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ABSTRACT

Background. Although individual urine biomarkers are asso-
ciated with chronic kidney disease (CKD) incidence and all-
cause mortality in the setting of HIV infection, their combined
utility for prediction remains unknown.
Methods. We measured eight urine biomarkers shown previ-
ously to be associated with incident CKD and mortality risk
among 902 HIV-infected women in the Women’s Interagency
HIV Study: N-acetyl-β-D-glucosaminidase (NAG), kidney
injury molecule-1 (KIM-1), alpha-1 microglobulin (α1m),
interleukin 18, neutrophil gelatinase-associated lipocalin,
albumin-to-creatinine ratio, liver fatty acid-binding protein
and α-1-acid-glycoprotein. A group-based cluster method clas-
sified participants into three distinct clusters using the three
most distinguishing biomarkers (NAG, KIM-1 and α1m), inde-
pendent of the study outcomes. We then evaluated associations
of each cluster with incident CKD (estimated glomerular filtra-
tion rate <60 mL/min/1.73 m2 by cystatin C) and all-cause
mortality, adjusting for traditional andHIV-related risk factors.
Results. Over 8 years of follow-up, 177 CKD events and 128
deaths occurred. The first set of clusters partitioned women
into three groups, containing 301 (Cluster 1), 470 (Cluster 2)
and 131 (Cluster 3) participants. The rate of CKD incidence

was 13, 21 and 50% across the three clusters; mortality rates
were 7.3, 13 and 34%. After multivariable adjustment, Cluster
3 remained associated with a nearly 3-fold increased risk of
both CKD and mortality, relative to Cluster 1 (both P < 0.001).
The addition of the multi-biomarker cluster to the multivari-
able model improved discrimination for CKD (c-statistic =
0.72–0.76, P = 0.0029), but only modestly for mortality (c =
0.79–0.80, P = 0.099). Clusters derived with all eight markers
were no better for discrimination than the three-biomarker
clusters.
Conclusions. For predicting incident CKD in HIV-infected
women, clusters developed from three urine-based kidney dis-
ease biomarkers were as effective as an eight-marker panel in
improving risk discrimination.

Keywords: biomarker, chronic kidney disease, cluster analysis,
HIV, risk discrimination

INTRODUCTION

HIV infection is associated with early onset of kidney disease [1],
despite the widespread use of highly active antiretroviral therap-
ies (HAART). The current surveillance strategy based on serum
creatinine and urine dipstick for proteinuria is too insensitive [2]
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to capture the early stages of kidney disease. Although creatinine-
based estimated glomerular filtration rate (eGFR) and albumin-
uria can predict mortality and end-stage renal disease [3], these
markers lack the specificity to discern the etiology of kidney dis-
ease, and only reflect glomerular disease.

Better diagnostic methods may be useful to detect early kid-
ney disease, and to determine whether it is related to specific
risk factor exposures. The urine albumin-to-creatinine ratio
(ACR) is an established marker of glomerular injury, but it
may not capture renal injury at other sites. We previously
have shown that novel urine biomarkers of tubule damage
and dysfunction are associated with incident chronic kidney
disease (CKD) and mortality risk among HIV-infected women
enrolled in theWomen’s InteragencyHIV Study (WIHS) [4–6].

The challenge of utilizing several biomarkers, however, is
that they may offer contradictory findings, and there is no es-
tablished method to integrate the results [7]. CKD is a hetero-
geneous condition, especially in the setting of HIV infection,
where the clinical presentation and severity can vary by cause
and the presence of comorbidities. Classifying patients beyond
their traditional risk factors using a biomarker-generated
‘phenotype’ could improve diagnosis and determination of
prognosis. In this study, we utilized an unsupervised cluster ap-
proach (i.e. uninformed by the outcome variable) to group par-
ticipants based on the results of multiple urine biomarkers of
tubular injury and function, and we replicated these methods
using three versus eight biomarkers. Our goal was to identify
a parsimonious set of markers to obtain maximum utility
from the multiple urine biomarkers. We hypothesized that in
combination, a complementary, parsimonious set of biomar-
kers would improve prediction above readily available, trad-
itional kidney risk factors and HIV-related risk factors.

