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Abstract

Background

Computational modeling is a key technique for analyzing models in systems biology. There

are well established methods for the estimation of the kinetic parameters in models of ordi-

nary differential equations (ODE). Experimental design techniques aim at devising experi-

ments that maximize the information encoded in the data. For ODE models there are well

established approaches for experimental design and even software tools. However, data

from single cell experiments on signaling pathways in systems biology often shows intrinsic

stochastic effects prompting the development of specialized methods. While simulation

methods have been developed for decades and parameter estimation has been targeted

for the last years, only very few articles focus on experimental design for stochastic models.

Methods

The Fisher information matrix is the central measure for experimental design as it evaluates

the information an experiment provides for parameter estimation. This article suggest an

approach to calculate a Fisher information matrix for models containing intrinsic stochasti-

city and high nonlinearity. The approach makes use of a recently suggested multiple shoot-

ing for stochastic systems (MSS) objective function. The Fisher information matrix is

calculated by evaluating pseudo data with the MSS technique.

Results

The performance of the approach is evaluated with simulation studies on an Immigration-

Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is

a particularly appropriate case study as it contains the challenges inherent to signaling path-

ways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an

ODE solution, and partial observability. The computational speed of the MSS approach for

the Fisher information matrix allows for an application in realistic size models.
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Introduction
Computational modeling is widely used to deepen the understanding of biological processes.
Due to advances in experimental techniques (e.g. the possibility to measure small numbers of
molecules in single cells [1]), the importance of stochastic modeling is increasing. This article
focuses on experimental time course data that shows intrinsic stochasticity such as e.g. signal-
ing pathways (Fig 1). Stochastic simulation algorithms have been developed for decades [2]
resulting in a lot of variants today [3]. Recently, the development of parameter estimation tech-
niques suited for stochastic models began. These techniques can be classified into approaches
based on the chemical master equation [4], moment closure methods [5–8], Monte Carlo
methods [9, 10] and approximations [11–14].

The development of experimental design techniques for stochastic models in systems biol-
ogy is a very new field. The goal of experimental design is to design an experiment by choosing
the experimental conditions (e.g. time points of measurements or components that are mea-
sured) in such a way as to maximize the amount of information that can be obtained from the
data. In contrast to parameter estimation, experimental design is independent from measure-
ments and can be calculated before performing any experiment. Therefore, it is a tool to reduce
experimental costs by obtaining a certain predefined accuracy or maximizing the accuracy with
a predefined cost.

The most common quantity for measuring this information for models of ordinary differen-
tial equations (ODE) is the Fisher information matrix [15, 16]. As the Fisher information
matrix is a parameter dependent measure, its application needs some prior knowledge about
the system’s parameters. As this is not always readily available, techniques such as robust
experimental design [17, 18] have been developed to broaden its applicability. The Fisher infor-
mation matrix is under regularity condition the inverse of the asymptotic variance of a maxi-
mum likelihood estimator [19]. Therefore, the Fisher information has a high impact on
analyzing and improving parameter estimation: it is used to calculate confidence intervals for
the parameter estimates. Furthermore, it facilitates the investigation of the correlation between
parameters and the optimization of experimental design. For experimental design the Fisher
information matrix is first mapped to a scalar by so called optimality criteria [20]. This scalar

Fig 1. Deterministic and two (red and blue) stochastic realizations of the Calcium oscillation model. The left panel shows the deterministic
behavior of the Calcium oscillation model, the right panel two stochastic realizations showing the special characteristics to which the experimental design
methodology in this article can be applied: qualitatively different behavior from deterministic modeling, bursting oscillations, high nonlinearity and fast
dynamics (e.g. from almost 0 to 10000 molecules within a few time units).

doi:10.1371/journal.pone.0159902.g001

Experimental Design for Stochastic Models of Nonlinear Signaling Pathways

PLOS ONE | DOI:10.1371/journal.pone.0159902 September 1, 2016 2 / 37



function can then be optimized. The optimality criteria reflect the experimenter’s interest on
the parameters. Additionally, optimality criteria can also be used for model selection. This arti-
cle suggests an approach for calculating a Fisher information matrix in stochastic models.

The Fisher information has been applied to ODE or differential algebraic models [15, 21]. A
review of experimental design techniques in systems biology is presented by [22]. The mito-
gen-activated protein (MAP) kinase cascade is investigated in [16] who compares the confi-
dence ellipsoid of the Fisher information to parameter estimates gained from inference on
simulated data. There are also approaches to experimental design without the Fisher informa-
tion matrix such as Bayesian experimental design [23] or design strategies based on profile like-
lihoods [24].

Current approaches for calculating a Fisher information matrix in stochastic models in epi-
demics [25] and systems biology [11] approximate the process with a multivariate normal dis-
tribution taking into account the inter-temporal covariances. [26, 27] uses moment closure
techniques to compare experimental moments to parametrized theoretical moments. Based on
that, the authors show how to design optimal experiments to investigate gene expression. [28]
suggests a Monte Carlo based techniques to derive optimal perturbation experiments for
transcription.

The article at hand makes use of a recently developed multiple shooting for stochastic sys-
tems (MSS) objective function that treats the intervals between measurements separately. On
each interval a linear noise approximation (LNA) is used in combination with a state updating
scheme to handle non-observable components [14]. This separate treatment of the intervals
means that the LNA is only needed on the relatively short time interval between measurements.
The FIMSS Fisher information is calculated based on this MSS objective function and pseudo
data. The pseudo data is generated using the same approximation scheme as for the MSS objec-
tive function. The reason for the use of the Fisher information are its theoretical properties, the
wide use in deterministic models and computational speed.

In contrast to [26] data from only one time course is sufficient for the new method of this
article. The approach of [11] will be used as a benchmark for comparison. [11] calculated a
Fisher information matrix without Monte Carlo simulations. This approach assumes that the
observations are distributed with a multivariate normal distribution (MVN). The mean of this
MVN is the ODE solution and the covariance matrix is calculated with the help of a LNA and
it contains all inter-temporal covariances. This means that this approach applies the LNA to
the whole systems horizon, in contrast to the MSS method which only applies to the intervals
between measurements. This difference is of major importance: If the LNA holds over the
whole systems horizon, it also holds on a shorter time scale. However, if it holds on shorter
time scale, it does not necessarily hold over the whole systems horizon. The results section will
illustrate the impact of this on experimental design methods.

Simple examples, as the Immigration-Death model, allow for an exact calculation of esti-
mates and Fisher information matrices. This allows to compare the performance of the MSS
method with an exact approach.

As the Fisher information is an asymptotic measure and calculated using the MSS objective
function’s approximation, it is essential to investigate its performance. To address this matter,
the Fisher information, which corresponds to the inverse of the covariance of the maximum
likelihood estimator, is compared to a covariance matrix gained from different realizations of
these estimator. These realizations are computed by simulating stochastic data sets and per-
forming a parameter estimation on each of the data sets. The resulting estimates are used to cal-
culate a covariance matrix, which is then compared to the Fisher information matrix. This
comparison is based on optimality criteria, correlation structure or two-dimensional projection
of the confidence intervals (which gives best visual interpretation and has also been suggested
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by [16]). As the Fisher information matrix is an asymptotic measure and calculated by approxi-
mations, an exact coverage of confidence intervals is unlikely. However, since the information
content can be captured well enough to identify more informative designs, this is sufficient for
experimental design. Note that the comparison of the Fisher information matrix to the covari-
ance matrix from estimates is only done for investigating the performance. In general, when
designing optimal experiments, only the evaluation of the Fisher information is needed and not
the covariance from the estimates. The latter is only needed for evaluating the performance.

The methods section will recapitulate stochastic modeling, introduce the Fisher information
matrix, and define the FIMSS Fisher information matrix. The results section investigates the per-
formance of the FIMSS Fisher information matrix for three models: an Immigration-Death, a
Lotka-Volterra and a Calcium oscillation model. Calcium oscillations play an important role in
cell development and death as well as fertilization [29]. On top of that, the Calcium oscillation
model is an especially challenging test case as it is highly nonlinear and shows a qualitatively
different behavior in stochastic modeling than in deterministic modeling.

Methods

Stochastic Modeling of Biochemical Reactions
Computational modeling is a key technique for the analysis of complex systems in science. This
subsection will introduce stochastic modeling and explain in which situations it is important.

Let X = (X1, . . ., XD) denote the D reactants in a system with r reactions in which qij denotes
the number of educt molecules of species Xi for reaction j and uij the number of product mole-
cules of species Xi for reaction j. Hence the system reads as

q1j X1 þ q2j X2 þ . . . þ qDj XD �! u1j X1 þ u2j X2 þ . . . þ uDj XD;

for j ¼ 1; . . . ; r
ð1Þ

The stoichiometric matrix S is a D × r dimensional matrix. Its entries sij = uij−qij describe
the net effect of reaction j to species Xi. In terms of ODEs the system would read as

d
dt

xðt; y; x0Þ ¼ S vðxðt; y; x0Þ; yÞ; with xð0; y; x0Þ ¼ x0 ð2Þ

and a rate law v = (v1, . . ., vr)
T describing the speed of the reactions, an initial concentration x0

and a parameter vector θ.
Stochastic modeling is important in systems with small numbers of molecules, where sto-

chastic fluctuations can influence the system’s behavior [30]. It focuses on single particles and
considers each reaction explicitly. Both order of reactions and waiting times are stochastic
quantities depending on the system’s state and the rate laws. The chemical master equation
(CME, Eq 3) describes the time evolution of the probability of the system to be in a state ν:

d
dt

Pyðn; tjn0; t0Þ ¼
Xr

j¼1

~vjðn� sj; yÞPyðn� sj; tjx0; t0Þ � ~vjðn; yÞPyðn; tjn0; t0Þ
� �

Pyðn; t0jn0; t0Þ ¼
1 n ¼ n0

0 else

( ð3Þ

with a vector sj = (s1j, . . ., sDj)
T and with a propensity ~v that can be calculated from the rate law v

and describes the speed of the reactions in terms of particle numbers. The rate constant θ needs
to be defined in a volume independent way, otherwise apply transformations as in [31]. See [32]
for detailed discussion on stochastic formulation for rate laws vj of higher order reactions.
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The Gillespie algorithm [2] is the method of choice to simulate stochastic time courses. It is
an iterative algorithm simulating reaction event after reaction event using functions of random
numbers to determine both time step and reaction. The resulting time course is then a discrete
state continuous time Markov jump process, see also [33] for details. The stochastic time courses
shown in this manuscript were simulated using the Gillespie implementation in COPASI [34].

