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Parathyroid hormone (PTH) and FGF23 are the primary hor-
mones regulating acute phosphate homeostasis. Human renal
proximal tubule cells (RPTECs) were used to characterize the
mechanism and signaling pathways of PTH and FGF23 on phos-
phate transport and the role of the PDZ protein NHERF1 in medi-
ating PTH and FGF23 effects. RPTECs express the NPT2A phos-
phate transporter, �Klotho, FGFR1, FGFR3, FGFR4, and the PTH
receptor. FGFR1 isoforms are formed from alternate splicing of
exon 3 and of exon 8 or 9 in Ir-like loop 3. Exon 3 was absent, but
mRNA containing both exons 8 and 9 is present in cytoplasm.
Using an FGFR1c-specific antibody together with mass spectrom-
etry analysis, we show that RPTECs express FGFR-�1C. The data
are consistent with regulated FGFR1 splicing involving a novel
cytoplasmic mechanism. PTH and FGF23 inhibited phosphate
transport in a concentration-dependent manner. At maximally
effective concentrations, PTH and FGF23 equivalently decreased
phosphate uptake and were not additive, suggesting a shared
mechanism of action. Protein kinase A or C blockade prevented
PTH but not FGF23 actions. Conversely, inhibiting SGK1, blocking
FGFR dimerization, or knocking down Klotho expression dis-
rupted FGF23 actions but did not interfere with PTH effects. C-ter-
minal FGF23(180–251) competitively and selectively blocked
FGF23 action without disrupting PTH effects. However, both PTH
and FGF23-sensitive phosphate transport were abolished by
NHERF1 shRNA knockdown. Extended treatment with PTH or
FGF23 down-regulated NPT2A without affecting NHERF1. We
conclude that FGFR1c and PTHR signaling pathways converge on
NHERF1 to inhibit PTH- and FGF23-sensitive phosphate trans-
port and down-regulate NPT2A.

Parathyroid hormone (PTH)2 and FGF23 display two
remarkable features: 1) PTH and FGF23 exhibit parallel inhibi-

tion of renal phosphate transport mediated by NPT2A
(sodium-dependent phosphate transporter-2a) but opposing
actions on 1,25(OH)2-vitamin D; 2) despite being structurally
and functionally distinct classes of membrane-delimited recep-
tors, PTH and FGF receptors activate kinases that obligatorily
phosphorylate NHERF1 at conserved sites required for their
phosphaturic action. Phosphorus is essential for growth and
maintenance of the skeleton and for generating high energy
phosphate compounds. Evolutionary adaptation in humans
and other terrestrial vertebrates to phosphorus-rich diets
involves cell and molecular mechanisms ensuring the efficient
urinary elimination of excess inorganic phosphate. The renal
proximal tubule is the primary site of phosphate homeostasis
and hormone-dependent phosphate transport. The NPT2A
sodium-dependent phosphate cotransporter (SLC34A1) in
proximal tubules is regulated by PTH and FGF23 (1, 2). PTH
and FGF23 reduce phosphate uptake by sequestering and
down-regulating NPT2A, thereby enhancing urinary phos-
phate excretion (3, 4). PTH actions are mediated by its cognate
G protein-coupled PTH receptor (PTHR) (5, 6). Both PKA and
PKC have been implicated in PTH-dependent inhibition of
NPT2A (7–12). Using a signaling-selective form of the PTHR
that activates PKA or signaling-biased PTH analogs, Jüppner
and co-workers (13, 14) determined that adenylyl cyclase and
PKA regulate acute PTH effects on Npt2a and phosphate trans-
port, whereas persistent reductions of phosphate transport
require PKC.

FGF23 actions on NPT2A are facilitated by receptor tyrosine
kinases FGFR1 and FGFR4 with the obligate participation of the
coreceptor �Klotho (15, 16). FGFR1 signaling by ERK1/2 and
serum and glucocorticoid-activated kinase (SGK1) leads to
inhibition of phosphate transport (17).

NPT2A harbors a canonical C-terminal PDZ recognition
motif (-TRL) that binds to the PDZ scaffolding protein,
Na�/H� exchanger regulatory factor 1 (NHERF1) (18, 19).
NHERF1 assembles a ternary complex with NPT2A and ezrin,
thereby linking the transporter to the actin cytoskeleton.
NHERF1 is essential for the inhibitory action of PTH and
FGF23 on phosphate transport (12, 17, 20). NHERF1-null mice
and humans harboring mutations in SLC9A3R1 exhibit pro-
nounced phosphate wasting, nephrolithiasis, and skeletal dis-
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orders (21–23). Both PTH and FGF23 phosphorylate NHERF1
(17, 24 –26). These findings imply that activation of distinct
types of cell surface receptors results in phosphorylation of
NHERF1, resulting in disassembly of the NPT2A-NHERF1-
ezrin complex (27), internalization and down-regulation of
NPT2A, and cessation of phosphate transport. Although the
components of these pathways have been described, the lack of
a suitable cell model has hindered a comprehensive analysis of
PTH and FGF23 actions on NPT2A and cellular phosphate
transport. We report here that PTH and FGF23 inhibit NPT2A-
dependent phosphate transport in immortalized human renal
proximal epithelial cells (RPTECs). PTH actions mediated by
the PTHR involve PKA and PKC, whereas FGF23 effects pro-
ceed through FGFR1c and SGK1 and require �Klotho. Inter-
ruption of PTHR signaling inhibited PTH but not FGF23
actions on NPT2A. Conversely, disrupting FGFR1-associated
proteins eradicated FGF23 but not PTH effects on phosphate
transport. NHERF1 knockdown prevented both PTH and
FGF23 action, indicating that PTHR and FGFR1c signaling
pathways converge at the level of NHERF1.

