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Previous studies on Ophiothrix in European waters demonstrated the existence of two distinct species,
Ophiothrix fragilis and Ophiothrix sp. Il. Using phylogenetic and species delimitation techniques based
on two mitochondrial genes (cytochrome c oxidase | and 16S rRNA) we prove the existence of a new
congeneric species (Ophiothrix sp. 111), occurring in the deep Atlantic coast of the Iberian Peninsula
. and the Alboran Sea. We compared phylogeographic patterns of these three Ophiothrix species to test
. whether closely related species are differentially affected by past demographic events and current
. oceanographic barriers. We used 432 sequences (137 of O. fragilis, 215 of Ophiothrix sp. I, and 80
of Ophiothrix sp. 111) of the 16S rRNA from 23 Atlantic-Mediterranean locations for the analyses. We
observed different geographic and bathymetric distributions, and contrasted phylogeography among
species. Ophiothrix fragilis appeared genetically isolated between the Atlantic and Mediterranean
. basins, attributed to past vicariance during Pleistocene glaciations and a secondary contact associated
. to demographic expansion. This contrasts with the panmixia observed in Ophiothrix sp. Il across the
: Atlantic-Mediterranean area. Results were not conclusive for Ophiothrix sp. Il due to the lack of a more
. complete sampling within the Mediterranean Sea.

 Within the past few decades, phylogeographic patterns in marine benthic invertebrates with Atlantic-
. Mediterranean distribution have been documented in a plethora of species belonging to a range of phyla e.g. refs
© 1-9. The relatively well documented geological history of the Mediterranean Sea and its connection with the
. Atlantic Ocean has allowed in most cases relating historical processes (e.g. the Messinian Salinity Crisis -MSC-
* during Mio-Pliocene transition, and more recently, the Pleistocene glacial and interglacial periods during the
. Quaternary), to the current population connectivity patterns observed for different species e.g. refs 3, 10-16.
: Apart from these historical processes, the current hydrography, including major circulation patterns and local
: eddies, and geographical processes differentially affect the littoral areas from both the Atlantic and Mediterranean
. basins. These geographical, historical and oceanographic processes, altogether with the inherent biological char-
. acteristics of the species, are among the responsible processes for the present-day intraspecific distribution of
genetic diversity in littoral species"!”. Nevertheless, the stochasticity of the recruitment processes and availability
of substrate can also play an important role shaping the current genetic structure of benthic taxa'®.
The Strait of Gibraltar represents a natural connection, and at the same time a transition area, between the
different hydrographical conditions that go from the relatively cold waters of the North Atlantic to the warmer,
. saltier, and markedly seasonal waters of the Mediterranean'®. However, the Alboran Sea and more specifically
. the Almeria-Oran Front (AOF), situated east of the Strait of Gibraltar, is considered as the real biogeographi-
. cal break between these two basins. A number of marine species show genetic transition between Atlantic and
Mediterranean populations at the AOF, which acts as a migration barrier preventing or significantly reducing
genetic flow between these two areas (see a review in Patarnello ef al.!, but see Garcia-Merchén et al.”). Genetic
connectivity between populations of these two basins including the AOF as a target area has been addressed for
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several benthic invertebrates, reaching in some cases different conclusions even when considering species with
similar dispersal abilities e.g. refs 7, 8, 12 and 20, which may be explained by the effect of past historical processes
differentially affecting the genetic diversity of these organisms. In this sense, the comprehensive study of conge-
neric species with a common evolutionary origin (i.e. sharing similar biological traits) and similar geographic
distribution (i.e. being affected by similar hydrological and geological processes), has been proposed as a useful
approach to identify phylogeographic signals and real permeability of major marine fronts"”*!,

Due to their wide geographic distribution, extending from the intertidal to the deep subtidal®?, and their eco-
logical relevance, brittle stars of the genus Ophiothrix appear as an interesting study case to address questions about
connectivity among populations occurring in both the Atlantic and Mediterranean basins, as well as potential
processes of cryptic speciation and multi-specific complexes. In an investigation of Ophiothrix fragilis on differ-
ent intertidal and subtidal Atlantic populations, also including a few Western Mediterranean specimens, Muths
et al.?® identified two distinct lineages that might potentially correspond to cryptic species. One of these lineages
corresponded to the northern European populations, and another one encompassed specimens from two sites
of the south European coast: one at the Atlantic coast of the Iberian Peninsula, in the intertidal of Galicia, and
another from a subtidal site at the French Coast of Banyuls-sur-mer (NW-Mediterranean). Later, Pérez-Portela
et al.’® conducted an extensive study combining molecular and morphological analyses using populations from
both the Atlantic and the Mediterranean basins, and concluded that the two different lineages identified by
Muths et al.? in fact corresponded to two different morphological species (Lineage I: O. fragilis, and Lineage II:
Ophiothrix sp. II). One of the species identified, O. fragilis, inhabits the intertidal and shallow subtidal (0-50 m)
in the North Atlantic, where it occurs in highly dense assemblages?, but it also occurs in the Mediterranean deep
subtidal (>50m), where it was previously described as O. quinquemaculata (see ref. 15). Unfortunately, the study
by Pérez-Portela et al.'® only included two deep subtidal Mediterranean samples (~50-60 m), and sequences of
the so-called O. quinquemaculata from Genbank; therefore conclusions about the distribution of O. fragilis along
the Mediterranean area were very limited.

In the study by Pérez-Portela et al.'%, shallow-water populations of Ophiothrix sp. Il across the Atlantic and
Mediterranean showed apparent panmixia with no gene-flow barriers across the study area. This pattern was
explained by a combination of processes including a wide dispersal potential, large effective population size and
a recent demographic expansion. On the other hand, information on the genetic structure between populations
of O. fragilis in the Atlantic area, along the coast of France and England, showed a chaotic structure in this spe-
cies®. Genetic connectivity between Atlantic individuals and the only individual analysed from the Western
Mediterranean, though, were not conclusive and pointed to future studies to unravel the genetic connectivity of
this species.