MATERIALS AND METHODS

Study population

The WIHS is an ongoing multicenter, prospective cohort
study that enrolled 3067 HIV-infected and 1070 HIV-uninfect-
ed women from six US locations: Bronx, Brooklyn, Chicago,
Los Angeles, San Francisco and Washington, DC in 1994–95,
2001–02 and 2011–12. Details of study design, data collection
methods and baseline characteristics are published elsewhere
[8, 9]. Participants undergo semiannual visits that include an
interviewer-administered questionnaire, a physical examin-
ation and collection of laboratory specimens.

TheWIHS Kidney Aging Study was designed as a nested co-
hort study (from the original 1994–95 cohort) to investigate the
onset of kidney disease in the setting of HIV infection, utilizing
stored urine and serum specimens. Characteristics of the ori-
ginal cohort, which tended to have worse disease characteristics
and less HAART use compared with the later cohorts, are de-
scribed elsewhere [10]. The baseline visit for this ancillary study
was conducted from October 1999 to March 2000. One thou-
sand HIV-infected and 250 uninfected women were included.
Of these women, 450 were sampled from the WIHS bone sub-
study and 800 were selected at random including age-/race-
matched uninfected controls. There were no exclusions based

on race or ethnicity. This analysis included HIV-infected
women exclusively. For this study, 908 HIV-infected women
who had stored urine available and at least one follow-up visit
were included. Six participants with missing urine biomarker
measurements were excluded from the present analysis, leaving
a final sample size of 902 HIV-infected women.

The institutional review boards of participating institutions
approved the study protocol at all WIHS study sites, and in-
formed consent was obtained from all study participants.
This study of kidney injury was also approved by the University
of California, San Francisco, San Francisco VA Medical Center
and Yale committees on human research.

Urine biomarkers

Urine kidney injury biomarkers measured in this study
included: ACR, interleukin 18 (IL-18), neutrophil gelatinase-
associated lipocalin (NGAL), kidney injury molecule-1
(KIM-1), liver fatty acid-binding protein (L-FABP), α-1-acid-
glycoprotein (AAG), α-1-microglobulin (α1m) and N-acetyl-
β-D-glucosaminidase (NAG). All urinary biomarkers were
measured at the Cincinnati Children’s Hospital Medical Center
Biomarker Laboratory. Urine α1mwas measured by a commer-
cially available assay (Siemens BNII Nephelometer; Siemens,
Munich, Germany). Urine NAG activity was measured using
a colorimetric assay (Roche Diagnostics) as described in detail
elsewhere [11]. Urine KIM-1 was measured using a commer-
cially available ELISA (R&D Systems, Inc., Minneapolis, MN,
USA) [12]. Urine albumin and creatinine were measured by im-
munoturbidimetry and colorimetric enzyme assay, respectively,
using a Siemens Dimension Xpand plus HM clinical analyzer
(Siemens). Urine IL-18 was measured using a commercially
available ELISA kit (Medical and Biological Laboratories Co.,
Nagoya, Japan). Urine NGAL was assayed using a human-
specific commercially available ELISA kit (AntibodyShop, Grus-
bakken, Denmark) [13]. Urine L-FABP was measured using a
commercially available ELISA kit (CMIC Co., Tokyo, Japan) as
permanufacturer’s instructions. Urine AAGwasmeasured using
an ELISA kit (Human Orosomucoid ELISA Quantitation Kit;
Genway Biotech, Inc., San Diego, CA, USA).

All urine specimens were in continuous storage at −80°C
without prior freeze–thaw. Laboratory personnel were blinded
to clinical information about the participants, includingHIV sta-
tus, and specimens were evaluated in random order. Coefficients
of variation (CVs) for the urinemeasures based on replicate sam-
ples were: α1m, 5.2%; KIM-1, 5.2%; albumin, 5.9%; creatinine,
4.1%; IL-18, 7.2%; NGAL, 5.4%; L-FABP, 8.9%; AAG, 8.5%.

Forty percent of participants had undetectable urine α1m
(<0.6 mg/dL), and the distribution among thosewith detectable
α1m was right-skewed. Because of the left-censored nature of
this data, we analyzed α1m using different approaches: as a di-
chotomized variable (detectable or undetectable), as a log-
transformed continuous variable (replacing below detectable
values with the limit of detection) and as an ordinal variable
with three categories of urine α1m.