Results and Discussion

RPTECs retain many features of proximal tubule epithelial
cells, including the formation of tight junctions, PTH-stimu-
lated cAMP accumulation, and sodium-dependent phosphate
uptake (28). To extend these observations, we characterized the
expression of NPT2A, NHERF1, PTHR, and FGFR and ana-
lyzed the regulation of phosphate transport by PTH and FGF23.

NPT2A concentrated in a tightly organized cluster at the
apical pole of the cells, reminiscent of apical recycling endo-
somes described in other kidney cell types (Fig. 1A) (29, 30).
NHERF1 was conspicuously expressed at the cell surface and
displayed extensive colocalization with NPT2A (Fig. 1A,

merge). NPT2A also localized to the primary cilium; however,
NHERF1 was absent from this structure (see arrows in Fig. 1A
and magnification in Fig. 1B). A similar distribution was
observed using three different anti-NPT2A antibodies (data not
shown). This localization contrasts with observations by Wade
et al. (31), who found NPT2A and NHERF1 in microvilli of
mouse proximal tubule cells. We also established that PTHR
was prominently expressed at both apical and basolateral cell
membranes (Fig. 1C) as described for native proximal tubules
(10, 32, 33). FGFR1 was primarily expressed at the apical mem-
brane (Fig. 1D).

RPTECs express mRNA transcripts for FGFR1, FGFR3, and
FGFR4 mRNA (Fig. 2A). These results are compatible with recent
findings that FGFR1, FGFR3, and FGFR4 are expressed in murine
proximal tubules (34, 35). This finding is consistent with studies
using recombinant extracellular Klotho domain and FGFR-Fc
fusion constructs of FGFR1b and FGFR1c that showed that FGF23
binds only to FGFR1c (36). Based on these and other findings (37,
38) FGFR1, with its cofactor �Klotho, is considered the cognate
FGF23 receptor regulating phosphate transport.

FGFR1, along with FGFR2 and FGFR4, exhibit isotype varia-
tion, ligand specificity, and regulation that are determined by
extensive alternative splicing (39, 40). The primary sites of
FGFR1 splicing include Ig-like loops I and III (41, 42). The pat-
tern of FGFR1 gene splicing and corresponding protein struc-
tures are shown in Fig. 2B. The � or � isoforms of FGFR are
generated by inclusion or exclusion of exon 3, which encodes
the first Ig-like loop (43). RT-PCR experiments using exon-
spanning primers (Table 1) disclosed the absence of exon 3 (Fig.
2C), hence indicating that FGFR1 is the � form, FGFR-�1, and
lacks the Ig-I loop.

Further FGFR variation arises from alternative splicing in Ig-like
loop III. The N-terminal portion of loop III is encoded by exon 7.
The C-terminal half of loop III is the extracellular ligand-binding
domain of the receptor (44) and is generated by alternate inclusion
of either exon 8, which then forms FGFR1b, or exon 9 to form
FGFR1c. Regulatory RNA-binding proteins determine the splice
events for FGFR1b and FGFR1c isoforms (42, 45). FGFR1b is con-
sidered the epithelial form of the receptor, whereas FGFR1c is
accepted as expressed by mesenchymal cells (41). Thus, it would
be reasonable to suppose that epithelial proximal tubule cells
would express FGFR1b despite FGFR1c being accepted as the
canonical FGF23 receptor. We designed exon-spanning primers
(Table 1) to delineate the FGFR1 isoform in RPTECs. Using for-
ward primers spanning the exon 7/8 boundary (FGFR1b) or the
exon 7/9 boundary (FGFR1c) and reverse primers that span the
exon 10/8 boundary (FGFR1b) or the exon 10/9 boundary
(FGFR1c), we determined that RPTECs use exon 9 and thus
express FGFR1c (Fig. 2D).

Strikingly, using the FGFR1b forward primer with the
FGFR1c reverse primer, mRNA containing both exons 8 and 9
was robustly displayed in the cytoplasm (Fig. 2D). As noted
above, exon 3, however, was undetectable (Fig. 2B). This sug-
gests that splicing of exon 3 for the FGFR1�/� receptor isoform
occurs in the nucleus by a canonical process, whereas exon splicing
leading to tissue-specific expression of FGFR1b/c proceeds in
the cytoplasm. Such noncanonical post-transcriptional mRNA

FIGURE 1. NPT2A, NHERF1, PTHR, and FGFR1 expression in RPTECs. A,
distribution of NPT2A (green), NHERF1 (red), and nuclei (blue) in filter-grown
RPTECs. Single optical sections from the apical region of the cell are shown.
Arrows, NPT2A association with cilia. B, magnified views of a single cell. C, x-z
plane depicting PTHR (green) and nuclear (blue) staining of RPTECs grown on
coverslips. D, FGFR1 (green) and F-actin (red) staining of RPTECs grown on
filters. The x-z plane is shown.
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processing is emerging as a cell-specific regulatory step that
determines the translated splice variant (46).