Here, we present a comprehensive genetic study in Ophiothrix spp. occurring in the Atlantic and
Mediterranean basins covering from the intertidal to the shallow and deep subtidal. The aims of this work were:
(i) to describe the distribution of Ophiothrix spp. across both space and depth, and to detect the possible occur-
rence of cryptic speciation; and (ii) to compare phylogeographic patterns based on mitochondrial DNA among
congeneric species to determine whether present and past marine biogeographic barriers and demographic
events may have differentially affected the distribution of genetic diversity among species, paying special attention
to potential differentiation between the Atlantic and Mediterranean basins. To achieve our objectives we used two
mitochondrial gene fragments, the 16S rRNA (hereafter 16S), which has been demonstrated to provide suitable
resolution in population genetic studies of brittle stars'>*, and the cytochrome ¢ oxidase subunit I (hereafter
COl).

Results

Phylogeny and species delimitation. A total of 310 bp were obtained for the 16S fragment for the three
species of Ophiothrix considered here. For the COI marker only three sequences (797 bp) of Ophiothrix sp. I11
from the Cantabrian Sea (two from station DEM91 and one from DEM45; see Table 1 and Fig. 1) were obtained,
which were added to a previous dataset of 148 sequences of O. fragilis and Ophiothrix sp. II by Pérez-Portela
et al.>. ML phylogenetic trees based on both the most common haplotypes of 16S and the total number of hap-
lotypes of the 16S and COI showed three moderately supported clades, namely O. fragilis, Ophiothrix sp. II, and
Ophiothrix sp. III. Although the three species can unambiguously be considered as different species due to the
genetic distance between the three mitochondrial lineages, morphology and bathymetric segregation (see Results
below), their relative phylogenetic relationships within the genus could not be resolved due to the low support of
the nodes (Fig. 2A, supplementary Figs S2 and S3). Two different haplogroups were recovered for the 16S in O.
fragilis corresponding to samples from the Mediterranean and from a mixture of samples from the Atlantic and
Mediterranean (Fig. 2; fra_Med and fra_Atl-Med); these haplogroups, though, were not recovered in the COI
phylogenetic tree because samples of this species from the Mediterranean were not available. Difficulties to obtain
good quality sequences from additional genes, such as the COI from Mediterranean samples of O. fragilis, and the
nuclear Histone 3, Internal Transcribed Spacers 1 and 2, prevented to generate better supported phylogenies to
clarify the evolutionary relationships among lineages.

PTP analyses based on both the 16S and COI markers corroborated the existence of three species corre-
sponding to the three main clades identified in the phylogenetic trees (supplementary Table S1, Figs S4 and S5).
Inter-specific genetic distances (K2p) between the three species ranged from 11-20% for the 16S, and from
19-22% for the COI (Table 2); these values were lower than those between these three species and other conge-
neric species (see supplementary Table S2 for a complete list of divergence values of the COI). Intra-specific values
(K2p) were ca. ten fold lower than inter-specific ones and ranged from 0.9-1.6% for 16S, and between 0.11-0.17%
for COI (Table 2).
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Ophiothrix fragilis
. . . 58°14/27.32°N . »
Kristineberg KRI Intertidal 11°25/55.14E NE Atlantic- North Sea 22 9 5 0.749 £0.094 0.00368 £ 0.0007 0.1467
. 48°45/9.55°N . . .
Roscoff ROS Intertidal 3058138.10W | NE Atlantic- English Channel | 19 6 3 0.468+0.140 0.00204 £0.0007 0.1667
43°27'25.27°N .

u _ *5%
Ferrol FER 8-10 oo o NE Atlantic 16 | 7| 4| 077540088 | 0.00391+0.0008 | 0.1650
Vigo-Cornide' COR 30-60 42°13'3.81°N NE Atlantic 2 | 7 | 4| 04814031 | 0.002060.0007 | 0.1618*

8 8°49/41.24“W - : : - :
Atlantic basin 79 | 21 | 16 | 0.62540.063 | 0.0029440.0004 | 0.1040%
o0 <
Blanes' ABL 90 41°40'2.19°N NW Mediterranean 9 | 4 | 2| 075040139 | 0.00821+00033 | 0.2036
2°52/30.44°E
o !
Indemares® IMA 123-139 4;02158’653725; E\I NW Mediterranean 5 2 1 0.400£0.237 0.00388 +0.0023 0.3000
0aq/] <«
Planassa' PLA so-100 | 43I N NW Mediterranean 21 | 12| 8 | 0824+0084 | 001235400022 | 0.1345
0n17) <
Port de la Selva' PSE 80-100 432,, 1231,2569 ;795 NW Mediterranean 22 | 4 | 1| 0577420090 | 000849+0.0012 | 0.1341%*
Mediterranean basin 58 | 17 | 12 | 0.698+0.065 | 0.0096040.0012 | 0.1037*
TOTAL 137 | 34 | 28 | 0.777+0.029 | 0.00979+0.0005 | 0.0088*
Ophiothrix sp. 11
43°27'25.27°N .
i _ *
Ferrol FER 8-10 oo s NE Atlantic 33 | 12| 7 | 075840122 | 0.00408+0.0011 | 0.1112
049/ <«
Cascais CAS Intertidal | 8422577 N NE Atlantic 18 | 11 | 5 | 0.810£0.093 | 0.00409+0.0008 | 0.0539*
9°20'15.41W
. 37°5/41.52N . )
Armagio de Pera APA 10-15 o it NE Atlantic 20 | 9 | 3 | 07580101 | 0.00394+0.0009 | 0.0541
ocn/ <
Ceuta CEB 18-25 35%52152.19°N Gibraltar Strait 19 | 8 | 3| 067220119 | 0.00321+0.0009 | 0.0857*
5°19/10.20“W
36°22/4.36"N . .
La Herradura LH 15-18 5012/51.68“W SW Mediterranean 20 6 2 0.447£0.137 0.00241 £ 0.0009 0.0921
0 1 =
Xébea XB 10-20 s N SW Mediterranean 20 | 7 | 3 | 0521+0.135 | 0.002194£0.0007 | 0.0818**
014/ <
Roses RS 10-20 4320 11;‘, 4151 8151{:\1 NW Mediterranean 14 | 4 | 1| 0494+0.151 | 0.00172+0.0006 | 0.1246*
01/ «
Cadaqués CAD 2-15 4320 1177,237 555«;:\1 NW Mediterranean 19 9 5 0.772£0.094 0.00407 £ 0.0009 0.0700**