Outcomes

Kidney function was estimated using the CKD-EPI equation
for serum cystatin C (eGFRCys), as in our prior studies [14, 15].
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We chose a priori to estimate GFR by cystatin C rather than cre-
atinine, because it is less susceptible to bias by muscle mass and
health status [16]. Cystatin C was measured centrally at the
UCLA Clinical Immunology Research Laboratory using a
particle-enhanced immunoturbidimetric assay (Gentian,
Moss, Norway), which has been calibrated against the new
World Standard Reference material ERM-DA471/IFCC [14].
The assay was run concurrently from all three clinic visits, min-
imizing concerns for drift in the assay over time. Intra-assay
CVs, based on 10 replicates, were <2% at serum concentrations
of 0.7 and 1.1 mg/L. Inter-assay CVs were 4.4 and 3.9% at
serum concentrations of 0.8 and 2.2 mg/L, respectively.

The primary outcomes of this study were incident CKD (de-
fined as eGFRCys <60 mL/min/1.73 m2 at either of two follow-
up visits among HIV-infected women with baseline eGFRCys

≥60 mL/min/1.73 m2) and all-cause mortality. Median follow-
up time for incident CKDwas 7.9 years, during which 177 cases
of CKD occurred. For incident CKD cases, median eGFRCys

was 79 [interquartile range (IQR): 71–88] at baseline and 52
(IQR: 43–59) at follow-up. As a sensitivity analysis, we defined
incident CKD using eGFR by creatinine, calculated using the
CKD-EPI equation [17] as eGFR <60 mL/min/1.73 m2 at any
two consecutive visits within 8 years after baseline. Vital status
was ascertained over 8 years of follow-up, during which 128
deaths occurred. Vital status and date of death were determined
using the National Death Index and data from medical records
and providers. Detailed methods have been described in prior
studies [18–20].

Statistical analysis

The goal of our clustering procedure was to simplify the data
from eight distinct biomarkers to partition subjects into a small
number of groups based on the totality of biomarker informa-
tion. This grouping was based solely on the aggregate biomarker
data and was separate from clinical characteristics or subse-
quent outcomes. We first examined unadjusted Spearman cor-
relations between markers. We then performed unsupervised
group-based clustering of biomarkers by adopting the group-
based trajectory approach used by Jones andNagin [21] for lon-
gitudinal outcomes. While Jones and Nagin grouped repeated
measures over time into different trajectory patterns, here we
grouped multiple biomarkers into clusters according to their
joint response pattern. Groups of participants having similar
biomarker patterns can be identified as clusters. This method
has the advantage of allowing biomarkers to be clustered
based on unspecified, distinct patterns (e.g. low level in one bio-
marker and high level in other) instead of grouping only similar
biomarkers into the same cluster.

Because the urine biomarkers were right-skewed, we
log-transformed each marker to normalize its distribution.
Clusters were constructed using SAS Proc NLMIXED, using
the Bayesian Information Criteria to guide the selection of the
numberof clusters. Clusters were derived using biomarker values,
independent of the study outcomes or other clinical information.
We first used all eight biomarkers to construct clusters. We then
identified a parsimonious set of biomarkers to construct clusters,
defining the three most distinguishing biomarkers as those with
the highest ratio of between- to within-group variance in

biomarker levels. The final stratification into three clusters was
based on the three most distinguishing biomarkers.

Baseline clinical and demographic characteristics were com-
pared across clusters using χ2 and Kruskal–Wallis tests for cat-
egorical and continuous variables, respectively. As in our
previous studies, relative risk regression (using a modified Pois-
son approach) and Cox proportional hazards regression were
used to examine associations with incident CKD and all-cause
mortality, respectively [5]. Covariates from the baseline exam-
ination included age, ethnicity, smoking, hypertension, dia-
betes, CD4 count, HIVRNA and hepatitis C (defined as HCV
antibody positive, excluding those who resolved their HCV in-
fection by HCVRNA testing). Additionally, we included base-
line eGFR by cystatin as a covariate in models of mortality. We
calculated risk ratios for each outcome using Cluster 1 as the
reference category. Women with eGFRCys <60 mL/min/1.73 m2

at baseline were excluded from the incident CKD analysis.
We assessed model performance using discrimination, cali-

bration, Nagelkerke’s R2 (for overall performance) and net re-
classification index (NRI) [22]. For survival models, Harrell’s c
was used to assess discrimination [23]. Three-category NRI was
calculated using tertiles of predicted risk to compare changes in
risk categories. All analyses were conducted using SAS version
9.4 (SAS Institute, Inc., Cary, NC, USA).