Stochastic modeling can show system’s behavior that can not be seen with ODE modeling:
Stochasticity can for example introduce bi-modality in genetic toggle switches, which have a
stable steady state in ODE modeling [35]. The structure of Calcium oscillations may change
qualitatively from ODE to stochastic modeling [36]. Furthermore, intrinsic stochasticity may
provide information, e.g. regarding reactivity, which allow to solve identifiability problems
[37]. This emphasizes the importance of stochastic modeling.

The Fisher information Matrix
The Fisher information matrix measures the information provided by an experimental set-up
for the estimation of the parameters. The theoretical result [19], which serves as the basis for
the wide use [15, 16, 21, 22] of the Fisher information, states that the inverse of the Fisher infor-
mation matrix FI is under certain regularity conditions [19] the asymptotic variance of a maxi-

mum likelihood estimator Ŵmle for a parameter ϑ:ffiffiffi
n

p
Ŵmle � Wtrue
� �

�!dist
n!1

MVN 0; FIðT; WÞ�1� �
; ð4Þ

where “dist” stands for convergence in distribution, MVN for multivariate normal distribution,
ϑtrue for the true parameter value, and T = (t0, . . ., tn) for the set of time points, at which mea-
surements are recorded. In case of structurally non identifiable parameters, the determinant of
the Fisher information is zero and its inverse does not exist. Therefore, the relation (Eq 4) does
only hold for scenarios, in which all parameters are identifiable.

A maximum likelihood estimator can be obtained by maximizing the likelihood function L
over a parameter ϑ:

Ŵmle ¼ argmaxW LðO ; WÞ; ð5Þ

where the likelihood function LðO ; WÞ describes the probability to observe a data set O given a
parameter ϑ. Intuitively spoken, the more sensitive the likelihood function is to changes in ϑ

the more precise is an estimation of Ŵ. The Fisher information matrix FI captures this sensitiv-
ity. Its components are defined as

FIðT; WÞij ¼ EO

@

@Wi

logLðO ; WÞ @

@Wj

logLðO ; WÞ
" #

; i; j ¼ 1; . . . ; nW ð6Þ

where nϑ is the dimension of the parameter vector ϑ, and the expectation EO is calculated over
all possible combinations of observations O . The Fisher information matrix is a symmetric
matrix. The diagonal entries of its inverse describe the variance of the parameter estimates and
the off-diagonal entries of its inverse the correlation of the parameter estimates.

Use of the Fisher information matrix. Due to the relation of Eq (4) the Fisher informa-
tion can be used to calculate confidence intervals for each parameter or a multidimensional
confidence area for all parameters. This includes information on the volume of the confidence
ellipsoid and on the axis in the parameter space that can be identified with the lowest precision.
Furthermore, the Fisher information can be used to obtain relative errors of the parameter esti-
mates and extract correlation information between the parameters.

Experimental Design for Stochastic Models of Nonlinear Signaling Pathways

PLOS ONE | DOI:10.1371/journal.pone.0159902 September 1, 2016 5 / 37



As the Fisher information only depends on the time points of the measurements but not on
the actual outcome of an experiment, it is possible to calculate it before performing any experi-
ment. This means that Fisher information matrices can be calculated for different experimental
set-ups allowing the selection of the most informative design. This procedure is called experi-
mental design. The goal is to obtain a parameter estimate that is as precise as possible, which
means that its variance is as small as possible. As the Fisher information matrix is the inverse
of the covariance matrix of the estimator, minimizing the variance means maximizing the
Fisher information matrix. However, the task of maximizing a matrix is not well defined. To
overcome this problem, several so called optimality criteria have been introduced [20], which
map the Fisher information matrix to a real number.

Optimality criteria. Optimality criteria reflect measures of the parameter estimates’ confi-
dence ellipsoids, which correspond to the Fisher information matrix. This article will use two
optimality criteria:

• D-criterion:maps the Fisher information matrix to its determinant. The determinant corre-
sponds to the volume of the confidence ellipsoid.

• E-criterionmaps the Fisher information on its minimum eigenvalue. The minimum eigen-
value corresponds to the largest axis in the confidence ellipsoid.

While there are a lot more optimality criteria, see e.g. [20], the choice of the criterion
depends on the focus of the experimenter. This article selects the D- and E-criterion as they
give important information on the size and shape of the confidence ellispoid (volume and larg-
est axis).

Computation of the Fisher information matrix for stochastic models. Eq (6) defines the
Fisher information matrix. Its calculation is straightforward. However, the required computa-
tional time poses a big challenge, which makes the straightforward calculation infeasible for
most realistic size models in systems biology. One reason is the expectation EO in Eq (6). Theo-
retically, this is a sum over all possible data sets O . If there are nmeasured time points, there
are “number of points in state space” to the power of “n” summands. This is computational
infeasible in most scenarios. Therefore, this article approximates this expectation with a mean
over a subset of all data sets. This subset is created by generatingM pseudo data sets

O ðkÞðTÞ; k ¼ 1; . . . ;M using the Gillespie algorithm or with an alternative approach, as
described in the “How to generate the pseudo data” subsection.

Another challenge is the evaluation of the likelihood function L. Analytical solutions are
most commonly not available for models in systems biology. Approximations have to be accu-
rate but still fast enough so thatM can be chosen high enough to get a good approximation of
the expectation. A MSS approximation for the log-likelihood function has been suggested by
[13, 14]: log LðO ; WÞ � FMSSðO ; WÞ. This FMSS objective function will be introduced in the next
subsection. (A more detailed explanation can be found in the appendix or the original articles
[13, 14].)

The FIMSS Fisher information matrix is based on the MSS objective function and reads as

FIMSSðT; WÞij ¼ 1

M

XM
k¼1

@

@Wi

FMSSðO ðkÞðTÞ; WÞ @

@Wj

FMSSðO ðkÞðTÞ; WÞ
 !

;

i; j ¼ 1; . . . ; nW

ð7Þ

where the parameter ϑ contains the potential unobservable initial states ν0, the measurement
noise covariance matrix Smeas and the kinetic parameters θ.
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This FIMSS Fisher information matrix can be used to assess the precision of the parameter
estimates for an experimental set-up. It is possible to use pseudo data for a different number of
system components to see the gain (or loss) in information by measuring more (or less) com-
ponents. Furthermore, by varying the number of time points in T, the required number of time
points for a predefined precision can be determined. This can be accomplished by calculating
the optimal design for different numbers of measurements and then choose the smallest num-
ber of measurements for which the accuracy requirements are met. Additionally, it is possible
to calculate an optimum experimental design by choosing the design T� that maximizes the
value of an optimality criterion F:

maxTF FIMSSðT; WÞð Þ: ð8Þ

The power and accuracy of the FIMSS Fisher information matrix will be demonstrated in the
Results section on different test models.

The MSS objective function
The MSS objective function has been suggested and shown to work for parameter estimation
in stochastic models [12–14]. It assumes that observations are taken at discrete time points t0,
t1, . . ., tn, where the system’s state is ν = (ν0, ν1, . . ., νn). This system’s state is usually only
imperfectly observable. This means that only some of the components can be observed and
these observations are noisy: O ¼ ðO 0; . . . ; O nÞ. The main characteristics of the MSS objective
function are:

• the time course data is split into intervals that are treated separately,

• unobserved states are handled by state updating,

• the distribution of a current state given its precursor is approximated with a normal distribu-
tion with mean and covariance gained by a linear noise approximation.

The MSS objective function will be derived briefly here, the details can be found in the S1
Text.

The observation based likelihood function LðO ; WÞ gives the probability to obtain the data O
given a parameter θ:

LðO ; yÞ ¼
Yn
i¼1

PðO i; O i�1; . . . ; O 0; yÞ; ð9Þ

where PðO i; O i�1; . . . ; O 0; yÞ is the probability to observe O i given previous observations
O i�1; . . . ; O 0. This probability can be written as

PðO i; O i�1; . . . ; O 0; yÞ ¼
X

ni2Oi ;ni�12Oi�1

PðO i; niÞPðni; ni�1; yÞPðni�1; O i�1; . . . ; O 0; yÞ ð10Þ

The first factor describes the measurement noise: PðO i; niÞ is the probability to measure O i if
being in state νi.

Transition probability. The second probability is the transition probability for a transi-
tion from to νi−1 to νi. Its distribution is generally unknown and [13, 14] suggest to approxi-
mate it with a normal distribution:

Pðni; ni�1; yÞ � pðni; ni�1; yÞ ¼ f nijxðDt; y; ni�1Þ;SðDt; y; ni�1Þð Þ; ð11Þ
where f(y|μ, S) is the probability density function of a multivariate normal distribution with
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mean μ and covariance S which is calculated by a linear noise approximation

d
dt

Sðt; yÞ ¼ Jðx; yÞSðt; yÞ þ Sðt; yÞJðx; yÞ0 þ O�1Dðx; yÞ; Sð0; yÞ ¼ 0D�D

with Jðx; yÞ ¼ S
d
dx

vðx; yÞ and D ¼ ðDijÞ with

Dijðx; yÞ ¼
XR
k¼1

SikSjkvkðx; yÞ

ð12Þ

with x = x(Δt; θ, νi−1), the solution of Eq (2), a volume O and ’ denoting the transpose of a
matrix.

As the Gaussian distribution has a continuous support, the probability for
PðO i; O i�1; . . . ; O 0; yÞ in Eq (10) is calculated with an integral instead of the sum:

PðO i; O i�1; . . . ; O 0; yÞ �Z
ni2Li ;ni�12Li�1

PðO i; niÞpðni; ni�1; yÞPðni�1; O i�1; . . . ; O 0; yÞdnidni�1

ð13Þ

where Λi stands for the state space at time point ti. In many cases the state space will be con-
stant over time, hence Λ = Λ1 = Λ2, . . . = Λn.

State estimation. The third probability Pðni�1; O i�1; . . . ; O 0; yÞ is the probability to be in a
state νi−1 given the observations O i�1; . . . ; O 0. [14] suggests to use a state updating procedure
instead of the full probability distribution Pðni�1; O i�1; . . . ; O 0; yÞ to estimate the state νi−1 at
time point ti−1: Given a state estimate n̂ i�1 at time ti−1, the probability to see the observation O i

at time ti is the product of the probability to move from state n̂ i�1 to a state νi and the probabil-
ity to see O i if the state is νi. A state estimate n̂ i can be defined as the state that leads to the high-
est probability to observe O i:

n̂ i ¼ argmaxni f nijxðDt; y; n̂ i�1Þ;SðDt; y; n̂ i�1Þð Þ � f O ijnobsi ;Smeas
� �� � ð14Þ

for i = 1, . . ., n − 1 and x as in Eq (2) and S as in Eq (12). The initial state n̂0 is included into the
optimization vector.

