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Abstract

Allosteric proteins bind an effector molecule at one site resulting in a functional change at a 

second site. We hypothesize that networks of contacts altered, formed, or broken are a significant 

contributor to allosteric communication in proteins. In this work, we identify which interactions 

change significantly between the residue-residue contact networks of two allosteric structures and 

then organize these changes into graphs. We perform the analysis on 15 pairs of allosteric 

structures with effector and substrate each present in at least one of the two structures. Most 

proteins exhibit large, dense regions of contact rearrangement, and the graphs form connected 

paths between allosteric effector and substrate sites in five of these proteins. In the remaining ten 

proteins, large-scale conformational changes such as rigid-body motions are likely required in 

addition to contact rearrangement networks to account for substrate-effector communication. On 

average, clusters which contain at least one substrate or effector molecule comprise 20% of the 

protein. These allosteric graphs are small worlds; that is, they typically have mean shortest path 

lengths comparable to those of corresponding random graphs and average clustering coefficients 

enhanced relative to those of random graphs. The networks capture 60 to 80% of known allostery-

perturbing mutants in three proteins, and the metrics degree and closeness are statistically good 

discriminators of mutant residues from non-mutant residues within the networks in two of these 

three proteins. For two proteins, coevolving clusters of residues which have been hypothesized to 

be allosterically important differ from the regions with the most contact rearrangement. Residues 

and contacts which modulate normal mode fluctuations also often participate in the contact 

rearrangement networks. In summary, residue-residue contact rearrangement networks provide 

useful representations of the portions of allosteric pathways resulting from coupled local motions.
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Introduction

Allosteric regulation is a major mechanism of control in many biological processes, 

including cell signaling, gene regulation, and metabolic regulation.1 Allosteric proteins bind 

an effector molecule at one site resulting in a functional change at a second site.2 Recently 

there has been much interest in allosteric-like communication. Thermodynamic theories 

explain allostery via population shifts in conformational ensembles,3–5 and there is 

experimental evidence that alternate allosteric states are simultaneously populated in 

solution.6 Nonetheless, mechanical transitions in individual molecules must underlie 

population shifts of ensembles of conformations.7,8 That is, in individual molecules, 

energetic pathways of spatially contiguous, physically coupled structural changes and/or 

dynamic fluctuations must link substrate and effector sites.

Crystal structures have revealed that most allosteric proteins are complex systems with both 

tertiary and quaternary structure changes.9 Thus, to quantitatively describe mechanisms of 

allosteric communication, one would need to account for multiple levels of conformational 

changes in both the positions of and the interactions between the elements of protein 

structures. Recently, we compiled a database of 51 proteins with both inactive (I) and active 

(A) crystal structures, and we quantitatively characterized differences in local structure 

between the two states.10 Here, we extend our previous work by taking a first step toward 

quantifying allosteric mechanisms from structure. Specifically, we calculate contact 
rearrangement networks (CRNs) from differences in the contact network between the two 

structures to describe one way in which communication through tertiary structure might 

arise from the kinds of local motions that we identified in the allosteric benchmark paper.10 

We do not explicitly account for large-scale rigid-body (quaternary structure) motions in 

constructing CRNs; thus, we do not expect CRNs to completely describe allosteric 

mechanisms in the proteins we analyze. Thus, we use the terms communicate, pathway, and 

couple generally to refer to allosteric coupling between any two points (residues) in an 

allosteric protein rather than specifically to refer to substrate site-effector site 

communication unless explicitly specified. We expect that these CRN analyses will provide 

detailed, useful, and quantitative descriptions of a phenomenon which has previously 

observed in manual analyses and predicted by the Koshland-Nemethy-Filmer (KNF) 

model,11 which describes allosteric signaling primarily through rearrangement of tertiary 

structure.

Many previous computational approaches to protein allostery incorporate theoretical models 

which are likely to influence the results (e.g. techniques like Gaussian Network Model,12 

normal mode analysis,13 molecular dynamics,14 and ensemble computation and energetic 

analysis15). In contrast, we seek to learn as much as possible about allosteric pathways in 

proteins through direct, model-free analyses of crystal structures. In addition, by utilizing the 

data available in crystal structures, a structural analysis approach can provide insight into 

allostery orthogonal to that from experimental mutational studies (e.g. refs. 16,17).