Using a polyclonal FGFR1 antibody that does not distinguish
between alternatively spliced FGFR1 isoforms, RPTECs express
a single protein band of 72 kDa (Fig. 2E). A band of similar size
was detected using an FGFR1c-specific antibody (47), confirm-
ing that FGFR1c is the only species of FGFR1 protein expressed
by RPTECs. We validated this finding by mass spectrometry,
where we detected a unique tryptic peptide consistent with

FGFR1c (Fig. 2F). Protein containing both exons 8 and 9 was
not found. Given that exons 8 and 9 each encode the mutually
exclusive C-terminal portion of loop IIIc, it is unlikely that a
protein harboring both domains exists or would fold correctly.
Thus, RPTECs express FGFR-�1c.

Taken together, these results establish that RPTECs express
NPT2A, NHERF1, PTHR, and FGFR-�1c, the proteins involved
in hormone-regulated phosphate transport. Based on these
considerations, we proceeded to characterize the actions of

FIGURE 2. FGFR mRNA and protein expression in RPTECs. A, representative 3% agarose gel of FGFR expression in RPTECs determined by RT-PCR (Table 2).
200- and 100-bp markers are shown in the left lane. B, schematic representations of the FGFR1 gene and protein structure. The FGFR-�1c splice variant harbors
two extracellular immunoglobulin-like domains (II and III) with alternatively spliced exon 9 in loop III, a transmembrane domain (TM), and two intracellular
tyrosine kinase domains (TK). C, FGFR1-� splice variant in a characteristic 2% agarose gel with ladder in the left lane. The 500-bp PCR product is consistent with
the �-splice variant lacking exon 3. D, FGFR1b/c splice variants. Lane 1, FGFR1b; lane 2, FGFR1c; lane 3, mRNA containing both exons 8 and 9. Lane 3 PCR was
performed using the forward primer for FGFR1b and the reverse primer for FGFR1c (Table 1). An illustrative 2% agarose gel is shown with a 100-bp ladder in the
left lane. The PCR product in lane 2 is consistent with the exon 9 FGFR1c splice variant. Lane 3 shows an mRNA species containing both exons 8 and 9. E, FGFR1c
is the primary species of FGFR1 detected by immunoblotting. FGFR1 and FGFR1c in RPTECs were detected by non-selective and isotype-selective antisera,
respectively, as described under “Experimental Procedures.” The results are illustrative of n � 3 independent experiments. F, MS/MS spectrum for the identified
specific peptide 355SDFHSQMAVHKLAK368 from FGFR1c. The peak heights show the relative abundances of the corresponding fragmentation ions, with the
annotation of the identified matched N terminus-containing b ions in blue and the C terminus-containing y ions in red. Charge state: �3, observed m/z:
538.93969, theoretical m/z: 538.94008, precursor mass error: �0.72, Xcorr: 0.719.
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PTH and FGF23 on phosphate transport. PTH and FGF23
inhibited phosphate uptake in a concentration-dependent
manner with an EC50 of 30 and 51 pM, respectively (p � 0.02)
(Fig. 3A). At maximally effective concentrations of 100 nM,
FGF23 and PTH similarly inhibited phosphate uptake by 40 � 9
and 43 � 7%, respectively (Fig. 3B). The combined addition of
FGF23 and PTH modestly augmented the inhibition of phos-
phate uptake by an additional 20% (Fig. 3B). The non-additive
response of PTH and FGF23 probably reflects a common final
mechanism of action.

C-terminal FGF23(180 –251) virtually abolished the actions
of FGF23(28 –251) on phosphate transport but had no effect on
its own; it did not interfere with PTH-sensitive phosphate
transport (Fig. 3C). FGF23(180 –251) competes with full-length
FGF23 for binding to the FGFR1-�Klotho complex and reduces
renal phosphate excretion (48). Additional controls showed
that neither FGF2 nor PTH(7–34) affected phosphate transport
(data not shown), further demonstrating the specificity of
FGF23 and PTH action on phosphate transport.

PTHR and FGFR1c mediate the phosphaturic actions of PTH
and FGF23, respectively (5, 49, 50). Both receptors are
expressed on RPTECs (Fig. 2). The PTHR signals primarily
through Gs and Gq, leading to downstream activation of PKA
and PKC, which are stimulated in parallel following occupancy
of proximal tubule PTHR (51). FGFR1 dimerizes upon activa-

tion, thereby stimulating downstream kinases associated with
Ras/ERK and SGK1 (17, 52). To define the mechanism of PTH
and FGF23 action on phosphate transport in RPTECs, we first
characterized the signaling pathways responsible for their
effects by employing a panel of pharmacological protein kinase
inhibitors. The PKA inhibitor H89 and PKC inhibitor bis-in-
dolylmaleimide I (Bis-I) blocked the actions of PTH (Fig. 4A)
but had no effect on FGF23-sensitive phosphate uptake (Fig.
4B). In contrast, the SGK1 inhibitor GSK650394 blocked the
actions of FGF23 (Fig. 4B) but not PTH (Fig. 4A). These results
are consistent with observations that acute NPT2A down-reg-
ulation by PTH involves cAMP and PKA (14). The findings are
also compatible with a recent study showing that acute PTH
action involves PKA (14), whereas FGF23 effects are mediated
by SGK1 (17). The ERK1/2 inhibitor PD-98059 abolished the
action of FGF23 and inhibited PTH-sensitive uptake by 50%
(Fig. 4, A and B). PTH activation of ERK occurs downstream of
PKC activation (53, 54). This may explain the partial inhibition
of PTH-sensitive phosphate transport by PD98059.