The MSS objective function. Taking the logarithm of Eq (9), inserting the approximation
of Eq (11) and assuming a Gaussian measurement error, leads to the MSS objective function:

FMSSðO ; ðy; n0;SmeasÞÞ ¼
Xn
i¼1

log
Z
ni2L

f O ijni;Smeasð Þ

f nijxðDi; y; n̂ i�1Þ;SðDi; yÞð Þ dni:

ð15Þ

The parameter ϑ = (θ, ν0, S
meas) is composed of the kinetic parameters θ, the initial state ν0

and the measurement noise covariance matrix Smeas.

How to generate the pseudo data?
Eq (7) approximates the expectation EO over all possible data sets by the mean over a subset
of all data sets. This subset is created by simulating pseudo data sets. Therefore, one needs a
way to generate these pseudo data sets. The following scheme has been indicated in [13].
The distribution of νi at time point ti given the knowledge of previous state νi−1 is approxi-
mated with νi|νi−1 * N(x(Δt; θ, νi−1), S(Δt; θ, νi−1)). This can be used to generate pseudo
data trajectories ν(T) by iteratively drawing random numbers according to this distribution.
The argument “(T)” is hereby used to denote the time points t0, . . ., tn of the pseudo data.
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Given a state νi−1, the next state νi and the next pseudo observation O iðTÞ are calculated as
niðTÞ ¼ Round xðDi; y; ni�1Þ þ ui Aið Þ

O iðTÞ ¼ ni þ ~ui Bi

ð16Þ

with SðDi; yÞ ¼ A0
iAi, S

meas ¼ B0
iBi and random numbers ui * N(0D, 1D×D) and ~ui �

Nð0obs; 1obs�obsÞ with a D × Dmatrix 1D×D with diagonal entries 1 and a vector 0D of length D
with zero entries. The length of the vector of observables is denoted by “obs”.

To ensure consistency in the generation of pseudo data and the evaluation of the MSS Fisher
information matrix this scheme was applied (instead of e.g. a standard Gillespie algorithm).
Furthermore, the suggested pseudo data generation scheme has the advantage that it allows for
a continuous dependency between parameters and system’s state (by leaving out the “Round”
operation)operation), which is not possible using a standard Gillespie algorithm.

A benchmark approach for comparison
The method from [11] is used as a benchmark. It is also based on a LNA, however, it is
assumed that the LNA holds for the whole time horizon, namely from t0 until tn. [11] calculates
inter-temporal covariances by

covðnðsÞ; nðtÞÞ ¼ Sðs; yÞFðs; tÞ0 for t � s ð17Þ

The fundamental matrix F of the non-autonomous system is calculated by

dFðs; tÞ
dt

¼ Jðx; yÞFðs; tÞ; with Fðs; sÞ ¼ I ð18Þ

with an identity matrix I. The observation sequence ν = (ν0, . . ., νn) is then considered to be
multivariate normal distributed

n � MVNðmðT; yÞ;SBðT; yÞÞ ð19Þ

with

mðT; yÞ ¼ xðt0; y; n0Þ; . . . ; xðtn � t0; y; n0Þð Þ ð20Þ

and a symmetric matrix

SBðT; yÞi;j ¼
Sðti; yÞ; i ¼ j

Sðti; yÞFðti; tjÞ0; i < j

(
ð21Þ

A parameter estimate can be calculated by maximizing the probability of the MVN distribu-
tion in Eq (19) to observe ν over the parameter θ. A Fisher information matrix FIBench can be

calculated using [38] with FIBenchðT; yÞ ¼ ðFIj;kBenchðT; yÞÞj;k¼1;...;ny
and

FIj;kBenchðT; yÞ ¼ @mðT; yÞ0
@yj

SBðT; yÞ�1 @mðT; yÞ
@yk

þ 1

2
traceðSBðT; yÞ�1 @SBðT; yÞ

@yj
SBðT; yÞ�1 @SBðT; yÞ

@yk
Þ

ð22Þ

Note that the first summand needs to contain the inverse of SB as in [38].
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Results

Design of the simulation study
To ensure the validity of the FIMSS Fisher information approximation the accuracy thereof has
to be evaluated. The Fisher information in itself is an asymptotic measure and the FIMSS Fisher
information matrix for stochastic models is particularly approximative using the LNA approxi-
mation from the MSS objective function.

Two quantities are calculated for the accuracy evaluation: on one hand the new FIMSS Fisher
information matrix for stochastic models. On the other hand, Nsim stochastic time courses are
simulated with the Gillespie algorithm [2], and for each of them a parameter estimation is per-
formed with the MSS objective function [14] (see the “Settings for the parameter estimation”
section in the S1 Text). This results in Nsim parameter estimates. A covariance matrix is calcu-
lated from these Nsim parameter estimates and denoted by Cov. Its inverse Cov−1 is denoted by
FIemp. As FIMSS corresponds asymptotically to the inverse of the covariance matrix, Eq (4),
FIMSS can be compared to FIemp.

Different measures are employed to compare the two matrices FIMSS and FIemp:

• a comparison based on optimality criteria such as D- and E-criterion (introduced in the
“Optimality criteria” subsection),

• The i−th diagonal entry of the inverse of the Fisher information matrix corresponds to the

variance of i−th component of the parameter estimate ŷi. Therefore, the average relative
squared error (ARSE)

ARSEðyiÞ ¼ 100
1

Nsim

XNsim

i¼1

ŷ i � yð0Þi

� �2

yð0Þi 2

0
B@

1
CA

1=2

ð23Þ

can be compared to 100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðFIMSSÞii

p
=y
ð0Þ
i with known true parameter θ(0). The average

ARSE over all parameter components is sometimes named “A-criterion”,

• a visualization of the 2-d projections of the confidence ellipsoids and a comparison of its
shape to the cloud of points of the parameter estimates as also suggested by [16],

• a comparison of the parameter correlations.

Immigration-Death model
The first example is an Immigration-Death model:

⌀�!y1 X ð24Þ

X�!y2x ⌀ ð25Þ
where X is the substance and θ1, θ2 are parameters. The representation in ODEs reads as

dx
dt

¼ y1 � y2x; xð0Þ ¼ x0: ð26Þ

This model can be used as a simple model of constitutive gene expression [39], where X is
the amount of transcript, θ1 the transcription rate and θ2 the mRNA degradation rate.
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The Immigration-Death model has a very interesting property: using an ODE model and
steady state data, only the quotient of the parameters θ1 and θ2 is identifiable but not their
absolute values. However, using a stochastic model, the information encoded in the intrinsic
fluctuations allows the identification of both parameters [40]. This property has to be reflected
in the Fisher information matrix. Therefore, this relatively simple model is a valuable part of
the test set for the FIMSS Fisher information matrix.

Various scenarios are taken into account with each 100 observations and different inter-
sample distances ranging from Δt = 0.1 to Δt = 15. x0 = 10 is chosen as initial value with θ1 = 1
and θ2 = 0.1, as this configuration leads to a steady state. The FIMSS Fisher information is calcu-
lated for all inter-sample distances according to Eq 7 withM = 1000 pseudo data sets. The
pseudo data sets are generated as explained in “How to generate the pseudo data” subsection.

The FIMSS Fisher information matrix is calculated based on a finite pseudo data set
(M = 1000) where each entry of FIMSS represents a sample mean. Therefore, the first question
is how the accuracy of the entries of FIMSS depends on the number of pseudo data setsM. Fig 2
shows how the entries of FIMSS converge with increasingM. One can see that already a number
ofM as low as 200 leads to an acceptable accuracy for FIMSS.

As the Fisher information is an asymptotic measure and the FIMSS Fisher information
matrix is based on the MSS objective function, the next step is to investigate the accuracy of
FIMSS compared to FIemp. FIemp is the inverse of the covariance of estimates gained from simu-
lated data. For each experimental design Nsim = 1000 data sets are simulated and 1000 parame-
ter estimates calculated. The experimental designs vary in their inter-sample distance and

contain, for better comparison, 100 observations each. Whenever an estimate ŷ1 was greater
than 3, it was counted as non-converging. This happened 28 times for Δt = 15, 7 times for
Δt = 12.5, and 3 times for Δt = 10. Convergence was achieved for each data set for all remaining
inter-sample distances.

Fig 3 shows the 95%-confidence ellipsoid calculated for FIMSS and the first 50 estimates.
One can see a distinct change in the shape of the confidence ellipsoid from almost round for
small inter-sample distance to rather stretched for larger inter-sample distances. The reason is
that higher inter-sample distances allow for a better determination of the steady state and,
therefore, for the quotient of the parameters. But, these designs collect less information on the
intrinsic fluctuations as the inter-sample distance approaches the auto-correlation time and,
therefore, the absolute value can be identified with lower precision only. The FIMSS Fisher
information covers this change very well.

Fig 2. Dependence of the accuracy of the FIMSS entries on the number of pseudo data sets. Each panel shows one entry of FIMSS. Note that the
2 × 1 entry is identical to the 1 × 2 entry due to the symmetry of the Fisher information matrix. The x-axis shows the number of pseudo data setsM used for
calculating the sample mean (shown as solid line) of Eq 7. Gray color indicates the area from sample mean plus / minus one standard deviation. As the
width of the gray are is decreasing, the accuracy increases and an acceptable accuracy is reached at values around M = 200.

doi:10.1371/journal.pone.0159902.g002
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Fig 4 shows the evaluation of the performance of the FIMSS in comparison to FIemp based on
the D- and E-criteria. While the FIMSS covers the dynamics well, there is a bias towards overes-
timating the information content due to its asymptotic nature. However, it is still accurate
enough to allow for experimental design, namely choosing an inter-sample distance that leads

Fig 3. Parameter estimates and two dimensional confidence ellipsoids from the FIMSS Fisher information for different design of the
Immigration-Death model. Each panel considers one experimental design with varying inter-sample distances Δt and 100 observations. The confidence
ellipsoid (red) of the FIMSS is able to represent the shape of the distribution of the estimates.

doi:10.1371/journal.pone.0159902.g003

Fig 4. D-criterion and E-criterion for different experimental designs for the Immigration-Death model. FIMSS Fisher information and FIemp are
calculated for different inter-sample distances. The solid line is an interpolation of the values of FIMSS and the “X” denote the values of FIemp.

doi:10.1371/journal.pone.0159902.g004
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to an E-optimal design (Δt = 1) or an D-optimal design which needs a larger inter-sample dis-
tance of 5 to 10. While the FIMSS would suggest the higher value, FIemp would suggest the lower
value. This difference is again due to the non-asymptotic scenario and the approximation in
the MSS objective function.

