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A path-based measurement 
for human miRNA functional 
similarities using miRNA-disease 
associations
Pingjian Ding, Jiawei Luo, Qiu Xiao & Xiangtao Chen

Compared with the sequence and expression similarity, miRNA functional similarity is so important 
for biology researches and many applications such as miRNA clustering, miRNA function prediction, 
miRNA synergism identification and disease miRNA prioritization. However, the existing methods 
always utilized the predicted miRNA target which has high false positive and false negative to calculate 
the miRNA functional similarity. Meanwhile, it is difficult to achieve high reliability of miRNA functional 
similarity with miRNA-disease associations. Therefore, it is increasingly needed to improve the 
measurement of miRNA functional similarity. In this study, we develop a novel path-based calculation 
method of miRNA functional similarity based on miRNA-disease associations, called MFSP. Compared 
with other methods, our method obtains higher average functional similarity of intra-family and intra-
cluster selected groups. Meanwhile, the lower average functional similarity of inter-family and inter-
cluster miRNA pair is obtained. In addition, the smaller p-value is achieved, while applying Wilcoxon 
rank-sum test and Kruskal-Wallis test to different miRNA groups. The relationship between miRNA 
functional similarity and other information sources is exhibited. Furthermore, the constructed miRNA 
functional network based on MFSP is a scale-free and small-world network. Moreover, the higher AUC 
for miRNA-disease prediction indicates the ability of MFSP uncovering miRNA functional similarity.

In recent years, more and more researchers pay attention to measure miRNA functional similarity in biology 
research, since it is very important for many applications such as miRNA clustering1, miRNA function prediction2,  
miRNA synergism identification3–6, miRNA-mRNA interaction inference7 and disease miRNA prioritization8–13. 
Although miRNA similarity could be calculated based on miRNA sequence or expression data6,14, functional 
similarity is more beneficial to fully understand the functions and biological roles of miRNA15.

In previous studies, some computational approaches based on miRNA-target associations were developed for 
studying miRNA functional similarity. Shalgi et al.16 utilized Jaccard similarity method to quantify the functional 
similarity of two miRNAs based on their common target genes. However, most of miRNA functional similarities 
using the Jaccard similarity measurement are zeros, because there is no intersection among the target gene sets of 
most human miRNAs17,18. Yu et al.19 systematically measured the functional similarity of miRNA pair using GO 
annotation of their target genes. Sun et al.20 calculated the miRNA functional similarity based on miRNAs targeting 
propensity and proteins connectivity in the integrated protein-protein interaction network. Xu et al.21 combined 
the site accessibility and the interactive context of target genes in functional gene networks, which was constructed 
with semantic similarity weights generated from the GO terms of the target genes, to infer the functional similar-
ity of miRNA pair. Meng et al.22 proposed a method, called PPImiRFS, for calculating the functional similarity of 
plant miRNAs inferred from similarity of their target gene sets. PPImiRFS firstly constructed a protein-protein 
interaction network using the gene semantic similarity by GOSemSim23 and then quantified the functional 
similarity of target pair based on the shortest paths. A modified best-match average method was employed to 
calculate the functional similarity of miRNA pair using the predicted miRNA gene24. In addition, Xu et al.3  
defined miRNA synergistic pair which significantly related to at least one co-regulating functional module estab-
lished by a protein-protein interaction network25,26. Nevertheless, this method could not measure the level of 
miRNA similarity, since the calculated similarities are only 0 or 1. Moreover, the above methods always make use 

College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, China. 
Correspondence and requests for materials should be addressed to J.L. (email: luojiawei@hnu.edu.cn)