The finding that RPTECs express FGFR1c (Fig. 2, E and F)
implies that knockdown of this isoform with an siRNA targeted
to exon 9 should inhibit FGF23-sensitive phosphate transport.
siRNA specific to either exon 8 (si8, FGFR1b) or exon 9 (si9,
FGFR1c) was used to knock down FGFR1 expression. A sample
immunoblot showing FGFR1c abundance after transfection of
RPTECs with siRNA is shown in Fig. 5A. si8 and si9 reduced
FGFR1c protein expression by 82 and 89%, respectively (Fig.
5B). Detection with a polyclonal anti-FGFR1 antibody yielded
similar results (data not shown). Unexpectedly, knocking down
exon 8 (si8) was almost as effective as knocking down exon 9
(si9) at reducing FGFR1c protein expression. si8 reduced
FGF23-dependent phosphate transport by 40%, and si9 elimi-
nated FGF23 modulation (Fig. 5C). These data are consistent
with FGFR1c being the primary mediator of the phosphaturic
effects of FGF23. Furthermore, the ability of si8 to interfere
with FGFR1c expression supports the supposition that the
mRNA emerging from the nucleus contains both exons 8 and 9,

FIGURE 3. PTH and FGF23 inhibit phosphate transport. A, RPTECs were treated for 2 h with 100 nM PTH(1–34) or FGF23. Phosphate uptake was measured for
10 min, as detailed under “Experimental Procedures.” Data represent the mean � S.E. (error bars) of n � 6 independent experiments performed in triplicate.
Data were normalized for each experiment, where phosphate uptake under control, untreated conditions, was defined as 0% inhibition. Data were fit to a
sigmoidal relation, and Kd values were calculated with Prism. B, RPTECs on 12-well plates were treated for 2 h with the indicated concentrations of PTH or FGF23.
Phosphate uptake was measured for 10 min, as outlined under “Experimental Procedures.” Data represent the mean � S.E. of n � 6 independent experiments
performed in triplicate. *, p � 0.05 versus control; **, p � 0.01 versus control. C, C-terminal FGF23(180 –251) fragment blocks FGF23 but not PTH inhibitable
phosphate uptake. Data are the mean � S.E. of n � 4 experiments. **, p � 0.01 versus FGF23.

TABLE 1
FGFR1 exon splicing primers
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as shown in Fig. 2C, and that regulated splicing in the cytoplasm
determines the translation and expressed form of FGFR1.

FGF23 effects mediated by FGFR1 require the presence of
the coreceptor �Klotho (41). We confirmed that RPTECs

express �Klotho (Fig. 6A). We then assessed the involvement of
�Klotho as an FGFR1 cofactor to support FGF23 effects on
phosphate transport. We envisioned that disrupting �Klotho
would interfere with FGF23 actions but not those of PTH. Sta-
ble formation of the FGF23-FGFR1-�Klotho complex and
FGFR dimerization is regulated by sulfated glycosaminoglycans
(4). Sodium chlorate inhibits proteoglycan sulfation by remov-
ing cell surface glycosaminoglycans without affecting protein
synthesis or other posttranslational modifications (55). Over-
night treatment of RPTECs with 50 mM NaClO3 suppressed
FGF23 but not PTH effects on phosphate transport in RPTECs
(Fig. 6B). These data are consistent with the constitutive and
sufficient expression of �Klotho by RPTECs and its require-
ment for FGF23-mediated signaling and NPT2A-dependent
phosphate transport and with previous work showing that
NaClO3 reversibly interferes with FGF23 action (4).

Recent work shows that unliganded FGFR1 is able to form
homodimers or heterodimerize with �Klotho. These receptor
complexes undergo conformational changes upon ligand occu-
pancy (56). To establish directly its cofactor role in FGF23-
sensitive phosphate transport, we knocked down �Klotho in
RPTECs and determined its effect on FGF23 and PTH action on
phosphate uptake. Three different siRNAs were screened.
siRNA3 decreased �Klotho expression by 80% (Fig. 7A), and
this was associated with the most pronounced disruption with
the inhibition of phosphate uptake by FGF23 (Fig. 7B). The
converse was also true insofar as siRNA1, which failed to reduce
�Klotho expression, had no discernable inhibitory action on
FGF23-sensitive phosphate transport. Thus, the extent of
�Klotho knockdown corresponded to the degree of suppres-
sion of FGF23-sensitive phosphate transport. As predicted,
�Klotho knockdown did not interfere with PTH inhibition of
phosphate uptake (Fig. 7B), underscoring the distinct signaling
and cofactor requirements for FGF23 and PTH actions. The
results also imply that �Klotho acts specifically and autono-
mously on FGF23.

Contrary to these findings, a recent study suggested that
exogenous recombinant �Klotho binds PTH, thereby interfer-
ing with PTH binding and signaling (57). Although we can not

FIGURE 4. Signaling pathways mediating PTH and FGF23 effects on phosphate transport. RPTECs were treated for 2 h with 100 nM PTH(1–34) (A) or FGF23
(B) in the presence or absence of the specified inhibitors: BisI (PKC), GSK-650394 (SGK-1), H89 (PKA), and PD (PD-98059, ERK1/2). Inhibitors were used at 1 �M

except for GSK, where 10 �M was employed. Phosphate uptake was measured as before. Data represent the mean � S.E. (error bars) of n � 6 experiments. *, p �
0.05; **, p � 0.01 versus PTH or FGF23.