The D-criterion values of FIMSS between Δt = 5 and Δt = 10 are relatively similar. The same
holds for the values of FIemp. This demonstrates a good performance of the MSS Fisher infor-
mation but also that choosing a good design is fairly robust towards the inter-sample distance.
This is important information because it means that deviation of the experimental schedule by
5 time units will not strongly influence the quality of the outcome. However, looking at the E-
criterion, a deviation of 5 time units from the optimal inter-sampling schedule will have a
stronger impact as the values of the E-criterion for e.g. Δt = 0.3 are much smaller than the opti-
mal values at Δt = 1.

Additionally, the performance of FIMSS is also evaluated based on the ARSE (Fig 5). While
there is a slight underestimation of the ARSE, again due to the asymptotic nature of the Fisher
information, the FIMSS capture the dependency on the inter-sample distance well.

The Fisher information matrix can also be used to extract information on the correlation
between the parameters θ1 and θ2. Table 1 summarizes the correlation based on the inverse of
FIMSS denoted by Corr(FIMSS) and the correlation of the parameter estimates from the simu-
lated data denoted by Corremp for four designs.

Fig 5. ARSE for different experimental designs for the Immigration-Death model. FIMSS and FIemp are calculated for different inter-sample distances.
The solid line is an interpolation of the values of FIMSS and the “X” denote the values of FIemp.

doi:10.1371/journal.pone.0159902.g005

Table 1. Different experimental designs and their parameter correlation.

Δt Corr(FIMSS) Corremp

0.5 0.16 0.52

1.0 0.58 0.68

7.5 0.97 0.97

15.0 0.99 0.99

The first column shows the correlation of θ1 and θ2 based on FIMSS and the second column based on the

estimates from simulated data for experimental designs with different inter-sample distances.

doi:10.1371/journal.pone.0159902.t001
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The computational time for an evaluation of the new FIMSS Fisher information matrix with
M = 1000 takes less than 1 minute on an Intel Core i7-3770 CPU with 16GB RAM using one
kernel.

Comparison with the benchmark approach. The approach of [11] is applied to the Immi-
gration-Death model as a benchmark. The Fisher information matrix FIBench is calculated as
well as 1000 parameter estimates for the same data set used for the MSS method. FIemp,Bench is
calculated from these estimates. As for the MSS method, estimates with an θ1 > 3 are counted
as non-converging. Out of the 1000 estimates 2 were non-converging for Δt = 10, 9 for
Δt = 12.5 and 33 for Δt = 15.

Fig 6 shows the first 50 estimates and the 2-dimensional confidence ellipsoid of FIBench. The
accuracy of the parameter estimates is comparable to the MSS method (Fig 3) as the estimates
have a similar distance to the true value (1, 0.1). The Fisher information FIBench leads to a
2-dimensional confidence interval that captures the location of the estimates similarly well as
FIMSS.

Figs 7 and 8 and Table 2 confirm that the benchmark approach is able to capture the
changes in the volume (D-criterion), the longest axis (E-criterion), the ARSEs as well as the
correlation. Therefore, both the MSS and the benchmark are well suited for parameter estima-
tion and a calculation of a Fisher information matrix for this model.

Comparison with an exact method. The Immigration-Death example with the above
mentioned parametrization is small enough to apply a state truncation and an exact method
(ex) for the parameter estimation as well as the calculation of the Fisher information matrix.

Fig 6. Parameter estimates and two dimensional confidence ellipsoids of the benchmark method for different design of the Immigration-Death
model. Each panel considers one experimental design with varying inter-sample distances Δt and 100 observations. The confidence ellipsoid (red) of the
FIBench corresponds well with the location of the parameter estimates.

doi:10.1371/journal.pone.0159902.g006
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Fig 7. D-criterion and E-criterion for different experimental designs for the Immigration-Death model for all three methods (MSS, benchmark
and exact). FI� Fisher information and FIemp,� are calculated for different inter-sample distances. The solid line is an interpolation of the values of FI� and
the “x” denote the values of FIemp,�. Red color corresponds to the MSSmethod, blue to the benchmark and black to the exact method. Symbols partially
overlapping.

doi:10.1371/journal.pone.0159902.g007

Fig 8. ARSE for all three method for different experimental designs for the Immigration-Death model. FI� and FIemp,� are calculated for different
inter-sample distances. The solid line is an interpolation of the values of FIex and the “X” denote the values of FIemp,�. Red color corresponds to the MSS
method, blue to the benchmark and black to the exact method. Symbols partially overlapping.

doi:10.1371/journal.pone.0159902.g008

Table 2. Different experimental designs and their parameter correlation for the benchmark method.

Δt Corr(FIBench) CorrBench,emp

0.5 0.37 0.64

1.0 0.64 0.75

7.5 0.97 0.97

15.0 0.99 0.99

The first column shows the correlation of θ1 and θ2 based on FIBench and the second column based on the

estimates from simulated data for experimental designs with different inter-sample distances.

doi:10.1371/journal.pone.0159902.t002
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This approach is based on an analytical calculation of the transition probabilities P(νi; νi−1, θ)
as described in [41]:

Pexðni;Dt; ni�1; yÞ ¼
1

k!

Xk

j¼0

k
j

� �
y1

y2

� �j

e�
y1
y2
ð1�e�y2Dt Þ

�
ð27Þ

1� e�y2Dt
� �n0�k�2j

e�y2Dt
� �k�j

Yk�j�1

i¼0

ðn0 � iÞ
!
: ð28Þ

The likelihood function is defined as the product of these transition probabilities:

Lex ¼
Yn
i¼1

Pexðni; ti � ti�1; ni�1; yÞ ð29Þ

A Fisher information matrix can be calculated as

FIexðT; yÞjk ¼
Xn
i¼1

X
ni ;ni�1

@

@yj
logPexðni; ti � ti�1; ni�1; yÞ

@

@yk
logPexðni; ti � ti�1; ni�1; yÞ

Pexðni; ti � ti�1; ni�1; yÞ Pexðni�1; ti�1 � t0; n0; yÞ

ð30Þ

See S1 Text for details. The sum ∑νi,νi−1 is infinite. However, it is replaced by ∑νi,νi−1 	 30 as
the probability to reach a higher number is very small even for large time scales:

1�P30

ni¼0 Pexðni; 1500; 0; ð1; 0:1ÞÞ ¼ 7:98� 10�8, 1500 being the longest observation duration

used in this simulation study.
Next, the exact approach is applied to the Immigration-Death model. The Fisher informa-

tion matrix FIex is calculated as well as 1000 parameter estimates for the same data set used for
the MSS method and the method of [11]. FIemp,ex is calculated from these estimates. As with
the MSS method, estimates with an θ1 > 3 are counted as non-converging and this happened 2
times for Δt = 1, 2 times for Δt = 10, 9 times for Δt = 12.5 and 32 times for Δt = 15 out of the
1000 estimates for each scenario.

Fig 9 shows the first 50 estimates and the 2-dimensional confidence ellipsoid of FIex. The
accuracy of the parameter estimates is comparable to the MSS method in Fig 3 (showing that
the approximation does not lead to a loss in accuracy). The 2-dimensional confidence intervals
describe the change in the cloud of estimates from rather round to rather stretched well and,
more important, the 2-dimensional confidence intervals are similar to those calculated with
FIMSS in Fig 3.

The observation for the D-criterion, the E-criterion and the ARSEs is similar: FIex and FIemp,

ex correspond very well. Again, more important, the results from FIMSS and FIex are very similar
(see Figs 7 and 8) which shows that the MSS method is able to calculate accurate Fisher infor-
mation matrices. The same holds for capturing the correlation (MSS results in Table 1, exact
method in Table 3).

Fig 7 also shows that all three approaches overestimate the D- and E- criterion values. To
ensure that this does not depend on the specific data set, the exact method was also investigated
using different data sets (S6 Fig) showing consistent results. The reason for the overestimation
seems to be that the Fisher information is an asymptotic measure and this causes difficulties
for longer step-sizes in the Immigration-Death model.
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Lotka-Volterra model
The next example is a Lotka-Volterra model, which shows oscillatory behavior. The model
consists of three reactions:

Y ð1Þ 				!y1 Yð1Þ
2 Y ð1Þ

Y ð1Þ þ Y ð2Þ 								!y2 Yð1Þ Yð2Þ
2 Y ð2Þ

Y ð2Þ 				!y3 Yð2Þ
⌀

ð31Þ

where Y(1) and Y(2) denote prey and predator, respectively, and θ1, θ2, θ3 are parameters. The
first reaction of Eq (30) is the prey reproduction, the second the predator reproduction, and

Fig 9. Parameter estimates and two dimensional confidence ellipsoids for the exact method for different design of the Immigration-Death
model. Each panel considers one experimental design with varying inter-sample distances Δt and 100 observations. The confidence ellipsoid (red) of the
FIex is similar than the confidence ellipsoid of the FIMSS in Fig 3.

doi:10.1371/journal.pone.0159902.g009

Table 3. Different experimental designs and their parameter correlation for the exact method.

Δt Corr(FIBench) CorrBench,emp

0.5 0.45 0.45

1.0 0.67 0.98

7.5 0.97 0.97

15.0 0.99 0.99

The first column shows the correlation of θ1 and θ2 based on FIex and the second column based on the

estimates from simulated data for experimental designs with different inter-sample distances.

doi:10.1371/journal.pone.0159902.t003
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the third is the predator death. In terms of ODEs this system reads as

d
dt

yð1ÞðtÞ ¼ y1y
ð1ÞðtÞ � y2y

ð1ÞðtÞyð2ÞðtÞ
d
dt

yð2ÞðtÞ ¼ y2y
ð1ÞðtÞyð2ÞðtÞ � y3y

ð2ÞðtÞ:
ð32Þ

The true parameter is set to θ(0) = (0.5, 0.0025, 0.3) and the initial values to Y = (71, 79) as
in [9].

As in the Immigration-Death model, a good approximation is already obtained using as few
asM = 200 pseudo data sets for the evaluation of the FIMSS Fisher information matrix (see S1
and S2 Figs).

Four different experimental designs of the Lotka-Volterra model are compared to analyze
the impact on the amount of information gained in the experiment. The first experimental
design LV1 consists of 40 equidistant observations of both prey and predator with an inter-
sample distance of 1. As the parameter space is three-dimensional, Fig 10(LV1) shows the
three two-dimensional projections of the Nsim = 50 estimates and the confidence ellipsoid from
FIMSS for LV1. In general, there is a clear agreement between the estimates and the confidence
ellipsoid, which is also reflected in the D- and E-criteria as well as the ARSE as summarized in
Table 4 (first row).

Next, an extended observation time frame until T = 200 is considered retaining an inter-
sample distance of Δt = 1. This greatly increases accuracy of the estimates and one once again
sees a good agreement for the confidence ellipsoids (Fig 10(LV2)) and the optimality criteria
(Table 4(second row)). Furthermore, the ARSE is reduced by 50% yielding important informa-
tion about the benefits in extending the observation time frame.