. 39°52'1.28°N . . -

Alcudia AL 15-18 3°11/39.87°F W Mediterranean-BalearicIs. | 26 13 5 0.720£0.099 0.00359 £ 0.0008 0.0412
019/ <«
Ladiko LK 2-10 36°1922.22'N E Mediterranean 16 | 9 | 5 | 081740095 | 00045900013 | 0.0745
28°13/18.81°E
35°9/58.03N . -
Kalytea Bay KB 2-5 24°24/38.20°E E Mediterranean 9 6 3 0.833+0.126 0.00418 £0.0012 0.1111
TOTAL 215 | 58 | 42 | 0.67940.0390 | 0.0034540.00031 | 0.0117*
Ophiothrix sp. I1I
. 43°36/44.7°N ‘ . .
Demersales-45 DEM45 153 8°29/49.5“W NE Atlantic- Cantabrian Sea 20 6 3 0.679£0.101 0.0040 £ 0.0009 0.098
. 43°53/27.24N . . .
Demersales-91 DEM91 310 5034/53.77“W NE Atlantic- Cantabrian Sea 22 5 5 0.745+0.093 0.0039 £ 0.0007 0.1486
. 43°30/57.0°N . . »
Demersales-131 DEM131 131 2°53/32.4“W NE Atlantic- Cantabrian Sea 23 8 5 0.744+0.080 0.0039 £ 0.0006 0.1472
O ! < ] !
Peniche' POR 100-150 | *° 247853331\]“? 12 NE Atlantic 7 | 4| 1| 07140181 | 0005400018 | 02417
0 /) 0~/
PINDALBV17' PINDAL 169 36°08 g,g 3072 SW Mediterranean 8 | 4 | 1 | 075040139 | 00036+0.0008 | 02311
TOTAL 80 | 19 | 15 | 0.71440.047 | 0.00407+0.0004 | 0.100%

Table 1. Summary of the information related to the different localities surveyed and genetic variability for
the 168 for the three different Ophiothrix species. N number of individuals, H number of haplotypes, p private
haplotypes, Hd haplotype diversity, 7 nucleotide diversity, R? Ramos-Onsins & Rozas statistic. For Ophiothrix
sp. I and Ophiothrix sp. III information of the Atlantic and Mediterranean basins is not presented since these
two species did not displayed significant differences between geographical areas. "New samples sequenced in
this study. *p < 0.05 and **p < 0.01.

Genetic diversity and population connectivity. A total of 237 new individuals were sequenced for the
168, corresponding to 137 from O. fragilis (34 haplotypes), 80 from Ophiothrix sp. III (19 haplotypes), and 20
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Figure 1. (A) Map of the Atlantic-Mediterranean area showing the locations where samples of Ophiothrix
fragilis, Ophiothrix sp. 11, and Ophiothrix sp. I1I were collected. See Table 1 for further details about locations.
Circles represent the 16S haplotype diversity within each location and their size is proportional to the number of
individuals per site. Partitions inside the circles represent the relative proportion of each haplotype within each
location. The dashed-grey line represents the Almeria-Oran Front (AOF). See Fig. 2 for details about haplotypes
for each species. (B) MDS representation of the @y values at each location for each of the three species. Figures
were created with the free software QGIS (http://qgis.osgeo.org/es/site/), and edited in Adobe Illustrator CS5.1
(http://www.adobe.com) for this study.

from Ophiothrix sp. 11, the latter collected at FER; this dataset was analysed together with the 215 individuals
of Ophiothrix sp. Il sequenced by Pérez-Portela et al.'® (Table 1). The three different species did not occur in the
same locality except for FER, where both O. fragilis (16 individuals) and Ophiothrix sp. II (33 individuals) were
found in sympatry. Out of the total 111 haplotypes found for all species, 85 (76.6%) were private. Values of genetic
diversity are detailed in Table 1.

The haplotype network based on the joined 16S alignment of the three species was structured in three dif-
ferent main clades (species) lacking intermediate haplotypes (Fig. 2B). Divergence among clades was caused
by 27 mutations between O. fragilis and Ophiothrix sp. 11, and 51 between Ophiothrix sp. III and the other two
species (Fig. 2B). The O. fragilis network exhibited two star-like patterns (haplogroups: fra_Md and fra_Atl-Med)
connected by two mutational steps. In both cases, two dominant haplotypes were located at the center of the hap-
logroups: fra_6, appearing only at Mediterranean locations; and fra_1, broadly distributed across the Atlantic and
Mediterranean basins, being the most common haplotype in the Atlantic basin. Apart from fra_1 (present in the
Atlantic and in the Mediterranean populations of PSE and PLA), only two other haplotypes were shared between
the two basins: fra_2, in three Atlantic populations (FER, COR, and ROS) and the Mediterranean PSE; and fra_5,
which appeared in the Atlantic KRI and the Mediterranean PLA (Figs 1A and 2B). Ophiothrix sp. II showed a
clear star-like pattern with II_1 as the ancestral haplotype, present in a similar proportion in all populations in
both basins, surrounded by low-frequency (II_2 to II_7) and private haplotypes (Figs 1A and 2B). Ophiothrix
sp. III revealed a network with a few dominant haplotypes (III_1 to III_4) surrounded by private haplotypes
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Figure 2. (A) Maximum Likelihood phylogenetic tree of the most frequent haplotypes of three species of
Ophiothrix resulting from the 16S marker. Only bootstrap support values >40 are indicated in the main nodes.
(B) Haplotype network for the three Ophiothrix species based on the complete 16S alignment. Circles are
proportional to the number of individuals per haplotype. Grey dots correspond to mutational steps.