FIGURE 5. Effect of FGFR1 exon 9 and exon 8 knockdown on FGF23-regu-
lated phosphate transport. A, FGFR1 knockdown by siRNA for exon 8 (si8),
exon 9 (si9), or a scrambled control (scr) was assessed by immunoblotting
using antibody that specifically recognizes FGFR1c. A representative result is
presented. B, quantification of si8 and si9 knockdown of FGFR1c. Data repre-
sent the mean � S.E. (error bars) of n � 4 experiments. C, siRNA effects on
FGF23-sensitive phosphate transport. Data represent the mean � S.E. of n �
4 experiments. *, p � 0.05; **, p � 0.01.
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speak to the effects of exogenous Klotho on PTH action on
phosphate transport, blocking FGFR dimerization or down-
regulating �Klotho selectively impaired FGF23 actions without
interfering with the inhibitory effect of PTH on phosphate
transport. An alternative explanation for the apparent inhibi-
tory effect of Klotho on PTH action may be ascribed to signaling
cross-talk between GPCRs and receptor tyrosine kinases that
arises from stimulation of ERK1/2 and endocytosis of unligan-
ded receptor (58).

PTH and FGF23 acting through their respective GPCR and
receptor tyrosine kinase, stimulate distinct signaling pathways,
but both require NHERF1 to inhibit phosphate transport (12,
17). This raised the hypothesis that the signaling events initi-
ated at PTHR and FGFR1 converge on NHERF1 to facilitate
endocytosis and inhibit NPT2A-dependent phosphate trans-
port. According to this view, NHERF1 knockdown should dis-
rupt the actions of both FGF23 and PTH. Consistent with this
prediction, shNHERF1 (shN1) reduced NHERF1 expression by
80% (Fig. 8A) and concomitantly virtually abolished both PTH
and FGF23-inhibitable phosphate transport (Fig. 8B). These
findings support the idea that although the actions of FGF23
and PTH stem from different classes of membrane receptors,
their effects intersect at the level of NHERF1. This is compatible
with the requirement for NHERF1 to mediate the inhibitory
actions of both PTH and FGF23 on NPT2A (12, 17, 20). Phos-
phorylation of NHERF1 results in disassembly of the NPT2A-
NHERF1-ezrin complex (27), internalization and down-regula-
tion of NPT2A, and cessation of phosphate transport.

NHERF1 harbors 38 Ser and Thr residues. Identifying the
particular residues phosphorylated following activation of
PTHR and FGFR1 in a native cell model will be essential to
understand the structural determinants and sites of PTH- and
FGF23-dependent NHERF1 post-translational modifications.

Treatment with PTH or FGF23 for 2 h down-regulates
NPT2A in RPTECs (Fig. 9A). After PTH or FGF23 exposure,
NPT2A was less concentrated at the apical pole of the cell, with

FIGURE 6. �Klotho expression and function. A, �Klotho is expressed by
RPTECs. Shown is an immunoblot of 20 �g of protein lysate duplicate wells
probed with rabbit polyclonal anti-Klotho antibody. Molecular mass markers
representing 50 and 75 kDa are shown. B, chlorate treatment of RPTECs inter-
fered with FGF23 but not PTH inhibition of phosphate transport. RPTECs were
treated overnight with 50 mM NaClO4, followed by a 2-h treatment with 100
nM PTH(1–34) or FGF23, as indicated. Phosphate uptake was measured as
described under “Experimental Procedures.” Data represent the mean � S.E.
(error bars) of n � 4 independent experiments. Data were normalized for each
experiment, where phosphate uptake under control, untreated conditions
was defined as 0% inhibition. **, p � 0.01 versus FGF23 alone.

FIGURE 7. siRNA �Klotho knockdown blocks FGF23- but not PTH-inhibit-
able phosphate transport. �Klotho expression was knocked down in RPT-
ECs using siRNA as described under “Experimental Procedures.” A, knock-
down of �Klotho was assessed by immunoblotting. A representative
experiment is depicted. The data for three siRNA duplexes plus a scrambled
control (scr) are shown. B, the effects of �Klotho knockdown on PTH- and
FGF23-dependent phosphate transport were measured. Data represent the
mean � S.E. (error bars) of n � 5 experiments. Data were normalized for each
experiment, where phosphate uptake under control, untreated conditions
was defined as 0% inhibition. **, p � 0.01; ***, p � 0.001 versus scrambled.

FIGURE 8. shRNA NHERF1 knockdown inhibits FGF23- and PTH-regulated
phosphate transport. NHERF1 expression was knocked down in RPTECs by
shRNA transfection as described under “Experimental Procedures.” A, knock-
down of NHERF1 was assessed by immunoblotting. A representative experi-
ment is depicted. The data for NHERF1 shRNA and a scrambled control (scr)
are shown. B, effects of NHERF1 knockdown on PTH- and FGF23-dependent
phosphate transport were assessed. Data represent the mean � S.E. (error
bars) of n � 4 experiments. Data were normalized for each experiment, where
phosphate uptake under control, untreated conditions was defined as 0%
inhibition. **, p � 0.01 versus FGF23 or PTH.
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a significant amount now present in the cytoplasm (Fig. 9B). In
contrast, NHERF1 remained associated with the apical mem-
branes and showed diminished colocalization with NPT2A. A
phenomenologically similar process has been described for
PTH action on PTHR trafficking, where PTHR is endocytosed
while NHERF1 remains at the cell surface (59).