RESULTS

In unadjusted analysis, the urine biomarkers were moderately
intercorrelated, although most measures had correlation coeffi-
cients of 0.6 or less (Figure 1). The strongest correlation was be-
tween α1m andAAG (r = 0.70), and theweakest correlationwas
between KIM-1 and ACR (r = 0.01). The final clusters were de-
rived using NAG, KIM-1 and α1m, as they had the highest ratio
of between- to within-group variance. A comparison of levels of
these three markers found that NAG and KIM-1 weremost able
to distinguish Cluster 1 fromClusters 2 and 3, whereas α1m ap-
peared to separate Cluster 3 from Clusters 1 and 2 (Figure 2).

We then compared baseline demographic and clinical char-
acteristics, stratified by cluster (Table 1). HIV-infected women
in Cluster 3 were older and more often African-American, cur-
rent smokers and hypertensive compared with those in Cluster
1. Markers of worse HIV infection status were seen in Cluster 3,
including lower CD4 counts and lower body mass index (BMI),
more detectable viremia and albuminuria, and less HAART
use. Lower waist circumference, more frequent history of
AIDS and coinfection with hepatitis C, and lower eGFRCys

were also more prevalent in Cluster 3.
There was a progressive increase in all biomarker levels by

cluster, although only three (NAG, α1m and KIM-1) were
used to derive the clusters (Table 1). Cluster 2 had intermediate
levels for six of the eight biomarkers; however, α1m and ACR
levels were similar in Clusters 1 and 2.

We then used our biomarker-derived clusters to examine as-
sociations with incident CKD. Median follow-up time for inci-
dent CKD was 7.9 years, during which 177 cases of CKD
occurred. Rates of incident CKDwere lowest in Cluster 1, inter-
mediate in Cluster 2 and highest in Cluster 3 (Table 2). In
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unadjusted analysis, we found that Cluster 2 was associated
with a 67% higher risk of CKD, whereas being in Cluster 3
was associated with a 4-fold higher risk of developing CKD
compared with being in Cluster 1. After multivariable adjust-
ment for traditional kidney risk factors andHIV-related factors,
we found that both clusters remained associated with a higher
risk of CKD compared with being in Cluster 1.

Next, we used biomarker-derived clusters to examine asso-
ciations with all-cause mortality. A total of 128 deaths occurred
over a median of 7.9 years of follow-up. Rates of all-cause mor-
tality were also lowest in Cluster 1, intermediate in Cluster 2 and
highest in Cluster 3. After multivariable adjustment for trad-
itional kidney risk factors and HIV-related factors, we found
that Cluster 2 was associated with a marginally higher risk of
mortality, whereas being in Cluster 3 was associated with a
>2-fold risk of mortality compared with being in Cluster 1. Re-
sults for both CKD and mortality were similar in alternative
models in which we constructed clusters using all eight biomar-
kers instead of just the most distinguishing three biomarkers
(Supplementary data, Table S1).

We next assessedmeasures of overall fit, discrimination, cali-
bration and reclassification for multivariable models with and
without the novel urine biomarkers and cluster variable
(Table 3). For incident CKD, model discrimination was signifi-
cantly improved by adding the cluster variable to the traditional

model (c = 0.72–0.76, P = 0.0029). At a false-positive rate of
20%, the true-positive rate improved by 7.9% with the addition
of the clusters (Figure 3). Overall model fit was also increased
(R2 = 0.15–0.21). Models incorporating individual biomarkers
(analyzed continuously) instead of the categorical cluster vari-
able had performances that were similar to or slightly weaker
than the cluster variable.