received: 10 May 2016

accepted: 04 August 2016

Published: 02 September 2016

OPEN

mailto:luojiawei@hnu.edu.cn


www.nature.com/scientificreports/

2Scientific Reports | 6:32533 | DOI: 10.1038/srep32533

of the predicted miRNA target which has high false positives and false negatives. It makes these methods difficult 
to obtain high reliability for miRNA functional similarity. So, Liu et al.27 integrated the miRNA-target association, 
the lncRNA-disease association and the miRNA-lncRNA association to quantify the miRNA similarity. However, 
there is informative subtype information of disease verified by expertise in the US National Library of Medicine28. 
Furthermore, lncRNA-disease associations are always utilized to calculate lncRNA functional similarity in many 
methods29–31 and the density of miRNA-disease associations validated by biology experiment is greater than that 
of miRNA target in human. Therefore, Wang et al.32 utilized human miRNA-disease associations to compute the 
functional similarity scores based on the supposition that similar miRNAs tend to be associated with similar 
diseases, named MISIM. In this method, an inferring GO term similarity algorithm was applied to measure the 
semantic similarity of diseases structured as directed acyclic33, and then the miRNA functional similarity was 
inferred by best-match average (BMA) method. Moreover, Xuan et al.34 improved the calculation of information 
content (IC) of diseases based on the intuition that the more general the disease term is and the less semantic 
contribution it has, which ensure higher reliability of semantic similarity of disease. Similarly, BMA method was 
employed to quantify the miRNA functional similarity based on disease similarity. However, these methods using 
miRNA-disease associations, namely based on BMA method, did’nt consider the topology of disease semantic 
network. Furthermore, path-based similarity measurements have been successfully applied on various types of 
relationship data35,36. Therefore, an efficiently path-based method is required to measure miRNA functional sim-
ilarity using miRNA-disease associations.

In this study, we designed a method, called MFSP (MiRNA Functional Similarity based on Path), to infer 
the functional similarity of miRNA pair using miRNA-disease associations. To validate MFSP, we compared it 
with two other state-of-the-art methods based on disease-related miRNAs, namely Wang’s method32 and Xuan’s 
method34, with functional similarity scores of intra-family, inter-family, intra-cluster and inter-cluster miRNA 
pairs. Meanwhile, the lower p-value was obtained while applying Wilcoxon rank-sum test and Kruskal-Wallis test 
on different miRNA groups. Furthermore, it was verified that the positive correlation is between the expression 
similarity and the functional similarity. The negative effect of distance of genome coordinate was exhibited for 
functional similarity. In addition, the effect of varying parameters was analyzed. For formed miRNA network 
based on miRNA functional similarity, it is scale-free network and small world network. The higher AUC was 
achieved while MIDP9 was applied to the miRNA network constructed by MFSP. Moreover, a Cosine Similarity 
of Disease, named CSD, was developed to improve the reliability of dieasese semantic similarity. To validate CSD, 
the different similarity calculation methods of disease and BMA method for miRNA functional similarity calcu-
lation were combined to compare performance.

Results
Design of experiment.  MFSP was developed to infer miRNA functional similarity by combining subtype 
information of disease obtained from MeSH (http:www.ncbi.nlm.nih.gov/)28 and the known miRNA-disease 
associations provided by HMDD37. In the MFSP method, first, the semantic similarity of disease is calculated 
based on subtype information of disease. Then, unlike the Wang’s method32 and Xuan’s method34 which are only 
consider the direct neighbor diseases of miRNA, MFSP measures the miRNA functional similarity based on the 
topology of disease network constructed by semantic similarity of disease. Furthermore, functional similarities 
of all miRNA pairs are provided in Supplementary Material 1. The performance of MFSP was evaluated by aver-
age similarity of different miRNA groups and p-value obtained by Wilcoxon rank-sum test and Kruskal-Wallis 
test. The relationships between other biology informations and miRNA functional similarity were exhibited. The 
results of predicting disease-related miRNAs were compared. In addition, we analyzed the effect of parameters 
and constructed miRNA network based on miRNA functional similarity calculated by MFSP.

Performance.  The miRNA-disease associations dataset of human used in the experiment can be downloaded 
from HMDD37. The latest version of HMDD (updated in 2015) includes 330 diseases which contained in the US 
National Library of Medicine (MeSH) and their associated 574 miRNAs (Supplementary Material 2). After a 
comprehensive exploration, the performances of MFSP and the existing methods are compared intuitively while 
parameters a =​ 0.6 and b =​ 5. A family of miRNAs exhibit sequence similarity and has completed identical seed 
regions. Therefore, miRNAs in the same family are likely to show high functional similarity. MiRNAs belonging to 
the same family are provided by RFam38. In order to measure the performance of MFSP, the human miRNAs are 
divided three classes: intra-family, inter-family and randomly selected miRNA group which included intra-family 
pairs and inter-family pairs (76 families that contain 534 miRNAs). The computed functional similarity scores 
are shown in Fig. 1(a). It can be seen that, in the intra-family selected miRNA groups, the functional similarity 
score calculated by MFSP is higher than that of Wang’s method32 and Xuan’s method34, which implemented with 
the same version of database. Meanwhile, the functional similarity score calculated by MFSP is lower than that of 
other methods in terms of inter-family groups.