Networks are natural representations for studying complex systems, and several studies on 

protein residue-residue contact networks have revealed functionally interesting information 
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not immediately accessible from the atomic coordinates themselves. Protein structure 

contact networks display the small-world phenomenon;18 that is, they are tightly clustered 

yet have short paths between residues.19 Highly central residues in such contact graphs as 

identified by closeness, betweenness, or change in the mean shortest path of the graph upon 

removal often correspond to known functionally important positions such as key residues in 

folding,20 active sites,21,22 hotspots of protein-protein interfaces,23 and residues important to 

allosteric communication.24 In addition, one previous work has found biologically 

significant changes in the intersubunit contact network between two structures of lac 

repressor that are very close in Cartesian space,25 and distance-difference matrices have 

been used to postulate coupling mechanisms in hemoglobin.26

We calculate residue-residue contact rearrangement networks for 15 allosteric proteins from 

our benchmark set,10 and we characterize the graphical and functional properties of these 

networks. For each protein, we identify which residue-residue interactions rearrange and 

organize these changes into a graph. Since this graph includes information from both 

allosteric structures, it necessarily provides more useful information about allosteric 

coupling in the protein than does a contact network analysis of either end-state structure 

(e.g. ref. 24). Such a network representation of changes in the contact map is useful because 

it allows identification of coupling relationships among residues in the tertiary structure and 

identification of critical residues. We describe the range of structures of CRNs in the 15 

proteins, and for each protein, we calculate the extent of the CRN and assess the small-

worldness of its connected components. The metrics degree and closeness identify 

graphically important residues which may also be functionally important. We use known 

allostery-perturbing mutations in three proteins to assess the ability of CRNs to capture 

functionally important regions of allosteric structures and the ability of degree and closeness 

to rank residues within CRNs by functional importance. Finally, for two of the 15 proteins, 

we compare CRNs to statistical coupling analysis, a sequence-based algorithm for 

identifying putative allosteric networks in proteins,27 and we compare CRNs from two other 

proteins to published elastic network analyses, which can give insight into dynamic 

fluctuations.13,28 CRN analysis may identify principles about allosteric communication 

which could aid in the rational design of allosteric regulation into non-allosteric proteins.

Results

We select 15 heterotropically allosteric proteins from our benchmark set10 for which the two 

structures together contain at least one small-molecule substrate and at least one small-

molecule effector. The names and Protein Data Bank (PDB)29 codes of these proteins are 

given in Table I.

We calculate an undirected, weighted contact rearrangement graph for each protein where 

the nodes are all the residues present in both structures, and the weight of an edge between 

two residues i and j that form a contact in one or both structures is the rearrangement factor 

R(i j). R(i,j) captures the change in the composition of the set of atoms which form the 

interaction between residues i and j (Figure 1) by the fraction of atoms which are lost or 

gained from the interface between the two residues. Finally, we determine the connected 

components or clusters of a graph from all edges in the graph with weights above a threshold 

Daily et al. Page 3

Proteins. Author manuscript; available in PMC 2016 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



T. We set T = 0.3 in this work to exclude 99% of all possible edges in a control set of 14 

proteins not exhibiting allosteric motions (details in Methods).

Overview of graphs

Figure 2 shows the range of CRN structures in six representative proteins (the CRNs of the 

remainder of the 15 proteins are in Supplementary Figure 1). In NAD-malic enzyme, most 

of the contact rearrangement occurs in the immediate vicinity of substrate and effector sites, 

with two clusters each connecting two nearby effector sites to one another. 

Phosphofructokinase (PFK) shows slightly larger clusters which each connect one effector 

site to the nearest substrate site with a dense web of paths. The graph of glycogen 

phosphorylase (GYP) links two distant substrate sites together through a large and dense 

cluster, with two smaller clusters surrounding each of the effector sites. The lactate 

dehydrogenase (LDH) graph comprises four dense regions surrounding substrate sites which 

are loosely linked to form one large ‘globally connected’ cluster linking all substrate and 

effector sites together. The globally connected graph of fructose bisphosphatase (FBPase) 

also contains regions of high and low density, though the high-density regions are more 

strongly linked to one another than in LDH. The graph of GTP cyclohydrolase I (GCH) links 

all substrate and effector sites among one catalytic decamer and two regulatory pentamers. 