Net reclassification improvement for CKD was 11.2% (P =
0.006, Table 4). Of the 177 CKD cases in this study, we found
that addition of the categorical cluster variable to the model al-
lowed us to identify an additional 27 patients (15%) as high risk
who would otherwise have been missed by the traditional
model. However, 14 of the 177 cases (7.9%) were inappropriate-
ly reclassified as lower risk when the biomarker cluster was in-
cluded in the model. Although the Hosmer–Lemeshow
goodness-of-fit test was indicative of good calibration (P =
0.80), a plot of predicted versus actual probability of CKD sug-
gested that calibration was somewhat worse at higher probabil-
ities (Supplementary data, Figure S1).

For all-cause mortality, model discrimination was only mar-
ginally improved by adding the cluster variable to the tradition-
al model (c = 0.79–0.80, P = 0.099). Overall model fit increased
marginally from R2 = 0.27–0.28, and net reclassification im-
provement was 3.6%. Models incorporating individual biomar-
kers (analyzed continuously) instead of the cluster variable

F IGURE 1 : Correlations of urine biomarkers among HIV-infected women.

F IGURE 2 : Comparison of distinguishing urine biomarkers by cluster membership. (A) Scatterplot shows separation of Cluster 1 fromClusters 2
and 3 by NAG and KIM-1. (B) Scatterplot shows separation of Cluster 3 from Clusters 1 and 2 by NAG and α1m. Note that clusters were derived
from NAG, KIM-1 and α1m, independent of study outcomes.
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Table 1. Baseline characteristics of HIV-infected women, stratified by biomarker-derived cluster

Parameter Biomarker-derived clustera P-value

1 (N = 301) 2 (N = 470) 3 (N = 131)

Baseline age (years) 40 (36–45) 41 (36–45) 43 (38–48) 0.0003
African-American 152 (50%) 272 (58%) 94 (72%) <0.0001
Current smoking 130 (43%) 239 (51%) 90 (69%) <0.0001
Diabetes mellitus 28 (9%) 42 (9%) 16 (12%) 0.52
Hypertension 54 (18%) 125 (27%) 46 (35%) 0.0004
LDL (mg/dL) 106 (83–132) 104 (80–134) 93 (69–130) 0.067
HDL (mg/dL) 45 (36–58) 43 (35–54) 44 (32–56) 0.079
Triglycerides (mg/dL) 130 (87–188) 132 (94–196) 139 (97–200) 0.54
BMI (kg/m2) 26 (23–31) 27 (24–32) 25 (22–29) 0.0005
Waist circumference (cm) 87 (80–96) 89 (80–101) 86 (77–97) 0.0060
Current HAART use 186 (62%) 280 (60%) 62 (47%) 0.016
Current CD4 443 (274–622) 414 (254–581) 284 (161–441) <0.0001
Nadir CD4 230 (117–340) 220 (120–330) 163 (77–281) 0.0012
History of AIDS 125 (42%) 228 (49%) 88 (67%) <0.0001
Detectable HIV RNA 204 (68%) 315 (67%) 109 (83%) <0.0001
Hepatitis C 72 (24%) 147 (32%) 58 (45%) <0.0001
eGFRCys 96 (85–110) 87 (75–105) 71 (58–85) <0.0001
Albuminuria 46 (15%) 106 (23%) 60 (46%) <0.0001
Urine biomarkers
NAG (mU/mL)a 0.9 (0.5–1.3) 3.2 (2.2–4.5) 7.0 (4.6–11.0) <0.0001
α1m (ng/mL)a 0.6 (0.6–0.6) 0.8 (0.6–1.5) 4.4 (3.2–7.2) <0.0001
KIM-1 (pg/mL)a 199 (109–291) 678 (439–1042) 1036 (648–1669) <0.0001
IL-18 (pg/mL) 59 (34–108) 148 (84–262) 249 (152–411) <0.0001
NGAL (ng/mL) 20 (10–45) 41 (21–85) 68 (36–129) <0.0001
ACR (mg/g) 10 (6–17) 9 (5–19) 24 (10–85) <0.0001
L-FABP (ng/mL) 1.9 (0.5–4.1) 5.6 (2.9–9.9) 15.0 (6.8–30.2) <0.0001
AAG (µg/mL) 1.2 (0.6–2.8) 3.2 (1.2–6.6) 22.4 (7.4–38.6) <0.0001