To investigate whether experimental costs can be reduced by decreasing the number of mea-
sured time points while maintaining the information on the parameters, a scan over different
inter-sample distances is performed based on an equidistant design with 10 observations (Fig
11). This scan is only performed for the FIMSS Fisher information, a comparison to a covariance
from estimates is omitted due to computational time requirements. Based on the optimality
criteria, a sample distance of Δt = 7 or Δt = 9 would be preferable to Δt = 1, which was used in
LV1 and LV2.

Furthermore, there is no need to consider only equidistant designs rather than also allowing
for experimental designs with varying inter-sample distances. Based on the D-criterion, an
optimal design with 10 observations points is calculated. This leads to an optimization problem
as in Eq (8) with the set of time points T as optimization variable. Here, a particle swarm algo-
rithm is chosen for the optimization with 20 iterations, 25 particles andM = 500. The potential
inter-sample distances are limited to be within 1 to 12, as the evaluation of the D- and E-crite-
rion (Fig 11) does not suggest higher values. The resulting optimal design is denoted by LV3. It
is assumed that the experimental set-up does not allow for arbitrary precision with respect to
the observed time points and that observations may only be recorded at integer time points.
The resulting optimal design consists of the time points T = (0, 7, 14, 22, 28, 36, 43, 47, 59, 66,
73). A three-fold reduction in observation time points has no impact on the accuracy as evident
in the comparison of confidence ellipsoids and estimates (Fig 10LV3) and in the evaluation of
optimality criteria (Table 4(third row). Depending on the experimental set-up, this is a huge
reduction in costs. As the FIMSS Fisher information captures this gain precisely, it is a valuable
tool to reduce experimental costs.

The Lotka-Volterra model offers the chance to investigate scenarios with partial observa-
tion, namely scenarios in which only one species can be observed. The experimental design
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Fig 10. Parameter estimates and confidence ellipsoid from FIMSS Fisher information for Lotka-Volterra model. Each row shows one of the
scenarios LV1 to LV4. In each row the three panels show one two dimensional projection of the three dimensional parameter space. In each panel the
black dots are the estimates from simulated data and the confidence ellipsoid from FIMSS is marked red.

doi:10.1371/journal.pone.0159902.g010
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LV4 has the identical set-up as LV1, except that only the prey is observed. As Fig 10(LV4) dem-
onstrates, the confidence ellipsoid of the new FIMSS captures the shape of the estimates pre-
cisely even in partially observed scenarios. Interestingly, the correlation between the
parameters θ1 and θ2 as well as θ1 and θ3 changes from positive in the fully observed scenarios
to negative in the partially observed case. This is represented in the changed spatial orientation
of the estimates’ cloud for LV4 when compared to the other scenarios in Fig 10. Again, the
FIMSS is able to capture this change. This is highlighted in Fig 12, where the three-dimensional
ellipsoids are compared to the cloud of estimates for LV1 and LV4. Furthermore, the D- and E-
criteria as well as the ARSE shown in Table 4 support the fact that the FIMSS is even applicable
in partially observed cases.

Table 5 summarizes the evaluation of the correlation between the parameters for different
experimental designs. The fully observed designs (LV1-LV3) show moderate levels of correla-
tion for the estimates, which is mapped by the FIMSS Fisher information in the cases of LV1
and LV2. Due to the FIMSS being an asymptotic measure a sparse sample of ten observed time
points is likely the cause for a reduced precision in LV3. The design LV4 has a strong correla-
tion between the second and third component of the parameter vector and the FIMSS Fisher
information captures this very well. Furthermore, the sign change of the correlation between
the fully observed scenarios to the partially observed case is also represented in the FIMSS.

Table 4. Different designs and their information content according to different optimality criteria.

Fully observed Lotka-Volterra model

Det(FIMSS) Det(FIemp) Min(EV(FIMSS)) Min(EV(FIemp)) ARSE(FIMSS) ARSE(FIemp)

LV1 2. 1016 1.2 1016 4.1 103 3.3 103 (3%, 3%, 3%) (3%, 3%, 4%)

LV2 2.1 1018 3. 1018 1.7 104 2.1 104 (1%, 1%, 1%) (1%, 2%, 1%)

LV3 1.8 1016 7.4 1015 4.5 103 2.7 103 (3%, 3%, 3%) (4%, 3%, 4%)

Partially observed Lotka-Volterra model

LV4 3.7 1013 1.7 1011 1.2 10−3 5.1 10−4 (10%, 12%, 12%) (14%, 15%, 16%)

Each row represents one experimental design and the columns show the number for the D-criterion from FIMSS (column 1) and FIemp (column 2), the E-

criterion from FIMSS (column 3) and FIemp (column 4) and the ARSE (column 5 and 6).

doi:10.1371/journal.pone.0159902.t004

Fig 11. Dependence of D- and E-criterion on the inter-sample distance. The left panel shows interpolations of values of the D-criterion and the right
panel of the E-criterion for different inter-sample distances.

doi:10.1371/journal.pone.0159902.g011
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The computational evaluation of the FIMSS Fisher information matrix withM = 1000 takes
approximately 22 minutes for LV1 and 2 hours for LV2 on an Intel Core i7-3770 CPU with
16GB RAM using one kernel. The increase in computational time by a factor of 5 is due to the
length of the time series. As LV3 contains even fewer points than LV1, its computational time
is even faster with 6 minutes. The computational time of LV4 is with 30 minutes slightly longer
than LV1 as additional derivatives for the unobserved initial state have to be calculated.

Comparison with benchmark approach. The benchmark method [11] is applied to the
LV1 scenario. First, the Fisher information FIBench is calculated and next 50 estimates from the
simulated data set. These estimates are used to construct a covariance matrix and its inverse
FIemp,Bench. Table 6 shows the comparison of D- and E-criterion as well as ARSE of FIBench,
FIemp,Bench, FIMSS and FIemp. The accuracy of the parameter estimation with the benchmark is
similar to the MSS (last column in Table 6). A Wilcoxon-Signed Rank test is applied to see

Fig 12. Parameter estimates and three dimensional confidence ellipsoid from the FIMSS Fisher information for Lotka-Volterra model. Left panel
fully observed scenario LV1, right panel partially observed scenario LV4. In each panel the black dots are the estimates from simulated data and the three
dimensional confidence ellipsoid from FIMSS is marked yellow. One can see that the FIMSS Fisher information captures the change in correlation between
the parameters.

doi:10.1371/journal.pone.0159902.g012

Table 5. Different experimental designs and their parameter correlation.

Corr(FIMSS) Corremp

LV1 (0.54, 0.52, 0.54) (0.59, 0.49, 0.59)

LV2 (0.54, 0.56, 0.57) (0.57, 0.61, 0.71)

LV3 (0.47, 0.18, 0.29) (0.63, 0.35, 0.53)

LV4 (-0.93, -0.9, 0.99) (-0.89, -0.84, 0.97)

Correlation from Fisher information FIMSS and correlation from estimates Corremp. The three numbers in

brackets correspond to corr(θ1, θ2), corr(θ1, θ3), corr(θ2, θ3).

doi:10.1371/journal.pone.0159902.t005

Experimental Design for Stochastic Models of Nonlinear Signaling Pathways

PLOS ONE | DOI:10.1371/journal.pone.0159902 September 1, 2016 21 / 37



whether the small differences in ARSE are significant. The benchmark is significantly better for
θ1 in the scenario with 5 observations (0.1� p� 0.01). The MSS method is significantly better
for θ1 (20 observations), θ2 (20, 30 and 40 observations) and θ3 (30 and 40 observations) and
strongly significantly better (p< 0.01) for θ1 (30 and 40 observations).

More importantly, the benchmark Fisher information matrix FIBench exhibits a strong over-
estimation of the precision for larger observation horizons (30 and 40) as its values for the D-
and E-criterion are a lot higher than the corresponding values of FIemp,Bench. The same holds
for the parameter individual ARSEs which are strongly underestimated.

Fig 13 shows the 2-dimensional projections of the parameter estimates for MSS and bench-
mark. For small observation horizons (	 20) the FIBench performs slightly worse than the MSS
method but it roughly captures the location of the estimates. However, for larger observation
horizons (30 and 40) the 2-dimensional confidence ellipsoid of FIBench is too small to capture
the location of the estimates. Table 7 shows that this is not only a problem of the size of the
ellipsoid but also the correlations, as they are also not well reflected.

The striking difference in performance can be explained as follows: Both methods rely on
approximations, namely, the MSS method on an interval-wise LNA and the benchmark on a
LNA on the whole systems horizon. As mentioned in the introduction, the second is a lot more
restrictive than the first. Whether the approximation holds, can be easily tested. The benchmark’s
approximation requires ν*MVN(μ, SB) (see Eq 19). If this is fulfilled, then it follows that

(ν − μ)AB with ðA0
BABÞ�1 ¼ SB is a vector of independent standard normally distributed random

variables. A Kolmogorov-Smirnov test can be applied to test this. Similarly, the MSS methods
requires νi*N(x(Δi; θ, νi−1), S(Δi; θ)) for i = 1, . . ., n which leads to (νi − x(Δi; θ, νi−1))A, with
(A0 A)−1 = S(Δi; θ) for i = 1, . . ., n. This can be also tested by a Kolmogorov-Smirnov test.

Fig 14 shows the p-values of the Kolmogorov-Smirnov test for the benchmark (left panel)
and the MSS (right panel) in dependence of the total observation horizon. One can clearly see
that the MSS methods assumption is not significantly violated but the benchmark’s assumption
clearly fails with increasing observation duration. This shows the strong benefits of applying
the multiple shooting approach and using the LNA only on the intervals between observations.
Fig 14, therefore, also explains the differences in performance for the benchmark Fisher infor-
mation FIBench and the MSS Fisher information FIMSS.

Table 6. Different designs and their information content according to different optimality criteria for the benchmark approach and the MSS
approach.

