real-time PCR machine. In addition, the risk of sample contamination
and sample loss is much lower with the kit than other methods, as the assay is performed in a
single step in closed wells during the reaction and analysis steps. MassARRAY system com-
bined iPLEX assay is also a high-throughput genotyping technology using MALDI-TOF mass
spectrometry [38]. This MassARRAY system can handle large number of variants in multiple
samples simultaneously at relatively low genotyping cost per patient when it once setup. How-
ever MassARRAY system is still very costly to be widely used because it depends on very
expensive platform for the analysis, which is not usually equipped. In contrast, our system
needs only real-time PCR machine universally used in many laboratories. We can start up
genetic diagnosis with much lower initial purchasing cost or utilizing existing PCR machine.

Table 7. Comparison of mutation-detection results obtained with the U-TOP™HL Genotyping Kit and
Sanger sequencing.

Sanger sequencing Total

Positive Negative

Real-time PCR kit(U-TOP™ HL Genotyping Kit) Positive 127 (a) 0 (b) 127

Negative 0 (c) 144 (d) 144

Total 127 144 271

The detection of 1 or more mutations was scored as a positive result, and wild type sequences were scored

as negative.

doi:10.1371/journal.pone.0161756.t007
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Moreover, our system is also a flexible platform where we can expand the number of variants
by designing new PNA probes against additional variants. MassARRAY system may have
advantage in screening a large number of mutations scattered over multiple genes in the ethnic
groups with extreme genetic heterogeneity of SNHL. However, in the East Asian groups includ-
ing Korean population, which have distinct hot spots or founder mutations in several genes, it
may be a more practical strategy to screen out such mutations with easily accessible system. In
this sense, we included five hotspot or founder mutations over four genes in East Asian includ-
ing Koreans in our kit (Table 1).

More importantly, the use of melting peak analysis makes the interpretation of results much
easier, intuitive, and more accurate than the use of Sanger sequencing in specific situations. In
the case of an amplicon that has 2 or more mutations including frameshift mutation, unidirec-
tional Sanger sequencing, either in a forward or reverse direction, may have a limitation detect-
ing mutations occurring downstream of a frameshift mutation by aligning the sample trace to
reference trace, as illustrated in Fig 2. However, the U-TOP™HL Genotyping Kit could be used
to detect this type of compound heterozygous mutations more accurately and much more eas-
ily because the MeltingArray technique uses a specific melting temperature of a PNA probe
against each target mutations (Fig 2). This advantage makes this screening kit more useful for
the Korean population because these variants that can be amplified in a single amplicon are
found in high prevalence. For example, we encountered 4 (7.41%) of such cases among 54 sam-
ples with GJB2 mutations in our cohort.

The variants currently tested with the U-TOP™HL Genotyping Kit have meaningful clinical
implications. Prelingual severe-to-profound SNHL subjects who carry p.P240L of CDH23 are
good candidates for early cochlear implantation. The p.P240L variant has been reported to be a
predominant CDH23mutation among Japanese and Korean people, accounting for around
45% or even over 50% of the total number of CDH23mutations and has recently been reported
to cause a strong founder effect in Koreans by Kim et al. [21–23, 39]. Thus, screening p.P240L
in CDH23 from non-GJB2 and non-enlarged vestibular aqueduct subjects with autosomal
recessive prelingual hearing loss would offer a cost-effective diagnostic yield. Considering that
GJB2, SLC26A4, and CDH23 are the 3 most common causative genes of prelingual SNHL in
Koreans [40] and that the founder alleles of these 3 genes are all included, our kit alone is
expected to cover a substantial portion of prelingual severe-to-profound genetic SNHL in
Koreans. The 9 mutations of 3 genes included in this kit can cover 35.8% of prelingual SNHL
among our entire SNHL cohort with varying degrees of SNHL. Furthermore, out kit is expected
to account for upto 90% of prelingual SNHL cases caused by the main three prelingual SNHL
causative genes in Koreans and East Asians, without Sanger sequencing.