Table I shows that the graphs of five of 15 proteins form one or more connected paths 

between substrate and effector sites with a distance of 3 to 8 links. Furthermore, in all 

graphs, there is significant contact rearrangement density in the vicinity of substrate and/or 

effector sites.

While all of the proteins we examined show extensive contact rearrangement, these networks 

are likely to be more important for biological function in some proteins than in others. The 

CRN probably plays an important role in substrate-effector communication in each protein 

with large, dense regions of contact rearrangement, whether or not the graph links substrate 

and effector sites. In each graph with connected substrate-effector paths except that of GCH, 

the CRN indicates significant physical substrate-effector coupling through the tertiary 

structure because most or all effector sites are linked to their nearest respective substrate 

sites by at least two non-overlapping paths. However, in both proteins for which the graphs 

exhibit connected substrate-effector paths and proteins without such paths, allosteric 

coupling between sites might depend not only on CRNs, but also upon other mechanisms 

like rearrangements of interactions between rigid bodies.

Scope and network characteristics of CRNs

Table II shows that on average among the 15 proteins, 35% of residues occur in any cluster, 

while 20% of residues occur in clusters containing at least one substrate or effector, which 

we hereafter refer to as allosteric clusters. The extent of all clusters varies from 22% of the 

residues for DAHP synthase and phosphoglycerate dehydrogenase (PGDH) to 55% for ATP-

PRT, while the extent of allosteric clusters varies from 5% for PGDH to 34% for LDH. 

Average degree, where degree is the number of other nodes connected to a node, measures 

the density or redundancy of a network. The value of this metric ranges from 2.3 for PGDH 

(nearly nonredundant) to 4.0 and 4.1, respectively, for FBPase and PFK (moderately 

redundant). However, in the graphs in Figure 2, nodes of degree 1 and/or long chains of 
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nodes which project away from the main bodies of the clusters depress the observed average 

degree relative to that of the core network.

Relative to a corresponding random graph, a small-world network (SWN) exhibits an 

enhanced average clustering coefficient (C) but a similar mean shortest path (L).18 For a 

random network with N nodes and average degree k, Lran ≈ ln N/ln k and Cran ≈ k/N 18 

while for a corresponding 1-lattice regular network,  and 

.20,30 Figure 3 shows that among 34 allosteric clusters in 15 proteins, 

C ranges from 0.07 to 0.30, intermediate between the ranges of Cran and Creg, and L ranges 

from 3 to 14, which is considerably closer to the range of Lran than to that of Lreg. For a few 

regular network points, Creg ranges from 0.05 to 0.2, which overlaps with the allosteric 

clusters; however, these low C result from the artificially low k of some networks (see above 

paragraph). Thus, CRNs are small worlds, which exhibit both high density and efficient 

communication between points and should be robust to random mutations.31 Furthermore, 

the distributions of degree k in these 34 clusters (data not shown) are not Poisson as 

expected for random networks.32 Rather, the number of nodes N(k) at degree k decreases 

monotonically as k increases from 1 to a maximum of 5 to 15 depending on the cluster, 

which means that a few nodes act as key hubs. These distributions are based on limited data, 

so it is not possible to determine if they are more consistent with scale-free33 or single-

scale34 behavior.

We identify ‘key residues’ within the graph of each protein as those nodes which rank 

among the top five by degree or closeness among all allosteric clusters (Supplementary 

Table I). Closeness measures centrality by the inverse of the average distance of a node to all 

other nodes in a cluster. While degree identifies locally critical nodes, closeness and other 

centrality measures identify globally critical nodes which mediate efficient communication 

between points in the network and thus are most important to its small-world behavior.18

Two proteins in detail

Figure 4 shows subsets of the graphs of PFK and LDH and these graphs mapped onto the 

respective three-dimensional structures, highlighting key residues in each protein. The PFK 

network (Figure 4A) is tightly clustered and contains multiple paths between substrate and 

effector sites, and the key residues cluster graphically between these sites. Figure 4B shows 

that in the three-dimensional structure, the key residues lie along the line between the two 

sites in the center of the cluster. The LDH network (Figure 4C) is tightly clustered around 

the substrate site but compared to PFK, there are fewer short paths between substrate and 

effector, though all of the key residues lie along paths between the two sites. However, 