O. fragilis (0.0158 +£0.003)

Ophiothrix sp. I 0.111+0.018 | (0.00910.001)

Ophiothrix sp. IIT 0.195+0.027 0.20340.029 | (0.0089+0.002)

O. trilineata 0.308+0.036 0.324+0.039 0.318+0.038 —

O. caespitosa 0.262+0.031 0.3380.039 0.295+0.035 | 0.385-:0.043 —
cot [ Ofmagilis [ Ophiothrixsp. 1l [ Ophiothrixsp. Ul | O.trilineata | 0. caespitosa |

O. fragilis (0.0175 +0.003)

Ophiothrix sp. II 0.189+0.022 | (0.01170.001)

Ophiothrix sp. IIT 0.202+0.023 0220+0.024 | (0.011240.004)

O. trilineata 0.237+0.026 0.280£0.029 0.264+0.027 —

O. caespitosa 0.267+0.029 0.269+0.029 0.253+0.026 | 0.293-£0.032 —

Table 2. Genetic distances (d-standard error) between Ophiothrix spp. based on a Kimura 2-Parameters
model for 16S and COI markers. Inter-specific distance values are presented below the diagonal. Numbers
along the diagonal in brackets represent intra-specific variation for the three species analysed in this study.

(Fig. 2B). Similar contributions of III_1, III_2 and III_3, the most common haplotypes in Ophiothrix sp. III, were
observed in all populations (Fig. 1A).

AMOVA results showed no significant difference in the genetic structure between the Atlantic and
Mediterranean basins and among sites for Ophiothrix sp. I and Ophiothrix sp. 111, which retained 100% of their
genetic variability within sites (Table 3). In contrast, O. fragilis showed significant differences between the two
basins (58% of total genetic variation), and within sites (41%) (Table 3).

D values confirmed AMOVA results, showing only significant differences between pairwise comparisons
among populations of O. fragilis corresponding to different basins (Fig. 1B; Table 4, supplementary Tables S3 and S4).
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Ophiothrix fragilis

Among basins 1 84.1 FCT=0.580 58.02 0.028*
Among sites within basins 6 6.7 FSC=0.015 0.65 0.293
Within sites 128 114.2 FST =0.587 41.3 0.000**
Ophiothrix sp. 11

Among basins 1 0.512 FCT=-0.0007 0.000 0.483
Among sites within basins 9 4.854 FSC=—0.0007 0.000 0.487
Within sites 182 99.323 FST=-0.0013 100 0.535
Ophiothrix sp. I1I

Among basins 1 0.315 FCT=-0.0158 0.000 1.000
Among sites within basins 3 0.933 FSC=—-0.0295 0.000 0.944
Within sites 74 44.930 FST=-0.0458 100 0.966

Table 3. Results of the AMOVA analyses for each of the three Ophiothrix species based on the 168. df
degrees of freedom.

ABL PLA IMA PSE ROS FER KRI
PLA —0.02310 —
IMA —0.04994 0.01724 —
PSE 0.01959 —0.01746 0.11168 —
ROS 0.74571** 0.49423** 0.86336** 0.54393** —
FER 0.67420** 0.45448** 0.78977** 0.49536** 0.04975 —
KRI 0.68246** 0.46144** 0.79129** 0.50192** 0.00596 0.04456 —
COR 0.75560** 0.50949** 0.86475** 0.55582** —0.01535 0.05551 0.01485

Table 4. ®g; values between pairs of populations for Ophiothrix fragilis based on the 16S. "Significant
values after applying the false discovery rate method.

These results indicated panmixia across the geographical study area in Ophiothrix sp. II and III, while a strong
phylogeographic break was observed between basins in O. fragilis (Fig. 1B). Genetic differentiation was weak
although significantly correlated to geographical distances when the complete O. fragilis dataset was considered
(Mantel test: r=0.0004; p=0.043), but this pattern of isolation by distance was not significant when basins were
analysed separately (Atlantic: r=0.0000; p = 0.588; and Mediterranean: r=—0.0002, p = 0.547).

LAMARC results for O. fragilis showed an almost unidirectional migration for mitochondrial DNA from the
Atlantic Ocean to the Mediterranean Sea according to the posterior likelihood values obtained (Fig. 3).

Demography. The neutrality Rozas’ R? test was significant for the three Ophiothrix species, which can be
interpreted as an evidence of past demographic expansion (see 16S results in Table 1). The mismatch distribu-
tion based also on the 16S marker showed a unimodal distribution in Ophiothrix sp. II and III, also attributable
to demographic expansion (supplementary Fig. S6). In the case of O. fragilis, though, despite showing a clear
bimodal distribution when all populations were analysed together, a unimodal distribution, likely due to a past
demographic expansion, was detected for Atlantic samples separately analysed, a pattern not observed for the
Mediterranean dataset (supplementary Fig. S6). BSP results further confirmed demographic expansion in the
three species. According to our analyses based on the 16S fragment, demographic expansion for the three species
happened more than 50,000 years ago, remaining stable for approximately the last 40,000 years (Fig. 4). These
analyses also suggest differences in female effective population sizes among species, Ophiothrix sp. II displaying
the largest effective population size (Fig. 4). BSP results based on the COI of Ophiothrix sp. II also detected a
demographic expansion but much earlier, ca. 100,000-180,000 years ago (see supplementary Fig. S7), than for
the 16S marker. These differences may be related with the fact that there is not a well-calibrated molecular clock
for these markers in ophiuroids, and the values obtained need to be taken as an approximation. For O. fragilis,
estimations based on COI could not be performed due to the absence of coalescence in the dataset.

Discussion

Our study revealed unexpected biodiversity in Ophiothrix along the Atlantic-Mediterranean area, with the occur-
rence of three different lineages that may be considered as species. Despite the closely evolutionary relationships
among them, they displayed different geographic and bathymetric distributions, and contrasted phylogeographic
patterns for the mitochondrial gene 168, a fact that should be contrasted in the future with the analysis of nuclear
markers to infer if they are congruent with mitochondrial data. Our study represents an important contribution in
the context of phylogeography of ophiuroids, since this has only been addressed for a few taxa worldwide!>*>24-30,
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Figure 3. Results of migration analyses between the Atlantic and Mediterranean basins in Ophiothrix
fragilis based on 168 sequences. The two graphs represented the final results of LAMARC for 5 different
replicates (left graph: Migration from the Atlantic basin to the Mediterranean basin; and right graph: Migration
from the Mediterranean basin to the Atlantic basin).