Studies of FGF23 action on phosphate transport using opossum
kidney cells have proven controversial due to variable results (4, 50,
60, 61). The discrepancies among these reports and the work here
may originate from the multiple available opossum kidney cell
subtypes (62) as well as the uncertainty regarding FGFR1 and its
proteoglycan requirement (63, 64). The present findings under-
score the robust fidelity of RPTECs in recapitulating the hormone
sensitivity and phosphate transport phenotype of native proximal
tubules. RPTECs constitutively express all of the known compo-
nents that regulate the renal phosphate transport mechanism,
including PTHR and FGFR1c, along with its regulatory respective
cofactor, and trans-acting elements that respond to PTH and
FGF23. Thus, RPTECs should prove valuable for further and
detailed studies of the mechanism of FGF23 and PTH action in
cells from a eutherian mammal.

In summary, the present findings establish that PTH and
FGF23 inhibit phosphate uptake through distinct mechanisms
that impinge on a final common effector. Ligand binding of the
PTHR stimulates PKA, PKC, and ERK1/2. FGF23, working
through FGFR1c and �Klotho, stimulates SGK1 and ERK. The
two signaling cascades converge at NHERF1. The present stud-
ies demonstrate that �Klotho is expressed in RPTECs, acting in
a cis manner that is required for FGF23 but not PTH action.
Also, we clarify that FGFR-�1c is the splice variant expressed by

proximal tubule cells that, together with �Klotho, serves as the
FGF23 receptor. We also present data consistent with the view
that the final splicing decision for FGFR1c expression involves a
novel cytoplasmic mechanism that may be a model for other
growth factor receptors.

Experimental Procedures

Peptides—Human [Nle8,18,Tyr34]PTH(1–34) was purchased
from Bachem (H9110). Recombinant human R179Q-
FGF23(25–251) (referred to henceforth as FGF23), which is
resistant to furin cleavage and inactivation, was obtained from
R&D Systems (2604-FG-025). The C-terminal FGF23(180 –
251) fragment was a generous gift from Dr. Moosa Mohammadi
(New York University School of Medicine).

Inhibitors—The PKA inhibitor H-89 (B1427), SGK1 inhibitor
GSK-650394 (SML0773), PKC inhibitor Bis-I (B6292), and the
ERK1/2 inhibitor PD98059 (P215) were purchased from Sigma.
Sodium chlorate (catalog no. 403016) and other routine re-
agents were from Sigma.

Antibodies—Rabbit polyclonal anti-NHERF1 (ab3452), mono-
clonal anti-NHERF1 (Abcam ab31111), rabbit polyclonal anti-
FGFR1 (ab10646), and rabbit polyclonal anti-Klotho (ab98111)
antisera were purchased from Abcam. Monoclonal anti-FGFR1c
(47) was acquired under license from MedImmune.

Cell Lines and Cell Culture—Human renal proximal tubule
epithelial cells immortalized with hTERT (RPTECs) (11) were
obtained from ATCC under license from Geron Corp. They were
cultured in defined medium (DMEM/F-12 (Mediatech, 10-090-
CV) supplemented with 5 pM triiodo-L-thyronine, 10 ng/ml
recombinant human epidermal growth factor, 25 ng/ml prosta-
glandin E1, 3.5 �g/ml ascorbic acid, 1 mg/ml insulin, 0.55 mg/ml
transferrin, 0.5 �g/ml sodium selenite, 25 ng/ml hydrocortisone)
plus 1% penicillin and streptomycin and 0.1 mg/ml G418.

Phosphate Uptake—RPTECs were seeded on 12-well plates.
When the cells reached confluence (2–3 days after passaging),
they were treated with 100 nM PTH(1–34) or FGF23 in
cell culture medium. After 2 h, the hormone-supplemented
medium was aspirated, and the wells were washed three times with
1 ml of sodium-replete wash buffer (140 mM NaCl, 4.8 mM KCl, 1.2
mM MgSO4, 0.1 mM KH2PO4, 10 mM HEPES, pH 7.4). The cells
were incubated with 1 �Ci of [32P]orthophosphate (PerkinElmer
Life Sciences, NEX053) in 1 ml of sodium-replete wash buffer for
10 min. Phosphate uptake was terminated by placing the plate on
ice and rinsing the cells three times with sodium-free wash buffer
(140 mM N-methyl-D-glucamine, 4.8 mM KCl, 1.2 mM MgSO4, 0.1
mM KH2PO4, 10 mM HEPES, pH 7.4). The cells in each well were
extracted overnight at 4 °C using 500 �l of 1% Triton X-100
(Sigma). A 250-�l aliquot was counted in a Beckmann Coulter
LS6500 scintillation counter. Data were normalized to phosphate
uptake under control conditions defined as 100%.