Figure 4D shows that in the three-dimensional structure, in the middle of a large cluster, 

seven of these eight residues lie along a nearly straight line between the two sites. Thus, 

Figure 4B and D suggest that in applicable CRNs, degree and closeness identify residues 

which lie along short paths between substrate and effector sites in the three-dimensional 

structure.
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Networks capture experimentally known allosteric residues

Published studies (see Supplementary Table II) have identified six allostery-perturbing 

mutants of PFK, 13 of FBPase, and 30 of aspartate transcarbamoylase (ATCase). These 

mutants perturb allosteric coupling by such metrics as Ki of an allosteric inhibitor,35 relative 

activity with versus without effector bound,36 and coupling free energy between effector and 

substrate.37 All of these studies were targeted rather than exhaustive, so calculation of the 

sensitivity and specificity of our algorithm from these data is not possible. For each protein, 

Supplementary Table III shows the presence or absence of each mutant in the allosteric 

clusters of the CRN. Table IIIA summarizes that allosteric clusters capture good (60–70% 

for FBPase and ATCase) to excellent (83% for PFK) fractions of allostery-perturbing 

mutations. Fisher’s exact test shows that these results are highly statistically significant for 

PFK and ATCase (p ≤ 10−3) and significant for FBPase (p = 0.011); that is, mutants are 

distinctly more likely to be found in the allosteric clusters than in the protein structure as a 

whole. These results show that CRNs identify functionally important regions whether or not 

they form connected substrate-effector paths.

Furthermore, we test the ability of degree and closeness to rank residues within these large 

networks by functional importance. The two-sample Wilcoxon rank-sum test shows that 

both degree and closeness give a significantly higher average rank to known mutant residues 

than to non-mutants for PFK and FBPase (p ≤ 0.03). Previous works have shown that 

closeness identifies active site residues from contact maps of static structures more 

effectively than degree;21,22 for these allosteric graphs, closeness is slightly more effective at 

ranking residues by functional importance than is degree for both PFK and FBPase. Both 

degree and closeness fail to discriminate allostery-perturbing mutant residues from non-

mutant residues within ATCase clusters. However, the central core of one ATCase cluster, 

which contains the residues with highest closeness, may be functionally important even 

though it has not been previously tested for allostery-perturbing mutations (Supplementary 

Figure 2A).

Comparison with statistical coupling analysis

The statistical coupling analysis (SCA) algorithm27,38 identifies putative allosterically 

coupled networks of residues from correlated sequence perturbations in large protein 

families. The CRN algorithm provides a useful way of assessing how SCA networks relate 

to the changes in three-dimensional structure which are likely the primary mechanism of 

allosteric coupling in proteins. We compare results between SCA and CRNs for two proteins 

in this work, PFK and FBPase, for which the sequence families are sufficiently large for 

SCA and for which we collected allostery-perturbing mutants (see methods for SCA details).

Supplementary Figure 3 shows that for PFK and FBPase, CRN residues and SCA residues 

occupy mostly non-overlapping regions of the structures. Fisher’s exact test shows that this 

overlap is moderately significant for PFK (p=0.0031) but insignificant for FBPase (p=0.78). 

However, the correlation between R(i,j) and the SCA parameter ΔΔEstat for those residue 

pairs with R(i,j) ≥ 0.05 and ΔΔEstat ≥ 0.01 is 0.12 for PFK and −0.06 for FBPase, indicating 

a lack of a significant quantitative relationship between the two putative allosteric coupling 

parameters. In addition, of the mutants listed in supplementary table II, SCA only captures 2 
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of 6 for PFK (p=0.18) and 5 of 13 for FBPase (p=0.33). These results challenge the 

hypothesis that evolutionary coupling of positions in a protein structure reflects a 

particularly allosteric role for those residues. A recent work suggests that an evolutionarily 

coupled group of residues in a protein might specify a stably folding sequence.39

Comparison with elastic network models

Two recent studies have employed normal mode analysis (NMA) on elastic network models 

of proteins toward identifying residues important to allostery. These approaches elicit large-

scale collective motions from a network of springs connecting Cα positions of locally 

contacting residues, and thus they are different from the small-scale local structural 

rearrangements analyzed in this manuscript.