In addition, we applied Wilcoxon rank-sum test and Kruskal-Wallis test22 implemented by Matlab to demon-
strate significant differences (Table 1). As shown in the Table 1, the functional similarity of intra-family group was 
significantly greater than that of inter-family (Wilcoxon rank-sum test; intra-inter family p-value =​ 0.00E-00). 
The result of Kruskal-Wallis test further clarified that our method is effective (p-value =​ 0.00E-00). Furthermore, 
the smaller p-value calculated by Wilcoxon rank-sum test between inter-family and randomly miRNA pairs con-
firmed that our method performed better than other methods.

In addition, to validate the advantage of CSD compared with other methods using disease DAG, we integrated 
CSD with BMA to infer the miRNA similarity since the difference between Wang’s method and Xuan’s method is 
disease similarity calculation and BMA was employed in the two methods for miRNA functional similarity. From 
Table 1, the lower p-value is obtained by CSD+​BMA, which demonstrates that CSD is more effective than two 
other methods on calculating the disease semantic similarity.

http://http:www.ncbi.nlm.nih.gov/
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Mature miRNAs in the same cluster tend to transcribe and express synchronously. Therefore, miRNAs with 
the higher functional similarity tend in the same cluster. Similarly, we selected 50 kb for genome coordinate data, 
which are downloaded from miRBase39, as a distance cutoff separated into three classes: intra-cluster, inter-cluster 
and randomly selected miRNA group which contained intra-cluster and inter-cluster pairs (77 clusters that 
include 574 miRNAs). The computed functional similarity of intra-cluster, inter-cluster and randomly miRNAs 
are shown in Fig. 1(b). Compared with other methods, the functional similarity of intra-cluster group obtained by 
MFSP is higher. The functional similarity of inter-cluster achieved by MFSP is lower than that of other methods 
simultaneously. Similarly, Wilcoxon rank-sum test and Kruskal-Wallis test were applied for intra-cluster group, 
inter-cluster group and randomly group to demonstrate significant differences (Table 2). The smaller p-values 
were obtained by MFSP based on Wilcoxon rank-sum test and Kruskal-Wallis test. It further demonstrated that 
the performance of MFSP is better than the calculated results of other methods. In addition, CSD+​BMA method 
also could receive lower p-value compared with Wang’s method and Xuan’s method for intra-cluster, inter-cluster 
and randomly groups, which indicated that CSD may be a better method for disease semantic similarity calcula-
tion using DAG of disease.

MiRNAs with similar functions tend to be located in the nearby genome coordinate. We grouped miRNAs 
into different clusters using distance cutoffs from 10 kb to 100 kb by a step of 10 kb. Then, the average functional 
similarity of intra-cluster miRNA pairs were calculated as shown in the Fig. 2(a). It can be seen that the functional 
similarity calculated by MFSP is negatively correlated with the distance of genome coordinate.

MiRNAs with similar functions are likely to act on the similar cellular components and relate to similar bio-
logical processes. Therefore, miRNA with similar functions tend to have similar expression profiles. The expres-
sion profiles of 345 miRNAs across 40 normal human tissues were obtained from the supplementary files of 
the paper by Liang et al.40. PCC (Pearson Correlation Coefficient) was used as the measurement for expression 
similarity of miRNAs. MiRNAs were grouped into different groups according the threshold value t. It ranges in 

Figure 1.  Similarity comparison for MFSP and other methods using miRNA family and miRNA cluster. 

Wilcoxon rank-sum test Kruskal-Wallis test

intra-inter intra-random inter-random Intra-inter-random

Wang’s method 0.00E-00 0.00E-00 1.30E-03 0.00E-00

Xuan’s method 0.00E-00 0.00E-00 1.10E-03 0.00E-00

CSD+​BMA 0.00E-00 0.00E-00 9.02E-04 0.00E-00

MFSP 0.00E-00 0.00E-00 1.94E-04 0.00E-00

Table 1.   P-values obtained by Wilcoxon rank-sum testing and Kruskal-Wallis testing functional similarity 
of the intra-family, inter-family and randomly selected miRNAs.