Immunoblotting—Immunoblotting was performed as de-
scribed (12). RPTECs were lysed with 1% Nonidet P-40 (50 mM

Tris, 150 mM NaCl, 5 mM EDTA, 1% Nonidet P-40) supple-
mented with protease inhibitor mixture I (Calbiochem). Lysis
was performed for 15 min on ice. Solubilized materials were
resolved on 10% SDS-polyacrylamide gels and transferred to
Immobilon-P membranes (Millipore) using the semidry
method (Bio-Rad). Membranes were blocked overnight at 4 °C

FIGURE 9. PTH and FGF23 down-regulation of NPT2A. A, NPT2A protein
levels in RPTECs after a 2-h treatment with PTH or FGF23. A representative
experiment is presented. B, immunofluorescence experiments depicting the
change in localization of NPT2A in response to PTH or FGF23 treatment. RPT-
ECs were left untreated (control) or treated for 2 h with 100 nM PTH or FGF23.
Green, NPT2A; red, NHERF1; blue, nuclei. The x-z plane is depicted.
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with 5% nonfat dried milk in Tris-buffered saline plus Tween 20
(TBST) and incubated with the indicated antibodies (poly-
clonal anti-NHERF1 at 1:3000, polyclonal anti-Klotho at
1:3000, polyclonal anti-FGFR1 at 1:3000, monoclonal anti-
FGFR1c at 1:500) overnight at 4 °C. The membranes were
washed four times for 10 min in TBST and then incubated with
goat anti-rabbit IgG (for anti-NHERF, anti-Klotho, and anti-
FGFR1 primary antibodies) or goat anti-human IgG (for anti-
FGFR1c primary antibody) conjugated to horseradish peroxi-
dase at a 1:5000 dilution for 1 h at room temperature.
Membranes were washed four times for 10 min in TBST. Pro-
tein bands were detected by Luminol-based enhanced chemi-
luminescence (EMD Millipore WBKLS0500).

Immunolocalization—RPTECs were grown to confluence in
a 10-cm dish, trypsinized, washed with sterile PBS, and centri-
fuged at 600 � g, and the cell pellet was resuspended in 16 ml of
medium. Polycarbonate Transwell filters (12-mm diameter;
Corning Costar 3401) were coated with a 0.2-ml solution of
type IV collagen (5 mg of Sigma type VI collagen dissolved in an
aqueous solution of 0.2% (v/v) glacial acetic acid), diluted 1:10
in 10 mM sodium carbonate, pH 9.0, buffer. Following a 60-min
incubation at room temperature, the collagen solution was
aspirated, and the Transwell filters were rinsed with PBS and
allowed to dry in a cell culture hood. A 0.5-ml aliquot of the cell
suspension was placed in the upper compartment of the coated
Transwell filters, whereas 1.2 ml was added to the lower cham-
ber. The cells were incubated at 37 °C in a cell culture incubator,
equilibrated with 95% O2, 5% CO2 for 7–10 days. The culture
medium was changed every 3 days by aspirating the two cham-
bers and adding 0.5 ml of medium to the upper chamber
medium and 1.2 ml of medium to the lower chamber. Cells
cultured on Transwell filters were treated with PTH or FGF23
on both basolateral and apical surfaces, as indicated, and the
medium was aspirated and replaced with 100 mM sodium caco-
dylate buffer, pH 7.4, containing 4% (v/v) paraformaldehyde for
30 min at room temperature. The fixative was aspirated and
replaced with quench solution (20 mM glycine, pH 8.0, and 75
mM NH4Cl dissolved in PBS). The filters were subsequently
placed in block solution (0.1% (v/v) saponin, 1% (v/v) teleost
fish skin gelatin, dissolved in PBS) containing 5% (v/v) horse
serum. The cells were incubated overnight at 4 °C with mouse
monoclonal anti-NHERF1 antibody (diluted 1:30 in block solu-
tion) and one of three primary anti-Npt2a antibodies (diluted
1:200 in block solution): rabbit anti-Npt2a antibody (a gift from
Dr. Mark Knepper, National Institutes of Health) or goat anti-
Npt2a (Santa Cruz, sc-33928). After three washes with blocking
solution, the cells were incubated for 1 h at room temperature
with a mixture of ToPro3 (diluted 1:1000; Life Technologies)

minimal cross-reacting donkey anti-rabbit (or goat) IgG sec-
ondary antibody conjugated with Alexa488 (diluted 1:200) and
with donkey anti-mouse IgG secondary antibody conjugated
with CY3 (diluted 1:200). Following three washes with blocking
solution and then PBS, the filters were postfixed with 4% (v/v)
paraformaldehyde (in cacodylate buffer) for 10 min, rinsed with
PBS, removed from the holders, and mounted on glass slides
using Slowfade mounting medium (ThermoFisher). Confocal
images of NPT2A localization were obtained using a Leica CW-
STED confocal microscope (in normal confocal mode; Leica
Microsystems Inc., Buffalo Grove, IL), outfitted with a �63
glycerol objective (numerical aperture � 1.3) and low noise
hybrid detectors. The captured images were contrast-corrected
using Volocity (PerkinElmer Life Sciences), exported as TIFF
files, and assembled in Adobe Illustrator.