Data are presented as median (IQR) or numbers (percent).
LDL, low-density lipoprotein; HDL, high-density lipoprotein; NAG, N-acetyl-β-D-glucosaminidase; α1m, α-1-microglobulin; KIM-1, kidney injury molecule-1; IL-18, interleukin 18;
NGAL, neutrophil gelatinase-associated lipocalin; ACR, albumin-to-creatinine ratio; L-FABP, liver fatty acid-binding protein; AAG, α-1-acid-glycoprotein.
aClusters were derived using NAG, α1m and KIM-1, independent of study outcomes.

Table 2. Association of biomarker-derived clustera with incident CKD
and all-cause mortality among HIV-infected women

Outcome Cluster 1
(n = 289)

Cluster 2
(n = 435)

Cluster 3
(n = 94)

Incident CKDb

Event rate 13% 21% 50%
Unadjusted risk

ratio (95% CI)
Reference 1.67 (1.18, 2.37)

P = 0.0042
3.91 (2.72, 5.61)
P < 0.0001

Adjusted risk ratio
(95% CI)

Reference 1.59 (1.13, 2.25)
P = 0.0076

2.89 (1.97, 4.25)
P < 0.0001

Cluster 1
(n = 301)

Cluster 2
(n = 470)

Cluster 3
(n = 131)

All-cause mortality
Event rate 7.3% 13% 34%
Unadjusted

hazard ratio
(95% CI)

Reference 1.85 (1.14, 3.01)
P = 0.013

5.38 (3.22, 8.97)
P < 0.0001

Adjusted hazard
ratio (95% CI)

Reference 1.51 (0.92, 2.47)
P = 0.10

2.79 (1.62, 4.81)
P = 0.0002

Adjusted models control for age, race, hypertension, diabetes mellitus, hepatitis C virus
infection, HIV viral load and CD4 lymphocyte count. Mortality models adjust additionally
for eGFR calculated using cystatin C.
CI, confidence interval; CKD, chronic kidney disease.
aClusters were derived using NAG, α1m and KIM-1.
bEighty-four of the 902 participants had CKD at baseline, leaving 818 available for analysis
of incident CKD.

Table 3. Comparison of model performance for incident CKD and all-cause
mortality among HIV-infected women

Outcome Overall
fit (R2)

Discrimination
(c)

Incident CKD
Traditional model (without biomarkers) 0.15 0.72 P = 0.0029
Traditional model + clustera 0.21 0.76
Traditional model + ACR 0.18 0.73
Traditional model + NAG 0.20 0.75
Traditional model + α1m 0.19 0.75
Traditional model + KIM-1 0.18 0.74
Traditionalmodel + eight-marker cluster 0.21 0.75
Traditional model + all eight markers 0.24 0.77

All-cause mortality
Traditional model (without biomarkers) 0.25 0.78 P = 0.18
Traditional model + clustera 0.26 0.79
Traditional model + ACR 0.25 0.78
Traditional model + NAG 0.26 0.78
Traditional model + α1m 0.26 0.78
Traditional model + KIM-1 0.26 0.79
Traditionalmodel + eight-marker cluster 0.25 0.78
Traditional model + all eight markers 0.28 0.79

Traditional models control for age, race, hypertension, diabetes mellitus, hepatitis C virus
infection, HIV viral load and CD4 lymphocyte count. Mortality models adjust additionally
for eGFR calculated using cystatin C.
CKD, chronic kidney disease; R2, Nagelkerke R-squared coefficient of determination is
useful for comparing non-nested models; c, c-statistic.
aClusters were derived using NAG, α1m and KIM-1.
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(which was categorical) had performances that were similar to
the cluster variable. We also examined associations of individ-
ual biomarkers with both CKD and mortality. Biomarkers used
to derive the cluster variable are shown in Supplementary data,
Table S2, along with ACR, an established marker of glomerular
injury. Each biomarker was individually associated with an in-
creased risk of CKD and mortality, even after controlling for
traditional and HIV-related risk factors.