Wilcoxon rank-sum test Kruskal-Wallis test

intra-inter intra-random inter-random Intra-inter-random

Wang’s method 3.02E-211 3.23E-206 1.53E-02 1.17E-209

Xuan’s method 5.58E-223 1.15E-217 1.27E-02 2.23E-221

CSD+​BMA 4.46E-226 1.09E-220 1.20E-02 1.79E-224

MFSP 0.00E-00 0.00E-00 2.50E-03 0.00E-00

Table 2.   P-values obtained by Wilcoxon rank-sum testing and Kruskal-Wallis testing functional similarity 
of the intra-cluster, inter-cluster and ran-domly selected miRNAs.
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[0, 1] and the step is 0.05. Then, we calculated the average expression similarity of miRNA pairs whose functional 
similarity is higher than the threshold value t. As shown in Fig. 2(b), the functional similarity calculated by MFSP 
is positively correlated with expression similarity of miRNA. In addition, Pearson correlation coefficient (PCC) is 
employed to numerically demonstrate the relationship between the functional similarity and the miRNA expres-
sion similarity (R =​ 0.8792, P =​ 0.1551E-06 for MFSP; R =​ 0.866, P =​ 0.3919E-06 for Wang’s method; R =​ 0.8835, 
P =​ 0.1112E-06 for Xuan’s method). In respect of correlation coefficient, MFSP is similar to Xuan’s method and 
better than Wang’s method.

Parameter analysis.  Two issues about the maximum transferring times b and the weight ratio a are ana-
lyzed in the experiment for MFSP. MFSP was implemented varying the maximum transferring times b while the 
weight ratio a is 0.6. As can be seen in Fig. 3(a), the first few transfer times can effectively boost the similarity of 
miRNA pairs containing intra-family, inter-family, intra-cluster and inter-cluster pairs. In addition, the similar-
ity of miRNA pair is stabilized as the maximum transferring times increase to 5. In Supplementary Table 1, the 
p-value keeps decreasing expect b ≤​ 1 as the maximum transferring times gradually increase Table 3.

To test the impact of the weight ratio a, we vary the value of the weight ratio and set b =​ 5. Results were 
shown in Fig. 3(b), where it plotted the average similarity of miRNA pairs with different weight ratio. It can be 
seen that the average similarity of miRNA pairs included intra-family, inter-family, intra-cluster and inter-cluster 
pairs keeps getting growth as the weight ratio increase. Furthermore, these functional similarity scores for var-
ying weight ratio demonstrate significant differences based on Kruskal-Wallis test and Wilcoxon rank-sum test 
(Supplementary Table 2).

Construction of miRNA network.  We construct the miRNA functional network based on the criterion 
that an edge is added to link two miRNAs whose functional similarity is greater than 0.7. The threshold is set as 
0.7 based on three reasons. Firstly, the average functional similarity of miRNA pairs within 10 kb for genome 
coordinate is about 0.7. Secondly, while functional similarity of miRNA pair is greater than 0.75, its expression 
similarity raises slowly. Thirdly, while the threshold is 0.7 rather than 0.75, 85 more miRNAs are contained in the 
constructed network. The constructed miRNA network includes 422 nodes and 1794 edges and is visualized by 
Cytoscape (Fig. 4). As shown in Supplementary Figure 1, there are a large number of miRNA partners for a few 
miRNAs, whereas many miRNAs interact with few miRNA partners. A power law fitting is performed to demon-
strate that the node degree follows a power law with a slope of −​1.165 and R-squared is 0.676, as expected for a 
scale-free network (Supplementary Figure 1). Furthermore, the “Random Networks” plugin of Cytoscape41 is exe-
cuted to achieve the topological measurements and random networks. We find that the characteristic path length 

Figure 2.  The relationship between miRNA functional similarity and other information sources of miRNA. 
(a) The relationship between distance cutoff for identifying miRNA clusters and miRNA MFSP functional 
similarity. (b) The relationship between expression similarity and miRNA MFSP functional similarity.