Zheng and Brooks measured dynamic correlation between residues under NMA fluctuations 

to identify ‘hinge’ residues correlated to the most other residues in the protein.13 The hinge 

residues of myosin (the 10% most correlated residues) can be compared to the CRN 

obtained from 1Q5G and 1VOM (Supplementary Figure 4A). The CRN captures 53 of 73 

dynamically correlated residues (73%), a very high overlap (Fisher’s exact test p < 10−16). 

This strong result implies that not only do CRNs communicate allosteric signals through 

tertiary structure, but also that they might modulate large-scale fluctuations captured by low-

frequency normal modes and couple them to small-scale changes in the vicinities of ligand 

sites.

In another NMA study, Gu and Bourne used a method called PIVET to directly assess the 

effect of contact changes on dynamic fluctuations by removing single contacts in elastic 

network models to identify interactions which perturb the protein’s fluctuation.28 

Comparison of CRNs with this analysis for four functional transitions of the protein CDK2 

revealed mixed results. For the ATP binding transition (1HCL→1HCK), there was little 

conformational change detectable by the CRN. For cyclin binding (1HCK→1FIN, 

Supplementary Figure 4B), the 8 CRN key residues (top five by degree and/or closeness) 

capture 4 of the 15 residues in the 10 pairs with the greatest influence on global fluctuation 

(50%, p = 2.8·10−4 by Fisher’s exact test). In addition, several of the contacts ranked highly 

by PIVET overlap three high-CRN-degree residues and form a cluster in a portion of the 

CRN near the cyclin-binding site. Phosphorylation (1FIN→1JST) and peptide binding 

(1JST→1QMZ) cause smaller conformational changes than cyclin binding, and the CRN 

key residues do not overlap with the residues in the top 10 pairs according to PIVET. These 

results suggest that in a large allosteric transition, the densest regions of contact 

rearrangement are likely to be important for modulating dynamic fluctuations.

Discussion

Theoretical implications

In our previous survey of motions in allosteric protein structures,10 the clustering of moving 

residues in the three-dimensional space and correlation functions of residue motions strongly 

suggested that some or all of these proteins communicate allosteric signals through 

mechanically contiguous clusters of conformational changes. In this work, CRNs describe 

Daily et al. Page 7

Proteins. Author manuscript; available in PMC 2016 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mechanical allosteric coupling through tertiary structure in detail. Such coupling can extend 

over long distances through the tertiary structure, and in some cases substrate and effector 

sites are coupled through tertiary structure. Clusters of changes in dynamics such as those 

observed upon ligand binding to a PDZ domain40 or mutation of eglin C41 are beyond the 

scope of our observations but could add a significant additional dimension to allosteric 

network descriptions for these proteins. Furthermore, the concept of motions giving rise to 

long-range coupled networks of changes in the interactions among protein structure 

elements could in principle be generalized beyond the CRN, which quantifies allosteric 

coupling arising from tertiary structure changes, to describe how higher levels of motion, 

such as rigid-body motions of domains and subunits, give rise to allostery.

This analysis of contact rearrangement networks suggests that communication between 

points in allosteric proteins operates via a complex, redundant web of interdependent 

conformational changes. Such complex signal propagation has been observed in a molecular 

dynamics simulation of CheY.8 Furthermore, the observation that CRNs are small-world 

networks with skewed connectivity distributions suggests that communication depends on 

preferred paths with certain residues playing critical roles in the transmission of signals 

between points.

We previously observed correlation of motions at up to 20 Å distance between residues, 

which is equivalent to a series of several atom-atom contacts.10 The CRN model suggests 

that signals can propagate considerably farther than this, given that the mean shortest path in 

allosteric clusters varies from about 3 to 14 contacts. The anisotropy of some clusters in the 

simulation of heat propagation through protein structure42 may account for this observation.