Fully observed Lotka-Volterra model

Det(FI) Det(FIemp) Min(EV(FI)) Min(EV(FIemp)) ARSE(FI) ARSE(FIemp)

Bench 5 1.2 1012 5.6 1012 3.4 102 1.4 102 (6.3%, 36.9%, 16.9%) (9.%, 21.3%, 26.5%)

MSS 5 3.5 1012 2.9 1012 1.1 102 9.5 101 (9.6%, 19.4%, 29.1%) (11.8%, 23.2%, 31.4%)

Bench 10 1. 1014 8 1014 1.9 103 1.1 103 (3.8%, 15.9%, 6.2%) (5.%, 4.7%, 6.9%)

MSS 10 4.8 1014 4.7 1014 9.6 102 8.5 102 (5.4%, 5.4%, 7.6%) (5.7%, 5.9%, 7.5%)

Bench 20 1.4 1015 1.7 1015 6.6 103 1.7 103 (2.4%, 8.9%, 3.5%) (4.6%, 5.1%, 4.7%)

MSS 20 1.9 1015 1.3 1015 1.8 103 1.3 103 (4.3%, 4.6%, 4.6%) (4.7%, 5.2%, 5.7%)

Bench 30 2.6 1021 3 1015 5.2 104 1.3 103 (0.5%, 0.1%, 1.3%) (4.7%, 5.7%, 5.4%)

MSS 30 1.1 1016 7.9 1015 3.2 103 2.9 103 (3.2%, 3.2%, 3.6%) (3.3%, 3.4%, 4.%)

Bench 40 1.6 1035 3.7 1015 1.6 107 1.5 103 (0.%, 0.%, 0.%) (4.4%, 5.9%, 5.2%)

MSS 40 2. 1016 1.2 1016 4.1 103 3.3 103 (2.9%, 3.%, 3.2%) (3.2%, 3.2%, 3.9%)

Each row represents an experimental design and a method. The columns show the number for the D-criterion of FI� (column 1) and FIemp,� (column 2), the E-

criterion of FI� (column 3) and FIemp,� (column 4) and the ARSE (column 5 and 6).

doi:10.1371/journal.pone.0159902.t006
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Fig 13. Parameter estimates and confidence ellipsoid MSS and the benchmark. Each row shows an experimental design. In each row, each panel
shows one two dimensional projection of the three dimensional parameter space. In each graphic the black dots are the estimates fromMSS and the
green dots from Bench. The confidence ellipsoid of FIMSS is marked red and the confidence ellipsoid of FIBench green. The confidence ellipsoid of FIBench
for the last row with 30 observations is so small that it can be hardly seen.

doi:10.1371/journal.pone.0159902.g013
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Fig 15 shows the comparison of the mean and the mean plus and minus two standard devia-
tion calculated from the LNA and 100 stochastic simulations over time demonstrating why the
performance of the LNA decreases with increasing observation duration. The LNA yields an
accurate approximation in the beginning (until time 20) but does not lead to an accurate
description for any later time points (from time 20 onwards).

Calcium oscillation model
The third model used to evaluate the new approach is a Calcium oscillation model [36]:

d GðtÞ
dt

¼ y1 þ y2GðtÞ �
y3 GðtÞ CaðtÞ
GðtÞ þ y4

� y5 GðtÞ PLCðtÞ
GðtÞ þ y6

d PLCðtÞ
dt

¼ y7GðtÞ �
y8 PLCðtÞ
PLCðtÞ þ y9

d CaðtÞ
dt

¼ y10GðtÞ �
y11 CaðtÞ
CaðtÞ þ y12

:

ð33Þ

where Ca(t) stands for cytosolic Calcium, G(t) for the active subunit of the G-protein and PLC
(t) for the activated form of phospholipase C [36]. The behavior of this model differs

Table 7. Different experimental designs and their parameter correlation for MSS and the benchmark.

Corr(FIBench,MSS) CorrBench,emp FIMSS FIemp

5 (0.5, 0.56, 0.62) (0.84, 0.80, 0.87) (0.78, 0.8, 0.89) (0.85, 0.88, 0.87)

10 (0.46, 0.52, 0.53) (0.68, 0.62, 0.52) (0.61, 0.65, 0.64) (0.61, 0.74, 0.66)

20 (0.04, 0.17, 0.17) (0.67, 0.54, 0.54) (0.54, 0.53, 0.55) (0.64, 0.66, 0.66)

30 (0.27, -0.77, 0.) (0.76, 0.82, 0.79) (0.55, 0.52, 0.54) (0.55, 0.5, 0.58)

40 (-0.19, 0.55, -0.09) (0.75, 0.82, 0.77) (0.54, 0.52, 0.54) (0.6, 0.5, 0.63)

First column: number of observations with Deltat = 1, second column: correlation from FIBench, third column:

correlation from estimates CorrBench,emp, fourth column: correlation from FIMSS and fifth column FIemp. The

three numbers in brackets correspond to corr(θ1, θ2), corr(θ1, θ3), corr(θ2, θ3).

doi:10.1371/journal.pone.0159902.t007

Fig 14. Testing the approximation for different observations horizons. P-values for Kolmogorov-Smirnov tests whether the approximation is fulfilled
for different observation horizons; left panel shows results for benchmark and right panel for MSS. Each color stands for one of the 50 data sets. Test is
performed with the true parameter θ = (0.5, 0.0025, 0.3).

doi:10.1371/journal.pone.0159902.g014
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qualitatively between stochastic and deterministic modeling for small particle numbers as pre-
sented in [36]. The true parameter vector is

y ¼ ð212; 2:95; 1:52; 190; 4:88; 1180; 1:24; 32240; 29090; 13:58; 153000; 160Þ ð34Þ

and the initial value is (Ca, G, PLC)(0) = (10, 10, 10). This model shows highly nonlinear oscil-
lations in stochastic modeling but only small amplitude regular oscillations in deterministic
modeling (Fig 1). Therefore, this model is excellent for testing any methods analyzing models
with intrinsic stochasticity. Even more, Calcium oscillations are also of a high practical rele-
vance: in cell development and death as well as fertilization [29].

Even though the systems is highly nonlinear, the FIMSS can be calculated with a moderate
number ofM = 400 pseudo data sets, as representatively shown for the 2 × 2 entry in Fig 16.
The remaining entries of the FIMSS can be found in S3 Fig. The fact that the FIMSS can be calcu-
lated with a moderate number of pseudo data sets even in highly nonlinear systems is essential
as otherwise the computational costs would be to high for performing experimental design,
which needs multiple FIMSS calculations. The respective plots for the partially observed case
can all be found in S4 Fig.

Fig 17 shows the consensus between the FIMSS Fisher information matrix and the 2-dimen-
sional projections of the cloud of the Nsim = 50 estimates from simulated data. Each panel
shows one 2-dimensional projection of the parameter space. As with the previous models,
there is a nice agreement between the FIMSS Fisher information and the shape and the size of
the cloud of estimates for all projections.

Table 8 shows the consensus between FIMSS and FIemp on the D- and E-criterion. The FIMSS

Fisher information captures the volume reduction of the confidence ellipsoid (D-criterion)
with larger inter-sample distance. The FIMSS Fisher information also demonstrates robustness
of the minimal eigenvalue (E-criterion) towards changes in the inter-sample distance. This
means that the newly defined FIMSS Fisher information matrix is able to capture key properties
of experimental design in systems with highly stochastic oscillations. The fact that the D-

Fig 15. Mean and two standard deviations from LNA versus stochastic simulations for Lotka-Volterra
model. The upper row shows 100 stochastic simulations in gray color and the mean from a LNA in solid red
color as well as mean plus and minus two standard deviations in dashed red color. The lower row shows p-
values of a Kolmogorov-Smirnov test for each time point whether the 100 stochastic simulations follow a
normal distribution with mean and variance from a LNA. The solid line at a p-value of 0.05 illustrates that all
values below show significant differences to the LNA approxiamtion. One can see that the quality of the LNA
approximation decreases over time. Test is performed with the parameter θ = (0.5, 0.0025, 0.3).

doi:10.1371/journal.pone.0159902.g015
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criterion changes, while the E-criterion is almost constant over the three experimental designs,
means that the volume of the confidence ellipsoid reduces while its axis in the parameter space
with the smallest precision does not improve. A similar effect has been observed for the Immi-
gration-Death model with designs ID-Δt = 1.0 and ID-Δt = 7.5 in Fig 3.

An investigation of the ARSE for the three different designs (Table 9) shows that the FIMSS

performs equally well for all three designs.
In contrast to the D-criterion, which improves with increasing inter-sample distance, the

ARSE remains fairly constant. A similar phenomenon could be observed in the Immigration-
Death model (Fig 3) where the ARSE is fairly the same for Δt = 0.5 and Δt = 7.5 while the vol-
ume is a lot smaller for the second design.

During the analysis of the Calcium model one potential drawback of the LNA based MSS
objective function was encountered. The LNA approximation in the MSS objective function
breaks down for large inter-sample distances as the influence of nonlinear effects on the
dynamics increases. In addition to the theoretical condition on the LNA—discussed in detail in
[13]—there is an easy way to detect such situations: CalculateM1 = FIMSS(ϑ, T) andM2 =

FIMSS(ϑ, T0) with designs T = (t0, t1, t2, . . ., tn) and T 0 ¼ t0;
t0þt1
2

; t1;
t1þt2
2

; t2; . . . ; tn�1;
tn�1þtn

2
; tn

� �
.

If the LNA approximation holds, the entries ofM1 andM2 should have a similar size. There-
fore, the quotients of the diagonal elements ofM1 andM2 are calculated for comparison. The
mean and two standard deviations serve as an indication how close these values are to 1 (which
would indicate a similar size). If they are close to one, this means that the choice of the time
step does not influence the result. Their mean and standard deviation are for Δt = 0.10:
1.02 ± 0.20, for Δt = 0.20: 1.00 ± 0.15, for Δt = 0.50: 0.72 ± 0.48. The LNA does not hold any
more for Δt = 1.0: 4.9 10−5 ± 1.9 10−4, Δt = 1.5: 2.2 10−8 ± 3.9 10−8 and Δt = 2.0: 1.0 10−9 ± 6.0
10−10. Therefore, experimental designs with inter-sample distances of Δt = 1.0 or higher cannot

Fig 16. Dependence of the accuracy of the FIMSS entries on the number of pseudo data sets. The x-axis shows
the number of pseudo data setsM used for calculating the 2 × 2 entry of FIMSS, the mean is shown as solid line. Gray
color shows the area from sample mean plus / minus one standard deviation. As the width of the gray area is
decreasing, the accuracy is increasing. One can see that already small values asM = 400 give a good
approximation.

doi:10.1371/journal.pone.0159902.g016
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Fig 17. Parameter estimates and confidence ellipsoid from FIMSS for Calciummodel. The panels show the two dimensional projections of the
12-dimensional parameter space for the Δt = 0.5 design. In each panel the black dots are the estimates from simulated data and the confidence ellipsoid
of the Fisher information is marked red. “k” is used as an abbreviation for “thousand”.

doi:10.1371/journal.pone.0159902.g017
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be recommended. For the Lotka-Volterra and Immigration-Death model, there was no such
indication and the LNA approximation was valid for all considered step-sizes.