Figure 3.  MFSP functional similarity with different maximum transferring times and weight ratio. 
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of 3.358 for the constructed miRNA functional network is similar to that of random graphs generated by the ER 
model (3.35035 ±​ 0.0231). Meanwhile, the higher average clustering coefficient of 0.595 is obtained compared 
the constructed network with random networks (0.1318098 ±​ 0.0060293), which demonstrate that the miRNA 
functional network is a small-world network42. In addition, the CFinder is implemented43 to infer cliques which 
are all of complete sub-graphs in the miRNA functional network. As shown in Supplementary Figure 2, with an 
increase in the value of k, the number of cliques is on rise peaking at 29598 while the k value is 7. However, the 
number of cliques decreases while the k value continues to grow. This phenomenon is according with a principle 
that the specific regulation is implemented by small clusters rather than individual or big modules.

Application.  In order to verify the effectiveness of MFSP comparing with other methods, MIDP9 which walks 
on the miRNA similarity network predicts miRNA-disease associations on miRNA network constructed by dif-
ferent methods (rQ =​ 0.4, rU =​ 0.1 for MIDP). We performed experiments using leave-one-out cross validation 
(LOOCV) scheme which is always used on prediction of miRNA-disease association13. In previous studies8–13, the 
area under the ROC44 curve (AUC) was employed as the main metric for performance evaluation. Five diseases 
with more than 160 related miRNAs were performed in the experiment (Melanoma, Hepatocellular Carcinoma, 
Breast Neoplasms, Colorectal Neoplasms, Stomach Neoplasms), since disease with a few miRNAs was not suffi-
cient to evaluate the prediction performance. As a result, our method achieved the average AUC of 0.95578 which 
is higher than that of other methods (Table 3). The performance of MFSP for all five diseases is superior to other 
methods except AUC of hepatocellular carcinoma calculated by Wang’s method. It indicated that our method 
is preferable for predicting miRNA-disease association based on miRNA similarity network. In addition, using 
MFSP rather than MISIM to calculate the miRNA functional similarity, results of other prediction methods (such 
as WBSMDA45 and KATZ46) may be improved.

Discussion
In this paper, we presented a path-based calculation method of the miRNA-miRNA functional similarity, called 
MFSP. It measured the miRNA functional similarity based on the paths among miRNA-related disease sets. The 
similarities of intra-family, inter-family, intra-cluster and inter-cluster miRNA groups were compared for MFSP 
and other state-of-the-art methods. The superior effectiveness of MFSP was verified by Wilcoxon rank-sum test 
and Kruskal-Wallis test. Furthermore, we demonstrated the negative correlation between distance of genome 
coordinate and miRNA functional similarity and the positive correlation between expression similarity and 
miRNA functional similarity. The constructed miRNA network based on functional similarity is a scale-free 
and small-world network. For application of miRNA-disease association prediction, MIDP could obtain higher 
AUC based on miRNA functional similarity calculated by MFSP. In addition, MFSP could be applied to calculate 
lncRNA functional similarity using lncRNA-disease associations29–31. It also could infer gene functional similarity 
based on GO terms33, which may contribute to the performance of predicting disease-related target47.

Moreover, we proposed a calculation for disease semantic similarity, called CSD, which transformed all struc-
tural disease data into attribute feature vector of disease and then calculated the semantic similarity by traditional 
cosine similarity. For experimental results, when CSD is employed rather than other calculation methods, results 
of BMA could be improved.

As future work, other biological information may contribute to further improve the reliability of miRNA 
functional similarity. For example, instead of using just miRNA-disease association, multiple associations includ-
ing miRNA-target association and miRNA-disease association may be used for miRNA functional similarity 
calculation.

Methods
Method Overview.  In this study, we presented a method, MFSP, to measure the functional similarity of 
miRNA pair. The flow chart of MFSP is shown in Fig. 5. First, the hierarchical structure about disease obtained 
from MeSH descriptor was transferred into features of diseases. Second, the semantic similarity of disease pair 
was calculated by cosine similarity and the disease similarity network was constructed. Third, the weight sum 
of paths among diseases was achieved based on the different transferring times respectively. Forth, the miR-
NA-miRNA path matrix was formed based on the weight sum of pathes among disease sets. Finally, we measured 
the functional similarity by miRNA-miRNA path matrix. Details of the procedures are given in the following 
sections.