This high diagnostic yield of this genotyping kit is not necessarily limited to prelingual
severe-to-profound SNHL cases. Mutations of the GJB2 gene are commonly, but not always
related with a severe-to-profound degree of hearing loss with autosomal recessive inheritance.
The variant p.V37I is usually responsible for mild-to-moderate and later-onset hearing loss
and its carrier frequency is very high (up to 18.2%) among Korean with mild or slight hearing
loss [3, 13, 41]. Moreover, the p.A306T mutation of TMPRSS3, which has been reported to be a
founder allele in Koreans, can be associated with the postlingual ski slope type of progressive
SNHL [20]. Detection of p.A306T in TMPRSS3 using this kit can potentially provide surgeons
with valuable information regarding how and when to rehabilitate SNHL, as the rapidity of
SNHL progression related to TMPRSS3 is likely to depend on the type of the mutant allele of
TMPRSS3 in a trans configuration with p.A306T [20, 42]. The residual low frequency hearing
would aggravate very rapidly or be maintained for scores of years, depending on the combina-
tion of the 2 mutant alleles. With advances in various hearing rehabilitation devices such as
combined electric and acoustic stimulation and techniques to preserve residual hearing in low
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Fig 2. Sequence chromatograms of compound heterozygousmutations, including frameshift mutations within a single amplicon. (A, B)
Comparison of the sequence chromatograms of a compound heterozygousGJB2 c.235delC and c.299_300delAT mutation (upper) with those of
the carrier of the each variant (bottom), using a forward primer (A) or a reverse primer (B), respectively: Both deletion mutations cause a frameshift,
and it is easy to miss these mutations located downstream of a deletion mutant with either forward or reverse sequencing only. (C, D) The sequence
chromatograms of a compound heterozygousGJB2 c.235delC and p.R143Wmutation (upper) were compared with those of carrier of each variant
(bottom), using a forward primer (C) and a reverse primer (D). Detection of a missense mutation, p.R143W, downstream to c.235delC can be
detected by reverse sequencing, but not only by forward sequencing only if the two mutations are in a single amplicon. (E, F) Corresponding melting
peaks of the compound heterozygous mutations ofGJB2 and the carrier of the each variant. Curves show double peaks of heterozygote in red and
single peak of wild type in blue at its specific melting temperatures. All mutations can be easily discernible.

doi:10.1371/journal.pone.0161756.g002
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frequencies during cochlear implantation surgery, it became increasingly important to prog-
nose the hearing status with greater accuracy to decide when and how to rehabilitate hearing-
impaired patients [43], and clarification of the genetic etiology can help in this regard.

By including prevalent mutations associated with moderate SNHL or postlingual ski slope
SNHL, the kit accounted for 20% of the entire SNHL cohort comprising varying degrees of
SNHL. Considering that our kit was predicted to cover 35.8% of prelingual SNHL cases and
that about 50% of prelingual SNHL cases in general are thought to have a genetic etiology, this
kit might be expected to possibly cover upto 70% of prelingual cases in Koreans. However it is
also possible that our SNHL cohort might have a recruitment bias toward more genetic cases,
which may have exaggerated out predicted detection rate of this kit for prelingual SNHL cases.
Nevertheless, almost 90% of subjects with variants somewhere in the main three genes for pre-
lingual SNHL genes (GJB2, SLC26A4, and CDH23) can be expected to be detected by this kit in
Koreans. For the next step for the subjects with no detected mutations by this kit, we routinely
apply targeted panel sequencing of known deafness genes as described [40, 44, 45]. Whole
exome sequencing is performed for the unresolved cases even with targeted panel sequencing.

To our knowledge, this is the first screening kit that can cover a significant portion of more
general population with a broad spectrum of hearing loss, rather than a biased cohort with
only severe to profound hearing loss. Therefore, screening for mutations with the U-TOP™HL
Genotyping Kit targeting a wide range of hearing loss as well as prelingual severe-to-profound
SNHL is a very useful and efficient approach for clinicians and researchers to begin genetic
diagnosis.

Conclusion
We developed a new kit for genetic hearing loss and demonstrated excellent results in detecting
hearing loss-related genetic mutations prevalent in Korean population in homo- and heterozy-
gote forms, compared with Sanger sequencing. This kit is an efficient and flexible tool that can
be used to detect mutations causing varying degrees and phenotypes of hearing loss. This kit is
expected to serve as a primary screening tool for genetic hearing loss and could be helpful in
genome-based and personalized hearing rehabilitation.
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