In a separate analysis, we defined CKD using serum creatin-
ine instead of cystatin C to calculate eGFR (Supplementary
data, Table S3). Although the overall event rate was lower
using this alternative definition (11.5% instead of 21.6%), we
still found that rates of incident CKD were lowest in Cluster 1,
intermediate in Cluster 2 and highest in Cluster 3. In unadjust-
ed analysis, we found that Cluster 3 was associated with a
3.6-fold higher risk of developing CKD compared with being
in Cluster 1. After multivariable adjustment for traditional kid-
ney risk factors and HIV-related factors, Cluster 3 remained

associated with a 3.3-fold higher risk of CKD compared with
being in Cluster 1.

DISCUSSION

We investigated the use of urine biomarker-derived clusters for
predicting incident CKD and all-cause mortality in 902 HIV+
women. We used the three most distinguishing markers (NAG,
KIM-1 and α1m) to classify participants into separate clusters,
without incorporating any clinical information. We then used
these clusters to predict CKD and mortality, and found that
event rates were highest in Cluster 3 and lowest in Cluster 1. Par-
ticipants classified into Cluster 3 had more comorbidities and
worse HIV-related characteristics at baseline. Relative to those
who were in Cluster 1, those in Cluster 3 had 4-fold higher rates
of incident CKD (50 versus 13%) and all-cause mortality (41
versus 10%). Although the new cluster variable only moderately

F IGURE 3 : Comparison of receiver operator characteristic curves for (A) incident CKD and (B) all-cause mortality. Red line denotes traditional
model and black line denotes traditional model plus biomarker cluster. Traditional models control for age, race, hypertension, diabetes mellitus,
hepatitis C virus infection, HIV viral load and CD4 lymphocyte count. Mortality model adjusts additionally for eGFR calculated using cystatin
C. (A) At a false positive rate (FPR) of 20%, the true positive rate (TPR) is 55.4% with the biomarker cluster versus 47.5% without the biomarker
cluster. Overall c-statistic is 0.76 with the biomarker cluster and 0.72 without the biomarker cluster. (B) Overall c-statistic is 0.80 with the biomarker
cluster and 0.79 without the biomarker cluster.

Table 4. Use of biomarker-derived clustersa to improve net reclassification of study outcomes

Incident CKDb All-cause mortality

Participants with event 177 169
Appropriately reclassified (as higher risk) 27 (15.3%) 10 (5.9%)
No change 136 (76.8%) 154 (91%)
Inappropriately reclassified (as lower risk) 14 (7.9%) 5 (3.0%)
NRI (95% CI), cases 7.3% (0.3%, 14.4%), P = 0.042 3.0% (−1.5%, 7.5%), P = 0.20

Participants without event 641 733
Inappropriately reclassified (as higher risk) 69 (10.6%) 36 (4.9%)
No change 480 (74.9%) 656 (90%)
Appropriately reclassified (as lower risk) 93 (14.5%) 41 (5.6%)
NRI (95% CI), non-cases −3.9% (−7.8%, 0.0%), P = 0.049 −0.7% (−3.0%, 1.7%), P = 0.57

Overall NRIc (95% CI) 11.2% (3.2%, 19.3%), P = 0.0064 3.6% (−1.4%, 8.7%), P = 0.16

Traditional models control for age, race, hypertension, diabetes mellitus, hepatitis C virus infection, HIV viral load and CD4 lymphocyte count. Mortality model adjusts additionally for
eGFR calculated using cystatin C.
CKD, chronic kidney disease; NRI, net reclassification improvement.
aClusters were derived using NAG, α1m and KIM-1.
bEighty-four of the 902 participants had CKD at baseline, leaving 818 available for the analysis of incident CKD.
cThree-categoryNRI calculated using tertiles of predicted risk to compare changes in risk categories.Models compared are traditional model versus traditionalmodel plus biomarker cluster.
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improved model discrimination for CKD risk compared with a
model containing traditional risk factors, the cluster was inde-
pendently associated with each study outcome.