Disease MFSP
Wang’s 
method

Xuan’s 
method

Melanoma 0.948 0.9467 0.9469

Hepatocellular Carcinoma 0.9674 0.9678 0.9671

Breast Neoplasms 0.9592 0.9589 0.9588

Colorectal Neoplasms 0.9608 0.9583 0.9578

Stomach Neoplasms 0.9435 0.9414 0.9402

Average AUC 0.95578 0.95462 0.95416

Table 3.   AUC of MIDP applied on miRNA functional similarity network constructed by different methods.
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Cosine Similarity of Disease (CSD).  The procedures of CSD are mainly composed of two steps: 1) attrib-
ute feature of disease is obtained; 2) cosine similarity is employed. Hierarchical DAG, in which the nodes repre-
sent diseases while the links represent relationship between nodes, is provided by the MeSH database (http:www.
ncbi.nlm.nih.gov/). Only one type of relationship which represents a child node connecting to a parent node is 
contained in the DAG. Each disease corresponds to one or more MeSH ID which numerically defines its location 
in MeSH graph. The codes of a child node are composed of the codes of its parent nodes and the child’s addresses. 
For instance as shown in Fig. 6, MeSH IDs: C06.301 and C04.588.274 are all corresponding to Digestive System 
Neoplasms. The entries on its parent nodes (Digestive System Diseases and Neoplasms by Site) have only MeSH 
ID: C06 and C04.588, respectively.

In order to apply the traditional methods (similarity measurement, classification and link prediction, and so 
on) in relational database, the relational structure are always transferred into attribute features of object48,49. In 
this study, we represent a disease d as a vector Vd of size ∗ D1 , where D  is the number of diseases in the MeSH 
database. The i-th element of Vd is defined as:

δ
=











− =

+
− ∈V i

if i th d

if i th the ancestor nodes of d

otherwise

( )

1
1

1
{ }

0 (1)

d

where δ is the shortest distance between i-th node, an ancestor node of d, and the disease d. Therefore, the shorter 
distance of the ancestor node from node d is, namely the more specific denomination of the ancestor node is, the 
higher value corresponding to the ancestor node will be. For example as shown in Fig. 6, Neoplasms (C04) is an 
ancestor node of Hepatocellular Carcinoma (C04.588.274.623.160, C04.557.470.200.025.255). The length of two 
paths from Neoplasms to Hepatocellular Carcinoma is 4 and 5, respectively. Therefore, the element of feature 
vector for Hepatocellular Carcinoma corresponding to Neoplasms is 1/(4 +​ 1) =​ 1/5. Based on the feature vector 

Figure 4.  MiRNA functional network constructed by miRNA functional similarity. 
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Figure 5.  The flow chart of MFSP. 

Figure 6.  Hierarchical DAG of Hepatocellular Carcinoma. 
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of each disease formed by equation (1), we then calculated the semantic similarity of disease pair di −​ dj by cosine 
similarity:

=
∗

‖ ‖
d d

V V
V V

CSD( , )
(2)

i j
di dj

T

di dj

where Vdi and Vdj are the feature vector of disease di and dj, respectively. The disease similarity network can be 
constructed via the semantic similarity of disease pair.

MiRNA functional similarity.  Many path-based similarity measurements are utilized in the relationship 
data and verified effectively35,36. To obtain the more accurate similarity of miRNA pair using paths between dis-
ease sets, we need to consider the topological structure of disease network and diseases related to these two miR-
NAs. Therefore, human miRNA-disease associations are downloaded from HMDD database updated in 201537, 
which contained 6197 distinct human miRNA-disease associations among 330 diseases, which are included in 
MeSH, and their related 574 miRNAs. Assumed that |M| and |D| denote the number of miRNAs and diseases in 
the HMDD respectively, matrix RMD of size ∗M D  represents the adjacency matrix of miRNA-disease associa-
tion, where the entry RMD(i, j) in the row i column j is 1 if miRNA i is related to disease j, 0 otherwise. Matrix SDD 
of size ∗D D  is the similarity matrix of disease and its element SDD(di, dj) represents the semantic similarity 
CSD(di, dj) of di −​ dj pair. In this study, we defined transferring matrix to describe the topological structure of the 
disease similarity network. Given the maximum transferring times b, transferring matrix Mi for each transferring 
times i is defined as follows:

= = …M S i b( ) 0, 1, 2 , (3)i DD
i

Assume that the weight of path is the product of weights of links on it, transferring matrix Mi (i denotes trans-
ferring times) is a symmetric matrix, whose each element representing the sum of the i-length path weight for 
the disease pair.