Two of the species found in this study, O. fragilis and Ophiothrix sp. II, were distinguished in great detail in
a previous study'®, while Ophiothrix sp. I is reported here for the first time. Phylogenetic inference using 16S
and COI combined with species delimitation analyses unambiguously confirmed that these three organisms are
in fact three closely related congeneric species (Fig. 2, supplementary Figs S2-S5). In addition, no haplotype was
shared among them and levels of inter-specific genetic divergence in 16S and COI were high and larger that those
measured at the intra-specific level. In this sense, divergence between Ophiothrix in our study was an order of
magnitude greater (19-22% for COI) than the limit commonly accepted to discriminate species in echinoderms
(0.9-1% for COP"). Importantly, remarkable morphological and ecological (bathymetric distribution) differences
supporting the genetic divergence exist (supplementary Fig. S1; see Methods section), although they were not
fully discussed in this work. Forthcoming and on-going morphological studies will lead to the formal description
of both Ophiothrix sp. Il and Ophiothrix sp. III (Manjon E. et al. in preparation).

The three Ophiothrix species studied here overlapped at least partially across their geographical distribution
range, although they were in general bathymetrically segregated (Fig. 1A; Table 1). Ophiothrix sp. Il is an inter-
tidal and shallow subtidal species (0-60 m)'?, whereas O. fragilis commonly occurs from the intertidal to the deep
subtidal in the NE Atlantic, and from ~60 m to 100-130 m depth in the NW Mediterranean, being absent from
shallower waters in the Mediterranean area. Such a bathymetric segregation between closely related ophiuroids
is not the first time to be noticed. Muths et al.*” also reported the occurrence of two brittle stars of the genus
Acrocnida that appeared in the intertidal (Acrocnida spatulispina) and the subtidal (Acrocnida brachiata) along
the English Channel and the coast of Brittany, that had little overlapping in their distribution. Similarly, the widely
distributed Atlantic-Mediterranean O. fragilis and Ophiothrix sp. II, only occurred in sympatry in the intertidal
and shallow subtidal of the Atlantic coast of Ferrol and at ~50-60 m in the NW Mediterranean. Interestingly,
preliminary results of in vitro cross-fertilization experiments indicated fertilization success in both intra- and
inter-specific trials (the latter with less success) using a higher concentration of sperm than in natural conditions
(authors’ unpublished data), which may suggest that these species are able to hybridize despite their relatively
high genetic divergence (11% for 16S, 19% for COI; Table 2). These preliminary results are in agreement with
the ones reported for the above-mentioned Acrocnida ophiuroids, where it was proved that hybrids occurred
despite the two species showing a divergence of about 20% for COI?”?. Prezygotic barriers, such as reproductive
asynchrony and/or ecological preferences (i.e. bathymetric segregation), were suggested to be limiting hybridiza-
tion in Acrocnida®; these barriers might also be preventing the opportunity to hybridize between O. fragilis and
Ophiothrix sp. 11, since the principal annual recruitments for these species do not overlap?*** and their habitat
preferences differ. Prezygotic barriers have been widely documented in other echinoderms, especially for echi-
noids, including examples on habitat separation between species but also on gametic isolation due to the evolu-
tion of molecules involved in gamete recognition e.g. refs 32 and 33.

A possible explanation for the contrasting distribution in O. fragilis and Ophiothrix sp. II was already antic-
ipated by Pérez-Portela et al.'®, who suggested that their speciation processes may have taken place during the
Mio-Pliocene transition, a period coincident with the isolation of the North Atlantic area into two main basins.
Briefly, after the opening of the English Channel and the subsequent contact of the two North Atlantic basins
previously isolated, Ophiothrix sp. II, originally preadapted to the warmer and shallower conditions of the south-
ern basin of the North Atlantic, colonized the shallow intertidal-subtidal across the South European coast and
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Figure 4. Demographic analyses of the three Ophiothrix species based on Bayesian Skyline plots of the
168 marker. Time is measured in million years (Mya). Black lines illustrate mean size estimations, and colour

shadows show 95% confidence interval.

the Mediterranean Sea after the opening of Gibraltar Strait following the Messinian Salinity Crisis. On the other
hand, O. fragilis, preadapted to colder temperatures and deeper waters from the northern basin of the North
Atlantic, subsequently colonized the deeper Mediterranean subtidal, where conditions are more similar in tem-
perature to those currently found in the shallow Atlantic subtidal®. Thus, the distribution of these two Ophiothrix
spp. found in our study confirms the hypothesis already presented by Pérez-Portela ef al.'. Interestingly, a similar
hypothesis was suggested to explain the current ecological segregation observed for the two Acrocnida species
mentioned earlier®.

Ophiothrix sp. III was exclusively found in deep subital waters (>100m) of the Atlantic Cantabrian Sea and
Portugal shore, as well as also in the Mediterranean Alboran Sea, which lies just behind the AOE, typically con-
sidered as one of the most important biogeographic barriers separating the Atlantic from Mediterranean basins'.
Hence, our observations for Ophiothrix sp. III do not allow us venturing any hypothesis about the current distri-
bution of this species within the Mediterranean, although its absence in NW Mediterranean deep subtidal areas,
where O. fragilis is commonly found, might indicate that its distribution limit in the Mediterranean is at the AOF,
as observed in other marine invertebrates e.g. refs 9, 13 and 34. Nevertheless, further sampling in deep waters of
the SW Mediterranean and Eastern Mediterranean sub-basin would be necessary to have a complete picture of
the geographical distribution of this species.
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Opverall, the three Ophiothrix species showed high levels of genetic diversity comparable to those reported in
other brittle stars e.g. refs 24 and 29, although they showed different phylogeographic patterns. Panmixia in the
shallow-water Ophiothrix sp. II, with no barrier preventing gene flow between Atlantic and Mediterranean popu-
lations'®, contrasts with the genetic structure between basins observed in O. fragilis, supported by the significant
values of AMOVA and ®g; (Fig. 1B; Table 3 and supplementary Tables S3 and S4). Examples of marine species
displaying similar dispersal capabilities but contrasted patterns of genetic structure are widely documented in
the Atlantic-Mediterranean area (see Patarnello et al.! for a review). Among these, the studies on the broadcast
spawning invertebrates Nephrops norvegicus (Norwegian lobster) and the Homarus gammarus (European lobster)
showed no clear differentiation pattern between basins in the former while well differentiated groups occurring
in the different basins were observed for the latter'>%. More recently, Fernandez et al.® described admixture with
high gene flow for Chiton olivaceous, and a ‘chaotic patchiness’ pattern with high genetic variability and private
haplotypes in all sites for Lepidopleurus cajetanus, two closely related chiton molluscs occurring in sympatry with
presumably limited dispersal ability due to their lecithotrophic larva.