We previously reported that urine α1m is independently as-
sociated with kidney function decline and mortality risk [5],
even after controlling for other urine biomarkers including
ACR, IL-18, KIM-1 and NGAL. In this analysis, we found
that our cluster variable had strong, independent associations
with both incident CKD and all-causemortality.While individ-
ual biomarkers also showed statistically significant associations
with CKD and mortality, an advantage of our cluster-based
analysis is that it allows partitioning of subjects into discrete
categories of risk. To our knowledge, this is the first study to
use biomarker-based cluster analysis to predict CKD and mor-
tality in the setting of HIV infection. The Framingham Off-
spring Study found that a seven-biomarker panel that
included homocysteine and aldosterone was associated with in-
cident CKD and microalbuminuria; rather than using clusters,
this study created scores with the median value of each bio-
marker to define the cutpoint for high risk [24].

A recent study of heart failure patients used phenotype data
(67 variables including electrocardiogram, echocardiography,
clinical and laboratory measures) to cluster patients into three
distinct risk categories, and the authors found strong associa-
tions with clinical outcomes [25]. In contrast, our study used
biomarkers alone to define the clusters, so that we could distin-
guish and evaluate the biomarkers’ ability to stratify patients
into distinct risk categories. Although the clusters’ prediction
ability would certainly improve if they were comprised of bio-
markers combined with clinical risk factors, our goal was to
evaluate urine biomarkers in isolation to measure their incre-
mental contribution. An advantage of using biomarkers from
just one sample type (i.e. urine) is that the selected panel can
be used to develop a multiplex assay, such as the Meso Scale
Discovery (MSD) array, which has advantages of both effi-
ciency and enhanced precision over individual ELISAs. Multi-
plex assays could be used to facilitate clinical applicability,
providing a simple, clinically relevant message to clinicians
and patients about the risk of disease.

Our results illustrate the strengths and limitations of the use
of urine biomarkers for the prediction of kidney disease and
mortality in the setting of HIV infection. Our novel cluster
method allowed us to select a relevant trio from eight candi-
dates, independent of study outcomes.We found that our three-
marker cluster, which was a categorical variable, was as good as
or better than any individual biomarker, and as strong as the
totality of eight. A strength of this approach is that clusters
can define useful groups of patients, and can mitigate the pro-
blems of multicollinearity [26] that may arise with the inclusion
of multiple correlated measures in a multivariable regression
model. Although our results have not yet been validated in an
external cohort, our work serves as a prototype for future bio-
marker studies. We envision that clinicians will be able to use
such a biomarker panel to determine the level of risk (low,mod-
erate or high) of an individual HIV-infected patient for chronic
kidney disease and early mortality. This biomarker panel could
be repeated to provide updated information on a patient’s kid-
ney health.

Our study includes several limitations. We were only able to
consider markers of proximal tubular injury and function, with
the exception of ACR (glomerular injury) and NGAL (maybe
distal or mixed proximal/distal). Markers that identify other as-
pects of nephron function and injury will need to be incorpo-
rated to allow better discrimination of risk [27]. Additional
work is needed to understand the role of nephrotoxic drugs,
such as tenofovir, and to validate in other cohorts. Our study
included only women, and little is known about associations
of urine biomarkers with kidney outcomes in HIV-infected
men. Urine biomarker measurements were made using samples
collected over a decade ago, and sample degradation due to the
length of freezer storage [28] may have increased measurement
error.Wewere unable to confirm diagnosis of CKD by two con-
secutive measures because only one serum sample was available
at each visit per participant: this may have weakened the speci-
ficity of our CKD diagnosis. However, we repeated our analysis
using serum creatinine, and found that our urine biomarker
cluster was strongly associated with CKD. Finally, there may
have been incomplete or inadequate control for factors that
may confound or mediate the association of elevations in
urine biomarkers with CKD and mortality.

In summary, we have shown that unsupervised cluster ana-
lysis (i.e. uninformed by the outcome variable) of urine biomar-
kers can identify distinct categories of risk and thereby
differentiate the risk of CKD and mortality. Future studies of
HIV-infected persons (including men) are needed to validate
these results. A broader array of candidate biomarkers (intersti-
tial fibrosis, distal tubule and collecting duct) may be needed to
improve discrimination potential. In the future, the use of bio-
marker panels could help inform the diagnosis and staging of
CKD, and may be used to identify patients who are at risk of
drug toxicity.

SUPPLEMENTARY DATA

Supplementary data are available online at http://ndt.oxford-
journals.org.
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