Here, we utilized the miRNA-miRNA path matrix P to describe the sum of weights of paths between disease 
sets related to miRNA pair. Since longer path utilized more remote relationships, it was assigned a smaller weight. 
The different transferring times on the disease similarity networks are combined with a weight ratio a to dampen 
the contributions from longer paths ( ∈a (0, 1]). Consequently, the miRNA-miRNA path matrix P is defined as 
follows:

= ∑

∑
=
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Based on the formula (4), we can see that a longer path namely larger transferring times may contribute less 
than a shorter path namely smaller transferring times. The element P(mi, mj) denotes the sum of the weight of the 
b maximum-length paths from mi-related diseases to mj-related diseases. Then, MFSP between miRNA mi and 
mj can be calculated as:

=
∗

+
m m

P m m
P m m P m m

MFSP( , )
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i j

i j
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The formula (5) shows that MFSP(mi, mj) is composed of two parts: 1) the numerator denotes the connectivity 
of two miRNA-related disease sets defined by the sum of the path weights between them; and 2) the denominator 
is used for suppressing miRNA related with many diseases. In addition, MFSP has the symmetric property as the 
miRNA-miRNA path matrix P is a symmetric matrix, which makes it useful in many applications50.

The symmetric property shows that MFSP has the more general symmetric property for different maximum 
transferring times. This property is useful for many applications. For instance, if the functional similarity of 
miRNA pair can be measured and the similarity is symmetric, MIDP algorithm9 can be applied in the similar-
ity matrix directly. Moreover, Cluster One51 method can be performed on the miRNA functional network, a 
weighted undirected graph which is constructed based on the functional similarity of miRNA pair.

Assume that a directed acyclic graph and miRNA-disease associations are shown in Fig. 5, we simply showed 
the procedure for calculating the MFSP between m1 and m2. The maximum transferring times b is set as 2 and the 
weight ratio a is set as 0.6. We can obtain the feature vector Vd1, Vd2, Vd3, Vd4, Vd5 and Vd6 to calculate the disease 
semantic similarity matrix SDD using cosine similarity (shown in Fig. 5). Then, transferring matrixes for different 
transferring times are achieved by formula (3) as follows:

=

























M

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0



www.nature.com/scientificreports/

9Scientific Reports | 6:32533 | DOI: 10.1038/srep32533

=













. . .
. . .

. . .
. . .

. . . . .

. . . . .













M

1 0 0 45 0 0 26 0 18
0 1 0 0 45 0 39 0 36

0 45 0 1 0 0 47 0 3
0 0 45 0 1 0 18 0 48

0 26 0 39 0 47 0 18 1 0 57
0 18 0 36 0 3 0 48 0 57 1

1

=













. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .













M

1 3 0 17 1 07 0 13 0 84 0 64
0 17 1 49 0 29 1 14 1 07 1 16
1 07 0 29 1 51 0 23 1 23 0 94
0 13 1 14 0 23 1 47 0 8 1 23
0 84 1 07 1 23 0 8 1 8 1 55
0 64 1 16 0 94 1 23 1 55 1 81

2

We can obtain the adjacency matrix RMD of miRNA-disease based on miRNA-disease association is:

= 





R 1 1 1 1 1 0

1 1 0 0 1 1MD

After combined the different transferring matrix and the adjacency matrix of miRNA-disease, the 
miRNA-miRNA path matrix P is:

= 


. .
. .



P 9 3741 7 3770

7 3770 7 5149

As a result, the functional similarity of m1 and m2 is calculated to be (2*7.377)/(9.3741 +​ 7.5149) =​ 0.8736, and 
the functional similarity of m1 −​ m1 pair is (2*9.3741)/(9.3741 +​ 9.3741) =​ 1.

MFSP is implemented in C+​+​ and can be downloaded at https://github.com/KDDing/MFSP.
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