Large population size, high dispersal potential due to a long-lasting larval phase and shallow-water near shore
currents along the shore, and a past demographic expansion event were used as possible reasons to explain the
genetic homogeneity observed in Ophiothrix sp. I1'*. Effective population size estimations using the BSP con-
firmed the existence of larger population size in Ophiothrix sp. Il when compared to the other two species (Fig. 4).
Ophiothrix fragilis with smaller effective population size might be more vulnerable to the effect of genetic drift,
a process that changes allele frequencies promoting genetic divergence between populations over short periods
of time™®.

Populations showing panmixia, as in Ophiothrix sp. I1, have been reported for many echinoderms with plank-
totrophic larvae. In the holothurian Holothuria mammata genetically homogeneous populations were reported
along the Macaronesian Islands, Algarve, and Western Mediterranean, although a significant break in genetic
structure was detected in the Aegean Sea’®. In other latitudes, the congeneric brittle star Ophiothrix suensonii also
displayed lack of genetic differentiation across Florida and the Caribbean up to 1,700km apart, combined with
significant differences in genetic structure for some populations®.

Ophiothrix fragilis likely displayed genetic homogeneity within basins due to a long-lasting planktotrophic
larva that promotes connectivity between distant populations, but clear divergence between basins. Examples of
divergence between basins are not scarce in the literature, and have been reported for a diversity of marine inver-
tebrates e.g. refs 2,4, 11, 13 and 36. Two of the most common sea urchins across the Atlantic-Mediterranean area,
Paracentrotus lividus and Arbacia lixula, showed no genetic differentiation over distances of thousands of km but
divergence between basins despite having presumable high dispersal ability due to a long-lasting planktotrophic
larva, demonstrating the strong disruptive effect of the Gibraltar Strait and/or Alboran Front>®!!. The sea star
Astropecten auranciacus also showed some significant differentiation of Atlantic versus Mediterranean popu-
lations and Western versus Eastern Mediterranean sub-basins that could not be attributed to any of the specific
marine barriers targeted in their study (Strait of Gibraltar, AOF, Siculo-Tunisian Strait), but instead of isolation
by geographical distance®. In contrast, divergence in O. fragilis did not follow a strong pattern by isolation by dis-
tance. The weak correlation detected with the Mantel test (r=0.0004, p =0.043) for the whole species dataset was
magnified by the fact that all Mediterranean populations (very divergent from the Atlantic ones) were geograph-
ically close to each other, which may explain why this pattern of isolation by distance was not maintained within
basins. Hence, we hypothesize the disruptive effect of the Gibraltar Strait and/or the AOF to be the most plausible
genetic barrier explaining the divergence detected between basins in O. fragilis.

Nevertheless, the pattern observed for O. fragilis is complex and cannot be explained by a simple process
of divergence between basins due to current genetic isolation. The two main haplogroups identified represent
phylogeographical discontinuities that typically evolved in response to long-term extrinsic barriers to gene flow,
although the present day structure may be affected by a redistribution of genetic diversity by contemporary con-
tact. The asymmetrical distribution of haplogroups is congruent with a process of past vicariance due to allopatry
between basins followed by secondary contact within the Mediterranean®, which is supported by the bimodal
mismatch distribution (supplementary Fig. S6). This pattern in O. fragilis resembles that in Marthasterias glacialis,
a widely distributed sea star in the Atlantic-Mediterranean region, with two distant lineages occurring in the
Mediterranean Sea, but only one of them endemic from the Mediterranean'*. Lineage splitting in M. glacialis was
attributed to vicariance and secondary contact during Pleistocene glaciations (800-12 Kya) that caused sea level
drops off up to 150 m with dramatic range shifts along the European coastline, ultimately interrupting circulation
of species across the most important marine European corridors®. Hence, most of the present-day genetic pat-
terns of marine coastal populations across the Atlantic-Mediterranean arch are the result of periodical limitations
of larval interchange and migration across the Gibraltar Strait™!°. Our results for O. fragilis suggest a similar pat-
tern to that observed in M. glacialis, with a recent demographic expansion during the last 50,000 years (Fig. 4),
which could have followed a subsequent geographical expansion from the Atlantic to the Mediterranean. This is
supported by the higher haplotype and nucleotide diversity in the Mediterranean (Table 1) due to the admixture
of haplotypes from the two haplogroups in this basin, and by the unidirectional gene flow (migration) from the
Atlantic to the Mediterranean detected in LAMARC (Fig. 3). However, the lack of a specific molecular clock for
16S and COI in ophiuroids make that estimations of demographic expansions need to be taken with caution and
can be only used for comparison among species. At present, the predominant gene flow from the Atlantic to the
Mediterranean might be maintained by major circulation currents across the Gibraltar Strait, due to a strong
surface inflow from the Atlantic to the Mediterranean and water stratification®. The reverse current slides down
400-800 m depth, environmental conditions under which larvae of some echinoderms cannot survive®, might
prevent the endemic Mediterranean haplogroup to disperse further in the Atlantic. Despite the disruptive effect
of marine circulation across the Gibraltar Strait, the bathymetric fractioning between Atlantic (intertidal and
shallow subtidal down to 60 m) and Mediterranean populations (deep subtidal, >60m) in O. fragilis might be
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reinforcing the genetic divergence observed between basins by limiting the connectivity among populations*!.
The absence of the Mediterranean haplogroup (fra_Med) in Atlantic populations could be also related to the
adaptation of lineages to different environmental conditions between habitats (shallow vs deep water) or basins,
a hypothesis that cannot be completely ruled out. For instance, in the European anchovy water temperature
shapes the contemporary distribution of mitochondrial DNA lineage frequencies due to strong selection on some
codons*2.