Possibilities beyond the CRN

Proteins which do not exhibit connected substrate-effector paths via CRNs likely rely on 

other kinds of motion in addition to CRNs to form mechanical linkages between these two 

sites. For example, in aspartate transcarbamoylase43 and glycogen phosphorylase,44 which 

show extensive CRNs but not connected substrate-effector paths, the original manual 

analyses of the crystal structures revealed domain and subunit motions critical to creating a 

global cooperative transition. In addition, in phosphoglycerate dehydrogenase, which has 

only a small amount of contact rearrangement around the substrate site and none at the 

effector site, manual comparison of inactive and active structures suggests that domain and 

subunit motions are the primary substrate-effector coupling mechanism.45 Thus, while 

CRNs provide a useful representation of allosteric signal propagation and connectivity 

through tertiary structure, more complex models of allosteric systems integrating large-scale 

rigid-body motions would likely be necessary to increase the 1/3 substrate-effector 

connectivity ratio observed using CRNs alone. These rigid-body motions are consistent with 

allosteric communication through quaternary structure changes as predicted by the Monod-

Wyman-Changeux (MWC)46 model of allostery.

Network topology and key residues

Like contact networks of static protein structures,19,20 networks of contact rearrangements in 

allosteric proteins exhibit small-world character, which provides efficient communication 
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between points18 and robustness of communication against random structural or mutational 

perturbation.31 Small-world character of CRNs might not arise directly from small-world 

character of the contact networks of the underlying structures. Small-worldness is driven by 

nodes which are well-connected and more importantly, centrally located in the graph.18,33 In 

a static graph, highly connected nodes are well-constrained by many connections and thus 

not likely to move, while in a CRN the most highly connected nodes interact with many 

other nodes in at least one state but also have significantly different optimal sets of 

interactions in the two respective states. In a static graph, central nodes are typically 

positioned near the center of mass of the protein,21 while in a CRN they are usually near the 

geometric center of an allosteric cluster (Figure 4), which may not be near the center of the 

protein. In fact, our previous analysis revealed that exposed residues in proteins are more 

likely than buried residues to undergo contact rearrangement.10 Thus, in many allosteric 

proteins, the CRNs may evolve separately from or in tension with the contact network of the 

protein as a whole.

Comparison with allosteric mutations

Mutational analysis of CRNs show that CRNs capture functionally important regions of 

allosteric structures and that degree and closeness effectively rank residues within CRNs by 

functional importance. In addition, the CRN algorithm might be useful for predicting 

functionally critical residues in allosteric proteins for further testing by mutation or targeting 

for therapeutic or engineering purposes. It is possible that previous structure-based 

algorithms, such as our calculations of local motions,10 the most central residues in a static 

contact graph of either state,24 or hub and messenger nodes in clusters formed by a 

hierarchical static contact network decomposition algorithm47 might predict allosteric 

mutations as well or better than CRNs. Assessment of the general utility of CRNs and other 

approaches for predicting allosteric mutations by comparison may be a practical subject for 

future research.

CRNs, SCA, and NMA

CRNs, SCA, and NMA provide three different perspectives on allosteric communication. 

CRNs directly measure contact changes from crystal structures and group adjacent 

rearrangements together, but they are limited to tertiary structural changes and do not 

directly probe dynamics. SCA exploits the sequence database to identify coupled residues. 

NMA captures the fluctuations inherent in the elasticity of the three-dimensional structure of 

the protein. Although our comparisons are limited to a few systems, it is clear that these 

methods can be complementary. SCA and CRN seem to identify different networks: SCA 

finds pathways through the core of the protein perhaps relating to the folding nucleus, while 

CRN networks contain more surface-exposed residues and are directly tied to the average 

allosteric conformational change. Interestingly, residues which are highly correlated to the 

rest of the protein in NMA and contacts which most perturb the fluctuations of the elastic 

network are often part of the CRN, which suggests that key structural changes in allosteric 

proteins also play an important role in modulating dynamics.
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Conclusions

The mechanochemical basis of allosteric coupling in proteins has remained elusive even 

though the subject has been studied for decades. We have introduced a simple calculation to 

elicit a network of residues coupled via tertiary structure changes from the difference in the 

residue-residue contact network between inactive and active state structures of an allosteric 

protein. The contact rearrangement networks typically show significant localized response in 

the substrate and/or effector binding site regions. In most proteins, they extend through 

significant regions of the protein structures, and they form connected substrate site-effector 

site paths in 5 of 15 proteins; in the remaining 10 proteins (and possibly also in the 

connected 5), additional coupling mechanisms (e.g. rigid-body motions) will be necessary to 

fully describe the mechanism of communication between substrate and effector. These 

results offer strong evidence for propagation of information through protein structure, 

although propagation is a complex web-like phenomenon not immediately obvious from a 

cursory examination of the allosteric structures. The observed properties of contact 

rearrangements may be useful to understand allostery-related diseases, guide allosteric drug 

design, or design novel allosteric communication in proteins.