The Calcium model also indicates that it is more consistent to use the scheme of Eq (16) for
generating the pseudo data than the Gillespie algorithm. As even the interval-wise LNA
becomes critical with longer inter-sample distance, one can either use a rough model approxi-
mation with the MSS and then calculate the Fisher information consistently with the scheme
or use the correct (Gillespie) model and use a rough approximation for the Fisher information.
As the calculation of the Fisher information includes derivatives, the first seems to be more
robust towards rough approximations. S7 Fig creates the same plot as in Fig 17 but with Gilles-
pie simulations instead of the scheme. The result shows still a good agreement of FIemp and
FIMSS but the use of the scheme is favorable as the consistence between FIemp and FIMSS is better
in Fig 17. The D-criterion for FIMSS with the Gillespie algorithm is 1.1 × 10−6, which underlines
that the scheme is more suited (Table 8 shows that the D-criterion FIemp is 6.6 10

−10 and the D-
criterion of FIMSS with the scheme is 1.2 10−9). Whenever the interval-wise LNA is not rough,
there is no statistic difference between pseudo data from the scheme or the Gillespie algorithm,
so the choice does not matter.

To evaluate the parameter correlation calculated by the FIMSS, correlation matrices are com-
posed of the FIMSS and the estimates for a design with an inter-sample distance of Δt = 0.1. The

Table 8. D- and E-criterion for different experimental designs for the Calcium oscillationmodel.

Δt = 0.1 Δt = 0.2 Δt = 0.5

D-criterion Det(FIMSS) 2.6 10−14 1.4 10−11 1.2 10−9

Det(FIemp) 5.3 10−15 4.1 10−13 6.6 10−10

E-criterion Min(EV(FIMSS)) 1.4 107 8.5 106 9.8 106

Min(EV(FIemp)) 9.3 106 7.4 106 3.3 106

Each column shows one experimental design.

doi:10.1371/journal.pone.0159902.t008

Table 9. ARSE of FIMSS and of the 50 estimates for experimental designs in Calcium oscillationmodel.

Design Δt = 0.1 Δt = 0.2 Δt = 0.5

Parameter FI Δt = 10 Exp Δt = 10 FI Δt = 20 Exp Δt = 20 FI Δt = 50 Exp Δt = 50

θ1 13.3% 14.7% 11.% 12.6% 11.2% 14.8%

θ2 1.% 0.8% 0.9% 0.7% 0.7% 0.8%

θ3 1.3% 2.3% 1.1% 1.8% 0.9% 0.8%

θ4 15.8% 104.4% 11.4% 81.% 11.8% 20.%

θ5 5.2% 6.8% 5.5% 4.1% 5.% 4.3%

θ6 49.5% 66.9% 54.2% 41.5% 50.3% 49.6%

θ7 1.4% 1.4% 0.8% 1.% 0.5% 0.8%

θ8 6.7% 5.3% 3.7% 4.7% 2.4% 2.%

θ9 10.8% 8.7% 5.1% 7.4% 3.2% 2.6%

θ10 1.8% 1.5% 1.8% 1.4% 2.% 1.2%

θ11 1.8% 1.5% 1.9% 1.4% 2.% 1.2%

θ12 2.2% 2.4% 2.2% 2.3% 2.2% 3.2%

Median 3.7% 3.9% 2.9% 3.2% 2.3% 2.3%

The table displays the ARSE gained from the FIMSS and the ARSE from FIemp for each of the parameters (rows) and each of the experimental design

(columns). The last row gives the median of the components θ1 to θ12. The FIMSS Fisher information matrix captures all ARSEs well.

doi:10.1371/journal.pone.0159902.t009
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consensus is evaluated based on the absolute values of their difference, which is illustrated in
Fig 18(A).

The computational time for an evaluation of the Fisher information matrix withM = 1000
takes roughly 6 hours on an Intel Core i7-3770 CPU with 16GB RAM using eight kernels.

The state estimation procedure for the partially observed case has been developed and
shown to work well previously [14]. However, in highly nonlinear stochastic models with few
observables, imprecise state estimates are in principle possible. [14] (Fig 5) shows that, even in
such case, the method can extract information from current data and re-adapt the estimates of
the unobservables to their underlying dynamics. Nevertheless, it means that there is at least
one poor state estimate which might have resulted in one very unlikely transition to the follow-
ing data point. This unlikely transition leads to a very small probability, which results in a very
high negative log-likelihood value and in an unrealistically high term of the Fisher information
matrix.

To circumvent this issue, the transitions between time points ti−1 and ti are determined for

which q15 < ððO i � xðDi; y; n̂ i�1ÞÞðSðDi; yÞ þ SmeasÞ�1=2Þk < �q15 holds for all observed com-
ponents k, with q15 being the 10

−15 quantile of a standard normal distribution. For time steps
that do not fulfill this condition, the corresponding components of the MSS objective function
derivatives are set to zero and not counted for FIMSS which means that these time intervals are
disregarded. Using the 10−15-quantile means that only very strong outliers are not counted as
information in the FIMSS Fisher information matrix. In fact, calculating the FIMSS for a scenario
in which only Calcium is observable, this happened on average for 2.8 in 100 intervals over the
M = 1000 pseudo data sets; for a scenario in which both Calcium and PLC are observable only
0.5 in 100 failed this condition. No occurrences were detected in the partially observed Lotka-
Volterra system. Furthermore, the components of the state estimates n̂ are lower bounded with
0.1 for numerical reasons.

Fig 18. Heat map of the difference of correlations between Corr(FIMSS) andCorremp. A shows the fully observed Calcium oscillation model and B the
partially observed scenario. Two correlation matrices are calculated for each of the cases, one from FIMSS and the other from the estimates. The absolute
value of their differences is color-coded.

doi:10.1371/journal.pone.0159902.g018
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Investigating the ARSE for the partially observed scenario showed a good agreement
between the FIMSS and the estimates for most of the parameters (Table 10). The deviations for
e.g. θ10 and θ11 might indicate that the landscape of the parameter space contains some strong
nonlinearities which cannot be captured by the Fisher information matrix as it is, by definition,
a quadratic measure. These nonlinearities could lead to non-identifiabilities that are not cap-
tured by the Fisher information. A similar phenomenon has been observed previously [42] and
the use of the profile likelihood techniques [43] has been suggested to improve the analysis.

However, the important gain from this analysis is that the FIMSS Fisher information matrix
can be used to compare the three designs, fully observed, Calcium and PLC observed, and only
Calcium observed. This comparison leads to the insight that the additional measurement of
PLC gives a modest increase in accuracy compared to only measuring Ca. The further addi-
tional measurement of G (leading to a full observation) does not have a remarkable impact on
the information and accuracy anymore. This means that one can easily save the cost of measur-
ing G. Depending on the costs for measuring PLC, a compromise between accuracy and cost
can be reached. The newly suggested FIMSS Fisher information matrix covers these differences
well and can, therefore, serve as a valuable instrument in deciding on the design of an
experiment.

The correlation structure between the parameters can also be reproduced as shown in Fig
18B for the scenario with observation of Calcium and PLC.

Discussion
This work introduces an approach to calculate a FIMSS Fisher information matrix for stochastic
models based on the MSS objective function [14]. The FIMSS approach is able to successfully
capture important experimental design properties such as precision and correlation in chal-
lenging models. Furthermore, it allows the comparison of the information content of different
experimental design and, by that, choose an optimal design. The article demonstrates that
these features hold for highly nonlinear models that might even show a qualitatively different
behavior in stochastic modeling than in deterministic modeling. Therefore, the method is par-
ticularly suited for application on signaling pathways in systems biology.

Table 10. ARSEs from estimates and from FIMSS for partially observed Calcium oscillationmodel.

Design only Ca observable Ca and PLC observable

Parameter FIMSS FIemp FIMSS FIemp

θ1 16.9% 43.6% 11.7% 24.3%

θ2 1.9% 6.7% 0.6% 1.8%

θ3 3.9% 16.9% 0.7% 5.%

θ4 12.4% 57.6% 7.4% 40.2%

θ5 3.3% 42.5% 5.7% 7.3%

θ6 29.3% 121.2% 47.2% 97.2%

θ7 13.5% 17.9% 0.6% 7.2%

θ8 45.8% 15.4% 2.5% 2.8%

θ9 35.9% 26.3% 3.2% 3.4%

θ10 1.5% 955.7% 1.5% 6.4%

θ11 1.1% 20.2% 1.4% 2.7%

θ12 2.8% 15.7% 3.4% 4.9%

Median 8.1% 23.3% 2.8% 5.7%

Same notation as in Table 9.

doi:10.1371/journal.pone.0159902.t010
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The calculation of the FIMSS Fisher information is based on the MSS objective function [13,
14]. The MSS objective function treats the intervals between succeeding observations sepa-
rately. On each interval a LNA is used and the unobserved states are updated with a state esti-
mation procedure. The FIMSS Fisher information is calculated based on this MSS objective
function and the use of pseudo data which is gained by the same MSS approximation.

The dependency of the FIMSS precision on the number of pseudo data sets used for the cal-
culation was investigated. As illustrated in Figs 2 and 16 and S1 Fig to S4 Fig, a few hundred
pseudo data sets are sufficient to obtain a good approximation. As there are many evaluations
of the Fisher information matrix involved in finding the optimal experimental design, this is a
critical characteristic of the new method.

The Fisher information is an asymptotic description of the inverse of the covariance matrix
of a maximum likelihood estimator. In particular in the stochastic case it is also approximative.
Thus, it is very important to investigate whether its accuracy is still satisfactory under realistic
(particularly finite) data scenarios. Therefore, this work compares the FIMSS Fisher information
matrix to FIemp, the inverse of a covariance matrix calculated from parameter estimates. These
parameter estimates are gained by performing parameter estimations on simulated data sets.
Both, FIMSS and FIemp, are then compared based on

• two-dimensional projections of the confidence ellipsoids and the estimates—which is easiest
for visualization,

• optimality criteria such as determinant (corresponding to volume of confidence ellipsoid)
and minimal eigenvalue (corresponding to the largest axis of the confidence ellipsoid),

• average relative squared errors and

• the correlation structure.

All this is solely done to evaluate the accuracy of the suggested methodology. There is no
need for the comparison in real life applications where it is enough to calculate the FIMSS Fisher
information matrix for designing experiments.

Three test models were used to demonstrate the power of the newly suggested FIMSS Fisher
information matrix: an Immigration-Death model, a Lotka-Volterra model, and a Calcium
oscillation model. The newly defined FIMSS Fisher information matrix proved to be successful
for all four test measures (a-d). Figs 3, 10 and 17 show that it reflects the shape and size of the
two-dimensional projections of the confidence intervals. Furthermore, Fig 4 and Tables 4 and
8 show that it covers the volume (D-criterion) and the largest axis (E-criterion) of the multi-
dimensional confidence ellipsoid. The average relative squared error (ARSE) is covered pre-
cisely as well (Fig 5 and Tables 4+9). Additionally, the correlation structure is reflected accu-
rately (Tables 1 and 5 and Fig 18).