In conclusion, we present here important insights in Ophiothrix diversity, geographic and bathymetric distri-
bution, and most relevant processes shaping intraspecific diversity of three Atlantic-Mediterranean species. It is
a remarkable example of how closely related species, with similar biological features, display divergent phyloge-
ographic patterns inferred from the mitochondrial markers due to the different effect of both historical and/or
contemporary events. Future studies should be directed to determine the distribution of O. fragilis and the new
species Ophiothrix sp. III across the whole Mediterranean basin by surveying under-sampled areas, with an espe-
cial emphasis in the deep subtidal. Also, efforts should be directed to investigate the genetic patterns across tran-
sition areas and biogeographic barriers such as the AOF, as well as the influence of other oceanographic fronts
across the Mediterranean®'. Importantly, further studies should develop and target nuclear markers for these
three species since gene genealogies obtained for the mitochondrial markers, 16S and COI, can be different from
the complete history of species. Additional nuclear markers could refine connectivity estimates, as well as the
potential for hybridization between species, mitochondrial introgression and effective population size*>*,

Methods

Sample collection.  Samples of Ophiothrix fragilis were collected between 2005 and 2012 from eight shallow
and deep sites (Fig. 1A and Table 1), including four Atlantic locations [Kristineberg (KRI), Roscoff (ROS), Ferrol
(FER), and Vigo collected on board the R/V Cornide de Saavedra (COR)], and four Mediterranean ones [Blanes
(ABL), Barcelona-INDEMARES project (IMA), Planassa area (PLA), and Port de la Selva (PSE)]. KRI, ROS, and
FER samples were collected by scuba-diving (8-10m depth) and by hand in the intertidal; the rest of samples
were collected by trawling on the R/V Cornide de Saavedra and on fishing trawlers (30 to 139 m depth). Samples of
a species morphologically similar to O. fragilis and Ophiothrix sp. II (see Results section), were collected in 2013
from five deep subtidal sites (100-310 m depth; Table 1), four of them located in the Atlantic basin [by trawling
during the DEMERSALES cruise (DEM45, DEM91, and DEM131) on board the R/V Miguel Oliver- ERDEM3
project, and the ones from Portugal (POR) by a fishing trawler], while the Mediterranean population (PINDAL)
was collected during the INDEXARES cruise on board the ship Isla de Albordn (Fig. 1A; Table 1). Complete spec-
imens were preserved in absolute ethanol, and stored at —20 °C until processed.

Samples of Ophiothrix sp. II analysed here for comparative purposes correspond to the collection of
Pérez-Portela et al.'® plus 20 extra individuals from FER (Table 1). These samples were collected by scuba-diving
or in the intertidal from 11 different shallow-water locations (Fig. 1A; Table 1), including three Atlantic locations
[Ferrol (FER), Cascais (CAS), and Armagdo de Pera (APA)] and eight Mediterranean ones [Ceuta (CEB), La
Herradura (LH), X4bea (XB), Roses (RS), Cadaqués (CAD), Alcudia (AL), Ladiko (LK), and Kalytea Bay (KB)].

Morphology and Biology. Specimens of Ophiothrix spp. used for DNA sequencing were morphologically
inspected, although we do not provide here detailed morphological descriptions. Specimens of O. fragilis dis-
played typical characters of the species: rounded disc with diameter between 7-10.6 mm, wide and naked radial
shields covering approximately half of the aboral disc area. They also had the typical slender spines in the central
area of the aboral side of the disc and in the inter-radial fields, and pale colours from brown to whitish'® (supple-
mentary Fig. S1 and Table S1). Specimens of Ophiothrix sp. II showed strikingly colour plasticity and were within
the range of size described by Pérez-Portela et al.'>, with disc diameter between 6.5-10 mm, small radial shields
on the aboral side covering 1/3-1/4 of its surface, and partially covered by small spines and tubercles. The central
and inter-radial fields of the aboral side was homogeneously covered by small spines. Specimens of Ophiothrix sp.
III were in general larger than the other two species displaying a rounded disc reaching up to 18 mm in diameter,
although disc diameter of specimens largely varied among sites. Their wide radial shields covered approximately
half of the aboral side of the disc as in O. fragilis, but they presented tubercles and small spines on the shields as in
Ophiothrix sp. II (supplementary Fig. S1 and Table S1).

The only information about the reproductive patterns of O. fragilis comes from studies on Atlantic individuals,
and concluded that the reproductive dynamics of O. fragilis has four annual recruitments, the principal of which
taking place between September-October, with a planktotrophic larvae with a moderately long lifespan often
recruiting directly onto the discs and arms of large adults®. In fact, several young recruits were found on the disc
of adult specimens of O. fragilis collected in Kristineberg (KRI) during morphological analysis of the samples. In
contrast to that reported for O. fragilis, Ophiothrix sp. IT has a main annual reproductive period (late spring-early
summer), through a planktotrophic larva and with juveniles settling on top of sponges and adults living in small
numbers between algae and under rocks*.

DNA sequencing. Total DNA was extracted from tube feet using the REDExtract-N-Amp kit (www.sigma.
com) following the manufacturer’s protocol. Fragments of the 16S were amplified and sequenced using the
primers designed by Pérez-Portela et al.’® for all new samples (Table 1). In addition, the mitochondrial COI
was sequenced for species delimitation purposes for a subset of samples of Ophiothrix sp. III. Fragments of
the COI were amplified and sequenced using the primers polyLCO/polyHCO*. PCR amplification reactions
were performed in a 20-pL total reaction with 10 uL of REDEXtract-N-ampl PCR reaction mix, 0.8 pL of each
primer (10pM), 7.4 pL of ultrapure water, and 1 pL of DNA template. PCR temperature profile was 95°C/5 min-
(94°C/1 min-46°C/30s-72°C/2 min)*37 cycles-72 °C/8 min for 16S and 94 °C/5 min-(94 °C/1 min-55°C/1 min-
72°C/1 min)*35 cycles-72 °C/5 min for COI. PCR products were purified and sequenced by Macrogen, Inc.

SCIENTIFIC REPORTS | 6:32425 | DOI: 10.1038/srep32425 10


http://www.sigma.com
http://www.sigma.com

www.nature.com/scientificreports/

(Seoul, Korea) with the same primers used for amplification. New sequences have been deposited in GenBank
(accession numbers KX577803-KX578016).

Phylogeny and species delimitation. Due to the presence of individuals with different morphology, we
first applied phylogenetic and species delimitation approaches to avoid mixing different species for further analyses.