Methods

Contact rearrangement

We define a contact between two residues i and j as at least one atom-atom distance between 

them under 5.0 Å, not counting hydrogens or non-protein atoms. For each contact ij which 

exists in the I or the A state, we calculate a rearrangement factor which quantifies the 

difference in that contact between the two states. This rearrangement factor is the maximum 

of the number of atoms which are unique to the ij interface (the set of atoms defining the ij 
interaction) in the I and A state structures, respectively, normalized by the total number of 

atoms in residues i and j (Figure 1). That is, if  is the ij interface in the I state,  is the ij 
interface in the A state, and Ni and Nj are the total numbers of atoms in residues i and j, 
respectively, then the rearrangement factor R(i,j) is

where | | denotes the number of atoms in set . The normalization by Ni + Nj accounts for 

the size of the component residues i and j, although we have found that CRNs constructed 

without this normalization are qualitatively similar.

Connected components

For determining connected components, a threshold for R(i,j) separates the most biologically 

significant contact rearrangements from those which represent crystallographic uncertainty 

of independently solved structures (< 1 Å RMSD for independently solved crystal 

structures).48 As a reference for such uncertainty, we use a previously compiled control set 
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of 14 pairs of biologically equivalent crystal structures which includes five non-allosteric 

proteins and nine allosteric proteins with two structures in the same state.10 The resolutions 

of the structures in this set range from 1.1 to 2.8 Å. Figure 5 shows the distribution of R(i,j) 
for all edges in the graphs of all proteins in the control and allosteric sets, respectively. At 

R(i,j) > 0.1, the density of edges is higher in allosteric graphs than in non-allosteric graphs; 

however, the density of edges in the control graphs is significant up to at least T=0.2. To 

exclude approximately 99% of the control distribution and highlight the most significant 

contact rearrangements, we set T=0.3, above which lies 0.78% of the control distribution, 

compared with 2.5% at T=0.2 and 0.29% at T=0.4. By contrast, 5.6% of the allosteric R(i,j) 
distribution lies above T=0.3, which is seven times the corresponding fraction of the 

distribution in the control set.

A breadth-first search49 on all nodes determines the connected components of a graph at a 

given T. In addition, connected components at a given T include any ligands present in either 

state which in that state are within 5.0 Å of any residue in a connected component. If a 

ligand is present in both I and A state structures, then one structure serves as a reference for 

identifying the neighbors of that ligand. The I state structure is the reference for allosteric 

inhibitors, which preferentially bind this state, and the A state structure is the reference for 

allosteric activators and substrates for corresponding reasons. The raw data for the 15 

allosteric proteins, including the graphs in GML format and PyMOL scripts for mapping the 

calculated clusters onto the three-dimensional structure of a protein, are available at http://

graylab.jhu.edu/allostery/networks.

Network statistics

Path calculation—The Floyd-Warshall algorithm calculates the shortest path between two 

nodes in a graph49 for the calculation of mean shortest path of a graph and closeness of a 

node.

Small world network parameters—The clustering coefficient Ci for node i in an 

undirected graph is the ratio of the number of connections among neighbors of i (ci) to the 

maximum possible number of such connections; that is,  where ki is the 

degree of i. The mean shortest path length L for a network is the average among all unique 

pairs of nodes of the length of the shortest path between the nodes.18

Closeness—The closeness Oi for node i in a graph is the inverse of the average shortest 

path length between i and all other nodes j in the graph, or

where N is the total number of nodes in the graph and lij is the shortest path between two 

nodes i and j.50,51
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Statistical coupling analysis

For each protein, PFAM full sequence sets for the corresponding domain family52 provided 

an initial alignment which clustalw re-aligned.53 We then narrowed this alignment to a set of 

sequences in which all are 80% or more of the query length and no two are 90% or more 

identical to one another. This resulted in 392 sequences for PFK and 163 for FBPase. 