PTHR localization was performed in an analogous fashion on
RPTECs grown on coverslips as described (27) using an anti-
body raised against the C terminus of the human PTHR (65).

siRNA Knockdown—siRNA for �Klotho knockdown was
purchased from Integrated DNA Technologies (Coralville, IA).
HuSH shRNA for NHERF1 knockdown was obtained from Ori-
gene (TR309271). Dicer substrate short interfering RNAs (Dsi-
RNAs) for knockdown of FGFR1b (exon 8) and FGFR1c (exon
9) were designed using the IDTDsi-RNA tool. The Dsi-RNAs
for FGFR1b were rGrGrArGrUrUrArArUrArCrCrArCr-
CrGrArCrArArArGrAGA (sense) and rUrCrUrCrUrUrUr-
GrUrCrGrGrUrGrGrUrArUrUrArArCrUrCrCrArG (antisense).
The Dsi-RNAs for FGFR1c were rGrUrGrGrUrArCrCrArAr-
GrArArGrArGrUrGrArCrUrUrCCA (sense) and rUrGrGrArAr-
GrUrCrArCrUrCrUrUrCrUrUrGrGrUrArCrCrArCrUrC (anti-
sense). siRNA, Dsi-RNA, and shRNA were transfected into
RPTECs using Lipojet (100468, SignaGen Laboratories, Gaithers-
burg, MD). Cells were transfected on 60-mm dishes. 48 h after
transfection, the cells were trypsinized and passaged onto 12-well
plates for phosphate uptake assays. Protein lysates were extracted
from a 100-�l aliquot from these cells to assess by immunoblotting
the extent of knockdown.

RT-PCR—Total RNA was isolated using TRIzol (Invitrogen).
First strand cDNA synthesis was completed using the Accu-
script high fidelity first strand cDNA synthesis kit (Agilent,
200820). Amplification was accomplished using Phusion HF
Polymerase (New England Biolabs, M0350). Exon-spanning
primers (Table 1) were designed to fingerprint the specific
FGFR1 subtype (�/�) and alternatively spliced isoforms present
in RPTECs. For FGFR1b, we used a forward primer that spans
the exon 7/8 boundary and a reverse primer that spans the exon
10/8 boundary. For FGFR1c, we employed a forward primer
that spans the exon 7/9 boundary and a reverse primer that

TABLE 2
FGFR Primers

Gene Orientation Primer pairs Accession number Product size

bp
FGFR1 5�3 3� CTCGGGACAGACTGGTCTTAGG NM_023110.2 150

3�3 5� CGTCCGACTTCAACATCTTCAC
FGFR3 5�3 3� GACCGAGGACAACGTGATGA NM_000142.4 160

3�3 5� TGAGTGTAGACTCGGTCAAACAAG
FGFR4 5�3 3� CCCTCGAATAGGCACAGTTACC NM_002011.4 120

3�3 5� AGCGGAACTTGACGGTGTTC
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spans the exon 10/9 boundary. Primers were purchased from
Integrated DNA Technologies. A second series of previously
published primer sequences (Table 2) (66) was used to identify
FGFR isoforms expressed in RPTECs. PCRs were performed on
a PCR Sprint thermal cycler (Hybaid) with a protocol consisting
of 95 °C for 5 min, followed by 40 cycles at 95 °C for 10 s; 61 °C
for 10 s, 72 °C for 30 s; 72 °C for 10 min and hold at 4 °C. The
PCR was analyzed on a 2% agarose gel, and the relevant bands
were excised, purified, and sequenced.

Mass Spectrometry—RPTEs were grown to confluence on
three 15-cm dishes. On ice, the cells were washed three times
with 5 ml of cold PBS. The cells were then scraped in 5 ml of PBS
and transferred to a 50-ml centrifuge tube. The cells were pel-
leted at 200 � g at 4 °C for 4 min in a Beckman Coulter
AllegraX-12R centrifuge. The supernatant was discarded, and
the pellet was resuspended in a low salt buffer containing 10 mM

HEPES, pH 7.5, 1.5 mM MgCl2, 10 mM KCl, and protease inhib-
itors. The sample was sonicated in a Fisher FB120 sonicator for
1 min (8 s on, 16 s off, 30% power) and centrifuged for 30 min at
13,000 rpm at 4 °C in an Eppendorf 5415R centrifuge. The
resulting pellet was resuspended in 5 ml of high salt buffer to
wash the cell membrane (4.25 ml of low salt buffer supple-
mented with 0.75 ml of 5 M NaCl) and centrifuged again for 30
min at 13,000 rpm at 4 °C. The pellet was resuspended in 1 ml of
low salt buffer and sonicated on ice for 8 s at 30% power. The
sample was then centrifuged at 2000 rpm for 10 min at 4 °C to
remove unbroken cells and free nuclei. After another high
speed centrifugation, the sample was divided into pellet and
supernatant fractions. The pellet was resuspended in 100 �l of
Laemmli buffer and resolved on an 8% SDS-polyacrylamide gel.
In parallel, a small amount of pellet and supernatant fractions
was examined by Western blotting to ensure that the protein of
interest was in the pellet sample. The protein in cut gel pieces
was reduced by 10 mM DTT and alkylated by 55 mM iodoacet-
amide, and in-gel digestion by trypsin was performed at 37 °C
overnight. The digested peptides were resuspended in 0.1% for-
mic acid and subjected to LC-MS/MS analysis using the LTQ
Orbitrap Velos mass spectrometer (Thermo Scientific).

Statistics—Statistical analysis was performed using GraphPad
Prism version 6. Single comparisons between groups were ana-
lyzed by analysis of variance with post hoc testing using the Bon-
feronni multiple comparisons test, whereas repeated measures
were analyzed using a paired t test. Differences between three or
more groups were analyzed by two-way analysis of variance and
post hoc testing using Tukey’s multiple comparisons test. Differ-
ences greater than p � 0.05 were assumed to be significant.
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