During the evaluation of the Immigration-Death model a larger optimal inter-sample dis-
tance was obtained based on the D-criterion compared to the ARSE (Fig 4). Depending on the
experimenter’s interest, the newly introduced FIMSS MSS Fisher information matrix aids in
choosing an appropriate experimental design. The analysis of the Lotka-Volterra model dem-
onstrates the gain in precision by extending the observed time frame (five-fold from LV1 to
LV2). An even greater gain can be achieved by allowing for non-equidistant designs. Here, a
similar amount of information can be obtained with 10 observations compared to 40 observa-
tion at equidistant time intervals. Depending on the experimental set-up, this is a huge reduc-
tion in costs. The Calcium model showed that there is an increase in information when
measuring PLC and Calcium instead of only Calcium. Measuring also G (hence all three vari-
ables) does not lead to a strong increase in information anymore. As this analysis can be run
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before performing any experiments, the Fisher Information is a very valuable tool for experi-
mental design. The FIMSS Fisher information matrix extended its applicability to signaling
pathways with high nonlinearity and intrinsic stochastic effects that lead to a qualitatively dif-
ferent behavior from the deterministic solution.

The approach of [28] uses the expected Kullback Leibler divergence between prior and poste-
rior distribution to measure the information content of an experiment. The potential lack of
prior knowledge on the parameter can be handled with an uninformative prior. This is an
advantage compared to the MSS method using the Fisher information matrix, which is a param-
eter dependent measure. However, [28] uses Monte Carlo simulations thrice to explore a) the
parameter space, b) the observation space and c) the state space. While the additional computa-
tional cost of a) leads to a broader applicability (in case of poor prior knowledge regarding the
parameter) and the cost of b) is comparable to the MSS method’s simulation cost, the additional
computational cost for c) is a critical advantage of the MSS method, especially in signaling path-
ways with fast dynamics and a huge state space such as the Calciummodel (in which the states
of all three components take values from 0 to 10 000 within a few time units).

[27] is suited for an experimental set up with multiple measurements per time point com-
paring their moments with parametrized theoretical moments based on a moment closure
without the use of simulations. The MSS approach differs from this approach as it is suited to
experiments with measurements from only one time course (and not multiple measurements
per time point) and it uses simulations to generate the pseudo data for the FIMSS. Next, MSS
employs a LNA in contrast to moment closure, see [44] for a comparison of LNA and
moment-closure which are both used to calculate moments of stochastic systems.

In contrast to other recent approaches from [11, 25], the FIMSS Fisher information matrix
only needs the LNA on the relatively short time interval between two succeeding measurement
points. This makes it less restrictive than a LNA on the whole time horizon as a comparison
with a benchmark ([11]) has shown. This benchmark treats the observations as samples from a
multivariate normal distribution with a mean equaling the deterministic solution and a covari-
ance matrix containing all inter temporal covariances. The LNA is applied to calculate these
inter-temporal covariances. If the system can be approximated with a LNA over the whole time
horizon, the benchmark approach has two advantages: a) it allows to consider the inter-tempo-
ral correlations which provide additional information that cannot be exploited with the MSS
method and b) it does not need Monte Carlo simulations for the calculation of a Fisher infor-
mation matrix. It needs only one ODE solution and one calculation of the inter-temporal
covariances, which is an increase in computational speed. This is also of benefit for parameter
estimation because [11] needs only one computation of the ODE and of the inter-temporal
covariance system independent of the number of single-cell trajectories. However, the number
of rows and columns of the inter-temporal covariance matrix scales with the product of the
number of time points and the number of components.

The results of the Immigration-Death model show a similar performance of MSS and the
benchmark method regarding parameter estimation and the calculation of the Fisher informa-
tion matrix. As there is little inter-temporal correlation in the model, the benefit “a)” of the
benchmark method is small. The Lotka-Volterra model shows an acceptable performance of
the benchmark for small observation horizons. However, the MSS method performs better
even here (Fig 13). For larger observation horizons (30 and 40) the difference becomes striking
(last two rows of Fig 13). The benchmark is not able to reflect the location of the estimates any-
more, while the MSS method still accurately describes the location of the estimates. The reason
is that the benchmarks approximation is not valid anymore, while the less restrictive approxi-
mation of the MSS method still holds. This has been evaluated using a Kolmogorov-Smirnov
test (Fig 14). Comparing this figure to S5 Fig showing the results for the Immigration-Death
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model, explains the benchmarks acceptable performance for the Immigration-Death model
and the poor performance for the Lotka-Volterra model. Fig 13 also shows that the accuracy of
the parameter estimation is less affected than the accuracy of the Fisher information, possibly
due to the variance acting as a weighting factor for the parameter estimation. A very rough
approximation of this weighting factor might have little influence (as indicated in [13]) on the
parameter estimation but stronger influence on the Fisher information matrix, which describes
how well the (parameter dependent) changes in the variance can be exploited.

While LNAs over the whole system’s horizon have been successfully used to model single-
cell experiments [45, 46], the presented examples demonstrate that this is not generally the
case and a less restrictive approximation such as the MSS is needed. The theoretical condition
for the LNA approximation used in the MSS objective function are discussed in [13, 14] and
reviewed in the supporting information S1 Text. Even the interval-wise LNA used in MSS can
fail to hold (e.g. in case of only very few molecules present in the system), see [47] for details on
theoretical and practical limitations of LNAs. Including higher order terms in the calculation
of the covariance can improve the situation [48]. However, this has not been necessary for the
presented models. A way to evaluate the validity of the LNA approximation was introduced
using the Calcium model. The time steps for the creation of the pseudo data sets were varied
and the impact on the entries of the FIMSS was compared. This control helps to identify designs
with an high amount of information and with an applicability of the MSS objective function
for parameter estimation.

Work by [49] and [50] suggests and objective function using a LNA embedded in a Kalman
filtering framework. This approach is similar to the MSS objective function as it also treats
intervals between measurements separately and uses a LNA. However, the MSS method is
more general as the state updating formulation (Eq 14) could also be straightforward extended
to non Gaussian measurement noise. In case of Gaussian measurement noise the state updating
formula (Eq 14) is equal to the state updating of [49, 50]. Differences can be found in the ini-
tialization of the variance/co-variance for each interval. The MSS initializes with 0 (as in Eq
12), [49, 50] use a Kalman filter recursion. This is an alternative to the updating procedure for
MSS and might allow for a more precise description of the variance and co-variance. Therefore,
it might be a promising objective function to be incorporated into an experimental design
framework. However, this approach has not yet been used for calculating a Fisher Information
matrix or experimental design.

Calculating exact Fisher information matrices is only possible in small example models such
as the Immigration-Death model. However, the comparison of the MSS method to an exact
method is an important part of a performance study. The results show that the accuracy of
parameter estimation and of the calculation of the Fisher information matrix are comparable
to the exact approach (MSS in Figs 3, 4 and 5, exact method in Figs 9, 7 and 8). This is an
important message as it shows that the use of the interval-wise LNA approximation does not
lead to a loss of accuracy for the Immigration-Death model.

The Fisher information is a parameter-dependent measure. Therefore, its power for experi-
mental design depends on the knowledge of parameters based on professional expertise or pre-
vious experiments. If there is no such knowledge, robust experimental design [17, 18] or
Bayesian experimental design [23] suggest strategies for a deterministic framework, which are
applicable to the FIMSS.

It is possible to fix the random seed before the computation making the FIMSS Fisher infor-
mation deterministic. This is very advantageous for the optimization where the user can apply
Bayesian techniques as well as global optimization or gradient based methods.

None of the computations in this article required the use of a computing cluster. One evalu-
ation of the FIMSS Fisher information matrix takes less than one minute on one kernel for the
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Immigration-Death model, approximately 20 minutes (LV1) to 120 minutes (LV2) on one ker-
nel for the Lotka-Volterra model, and roughly 6 hours for the Calcium oscillation model on
eight kernels. This demonstrates the applicability of the FIMSS Fisher information matrix to
realistic size models from a computational point of view.

Supporting Information
S1 Text. Supporting information text.
(PDF)

S1 Fig. Dependence of the accuracy of the FIMSS entries on the number of pseudo data sets
for the fully observed Lotka-Volterra model. Each panel shows one entry of the Fisher infor-
mation matrix. Note that the i × j entry is identical to the j × i entry due to the symmetry of the
matrix. The x-axis shows the number of pseudo data sets used for calculating the sample mean
of Eq (7) shown as solid line. Gray color shows the area from sample mean plus / minus one
standard deviation. As the width of the gray are is decreasing, the accuracy is increasing. Small
values asM = 200 already give a good approximation.
(TIF)

S2 Fig. Dependence of the accuracy of the FIMSS entries on the number of pseudo data sets
for the partially observed Lotka-Volterra model. Same setting as in S1 Fig.
(TIF)

S3 Fig. Dependence of the accuracy of the FIMSS entries on the number of pseudo data sets
for the fully observed Calcium oscillation model. Same setting as in S1 Fig.
(PDF)

S4 Fig. Dependence of the accuracy of the FIMSS entries on the number of pseudo data sets
for the partially observed Calcium oscillation model. Same setting as in S1 Fig.
(PDF)

S5 Fig. Testing the approximation for different observations horizons. P-values for Kolmo-
gorov-Smirnov tests whether the approximation is fulfilled for different observation hori-
zons in the Immigration-Death model; left panel shows results for benchmark and right
panel for MSS. Each color stands for one of the 50 data sets. Test is performed with the true
parameter θ = (1, 0.1) and the scenario with the largest inter-sample distance, namely
Δt = 15.
(TIF)

S6 Fig. D-criterion and E-criterion for the exact method for the Immigration-Death model
with multiple evaluations of FIemp,ex. FIex Fisher information and FIemp,ex are calculated for
different inter-sample distances. The solid line is an interpolation of the values of FIex and the
“x” denote the 10 values of FIemp,ex.
(TIF)

S7 Fig. Parameter estimates and confidence ellipsoid from FIMSS for Calcium model using
the Gillespie algorithm to generate the pseudo data. The panels show the two dimensional
projections of the 12-dimensional parameter space for the Δt = 0.5 design. In each panel the
black dots are the estimates from simulated data and the confidence ellipsoid of the Fisher
information is marked red. “k” is used as an abbreviation for “thousand”.
(TIF)

S1 File. Mathematica code of the method and all simulation studies.
(TGZ)
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