Finally, PCMA refined these raw clustalw alignments.54 Software provided by Rama 

Ranganathan analyzed these two families and identified the most strongly coupled clusters 

in each protein.27

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Rearrangement of a residue-residue interaction in phosphofructokinase
Left panel: interaction between E241 and H160 of chain A in the inactive state; right: this 

interaction in the active state. Red circles mark six atoms unique to the residue-residue 

interface in the I state, green circles mark four atoms unique to the A state, and yellow 

circles mark three atoms present in both states. In these two residues, there are a total of 19 

atoms, so the rearrangement factor R(i,j) = max(6, 4)/19 = 0.32 (see Methods for the details 

of calculating R(i, j)).
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Figure 2. Contact rearrangement networks for six selected proteins
The CRNs of the remaining nine proteins are shown in Supplementary Figure 1. Circles in 

each graph represent protein residues, and red and green squares represent substrate and 

effector molecules, respectively. Lines connect pairs of residues with R(i,j) ≥ 0.3 and 

residues in the graph with any ligands which are adjacent (within 5.0Å) in either structure. 

All connected components which include at least one substrate or effector molecule are 

shown. Graphs are plotted with yEd graph editor.
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Figure 3. Small-world characteristics of allosteric clusters
Data are derived from 34 allosteric clusters from 15 proteins which contain 20 or more 

nodes and for which average degree is greater than 2. Blue circles: observed allosteric 

clusters. Black crosses: random counterparts with the same number of nodes and average 

degree. Red triangles: regular counterparts (four points with mean shortest path > 50 have 

been excluded for clarity).
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Figure 4. Detail of phosphofructokinase and lactate dehydrogenase contact rearrangement 
networks
A, C: subsets of the graphs of PFK and LDH, respectively, containing one effector site and 

one substrate site, plotted as in Figure 2. For each node, the first group of characters is the 

one-letter amino acid code or the ligand name as appropriate, and the last letter is the chain 

identifier. Light blue: nodes in the top five by degree or closeness (key residues). B, D: the 

same networks mapped onto the three-dimensional structures (A state structure 4PFK for 

PFK and I state structure 1LTH(T) for LDH). Cyan: residues in the cluster. Blue: key 

residues in largest cluster. Green: substrate. Red: allosteric effector. The PFK cluster 

contains effector molecules from both the I state (PGA) and the A state (MgADP) structures 
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and substrates (F6P and MgADP) from the A state structure. The subset of the globally 

connected cluster of LDH contains the effector (FBP) and substrates (cofactor NAD and 

substrate OXM) from the A state structure. The two molecules of FBP shown in the LDH 

graph represent pseudosymmetrically related orientations of FBP present in the crystal 

structure of LDH.
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Figure 5. Distributions of R(i,j) in graphs for control and allosteric set proteins
The control and allosteric set distributions are the sum of the normalized distributions of all 

proteins in these respective sets. Normalization of each protein’s distribution by the number 

of asymmetric units accounts for symmetry-related edges. Black crosses: control set 

distribution; blue circles: allosteric set distribution; red: T = 0.3, the threshold used for all 

calculations in this work.
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Table III
Statistics of mutants occurring in contact rearrangement networks of three proteins

A: Hit rates are averaged over asymmetric units, and p-values are calculated by Fisher’s exact test55 from the 

number of residues in the protein, number of network residues, total number of mutants and total number of 

mutants captured, all divided by the number of asymmetric units. B: Degree and closeness values for network 

residues are averaged over multiple occurrences in different asymmetric units as appropriate. p-values are 

determined from the differences in the distributions of degree and closeness values between non-mutant and 

mutant residues by the one-sided two-sample Wilcoxon rank-sum test.55

A. Mutants occuring in network

Protein number of mutants number of monomers hit rate p-value

PFK 6 4 20/24 (83%) 4.10E-13

FBPase-1 13 4 32/52 (62%) 2.40E-07

ATCase 30 6 121/180 (67%) 2.20E-16

B. Wilcoxon rank-sum tests

Protein (cluster #) p-value degree closeness

PFK (1–4) 7.90E-04 2.10E-04

FBPase-1 (1) 7.70E-05 3.30E-05

ATCase (1) 0.81 1

ATCase (2–4) 0.095 4.20E-03
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