Sequences were edited using Geneious vs. R8 and aligned with the Q-INS-I option of MAFFT. To detect dif-
ferent evolutionary units, 16S and COI sequences were collapsed into haplotypes using DnaSP vs. 5.10.1¥7, and
used for phylogenetic analyses, including as outgroups sequences of congeneric Ophiothrix species and other
phylogenetically close ophiuroids. Outgroups varied between markers depending on the sequences available from
Genbank (Fig. 2, and supplementary Figs 2S and 3S). The most appropriate evolutionary model for 165 (HKY +1I)
and COI (GTR + I+ G) were inferred using jModelTest*® via the Akaike Information Criterion (AIC). Maximum
Likelihood (ML) phylogeny trees were estimated separately for 16S and COI using PhyML as implemented in
Seaview®, with 1,000 bootstrap replicates, and an optimised tree searching (Best of NNI and SPR). The resulting
trees were edited in FigTree v.1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/). Phylogenetic reconstruction was
applied for the whole dataset of haplotypes of the 16S and COI alignments, but also for the most frequent haplo-
types of the 168, to simplify the interpretation of the intra-specific data.

The Poisson Tree Processes (PTP) model was applied to infer putative species boundaries among samples. This
method is a powerful tool developed to identify cryptic species and to solve taxonomic ambiguities®*>'. Based on
the rooted ML phylogenetic trees of COI and 16S sequences the PTP model was implemented in the webserver
(http://species.h-its.org)>? using 100,000 MCMC generations, thinning of 100, and a burning of 0.1. Levels of
genetic divergence between and within species of Ophiothrix detected from PTP were calculated based on the
uncorrected Kimura 2 parameters (K2p) model using MEGA vs. 5.05%, with deviation estimated after 1,000 boot-
strap replicates. The K2p model was applied to compare with previous studies in echinoderms.

Genetic structure.  We only used 16S alignments due to its better resolution for populations’ genetic struc-
ture than COI as observed in previous studies with Ophiothrix and other echinoderms®"°. An unrooted haplotype
network for the different species was constructed based on a ML tree with the program Haploviewer (www.cibiv.
at/~greg/haploviewer).

All 168 sequences were used to calculate number of haplotypes (H), number of private haplotypes (Hp), hap-
lotype diversity (Hd), and nucleotide diversity () with DnaSP.

Differences in the genetic structure of populations were assessed by computing pairwise ®g; statistics in
ARLEQUIN v 3.5> between sites within each species. The corresponding p-values were evaluated by 10,000 per-
mutations, and adjusted by a false discovery rate method®. The matrixes of the ®g values were plotted graphi-
cally in a Multidimensional Scaling analysis (MDS). The fit of genetic differentiation between sites in O. fragilis
(the only species displaying divergence between sites; see Results section) to a pattern of isolation by geographical
distance was tested in ARLEQUIN, using the Mantel test procedure with 16,000 permutations. Geographical
distances were calculated as the minimum distance in Km between sites over the sea.

Differentiation between the Atlantic and Mediterranean basins was assessed separately for each species by
conducting hierarchical analyses of molecular variance (AMOVA) using genetic distances. Their significance was
tested running 16,000 permutations in ARLEQUIN. Different components of the genetic variance were quantified
per each species as follows: between basins (Atlantic vs Mediterranean), among sites within basins, and within
sites. Due to the existence of genetic divergence between basins in O. fragilis (see Results), a Bayesian analyses was
performed to evaluate migration rates between basins in LAMARC v 2.1.9%. The best evolutionary method for
O. fragilis as inferred with jModelTest 2 (JC) was implemented. Three initial runs were performed to estimate the
most likely priors for our dataset. The first run was performed with default parameters, and two additional runs
were computed with most accurate parameters. Once accurate priors were obtained, they were implemented in
a final run, with variation values of migration between 0 and 500, from the Atlantic to the Mediterranean basin,
and 0 and 150 on the reverse way. The final run was based on five different replicates with 40 initial chains of
5,000 MCMC each, burning period of 500, and 5 final chains of 40,000 MCMC each with a burning period of
1,000. Two simultaneous heating searches (1 and 1.5) were performed per replicate. To visualise whether the run
was long enough reaching a plateaus of probability, and to confirm the existence of at least 200 independent simu-
lations (Effective Sample Size-ESS) for each parameter, results were summarised in Tracer v 1.5 (http://beast.bio.
ed.ac.uk/Tracer). Migration rates (Mt) were expressed as the number of migrants per generation Mt = n/u, where
n is the immigration rate per generation, and u the substitution rate.

Demography. To test departures from a constant population size we used different approaches for the 16S.
First we estimated neutrality Rozas’ R® statistic®” with DnaSP per population. Then the history of effective pop-
ulation size was assessed by: a) the classical pairwise mismatch distribution following the model of Rogers &
Harpending®® in ARLEQUIN, in which populations tend to display unimodal and smoother distributions while
stationary populations commonly show multimodal distributions; and b) the coalescent-based Bayesian skyline
plots (BSP) using BEAUti v 2 and BEAST v 2.1.2%. For BSP priors included the implementation of the substitu-
tion models defined by jModelTest (JC, K80, and HKY for O. fragilis, Ophiothrix sp. 11, and Ophiothrix sp. I1I,
respectively), a strict clock model, and the constant skyline model. As no molecular clock has been calibrated
for ophiuroids, a mutation rate of 1.25% per nucleotide per million years was used for the 168, following other
studies in echinoderms®. Between 50 and 500 million MCMC generations were run per species, sampled every
5,000™"-50,000"" step, and a burnin of 1,000-10,000. As explained for LAMARC, we ensured that the runs were
long enough and above 200 ESS by visualizing the result outputs in Tracer. Tracer was also used to generate the
evolution of effective population size under the skyline plot model, expressed as N, T (T = generation time) over
time. BSP analyses were additionally run for the COI sequences available for O. fragilis and Ophiothrix sp. IL. It
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was not performed for Ophiothrix sp. III because only three sequences were available for the species. A mutation
rate of 2.48% per nucleotide per million years was used for the CO], following other studies in echinoderms®'.
Between 50 million and one billion MCMC generations were run per species, sampled every 5,000%-100,000
step, and a burnin of 1,000-100,000 with the corresponding substitution model (GTR).
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