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Abstract

MicroRNAs (miRNAs), small non-coding RNAs, can regulate post-transcriptional gene 

expressions and silence a broad set of target genes. miRNAs, aberrantly expressed in cancer cells, 

play an important role in modulating gene expressions, thereby regulating downstream signaling 

pathways and affecting cancer formation and progression. Oncogenes or tumor suppressor genes 

regulated by miRNAs mediate cell cycle progression, metabolism, cell death, angiogenesis, 

metastasis and immunosuppression in cancer. Recently, miRNAs have emerged as therapeutic 

targets or tools and biomarkers for diagnosis and therapy monitoring in cancer. Since miRNAs can 

regulate multiple cancer-related genes simultaneously, using miRNAs as a therapeutic approach 

plays an important role in cancer therapy. However, one of the major challenges of miRNA-based 

cancer therapy is to achieve specific, efficient and safe systemic delivery of therapeutic miRNAs 

In vivo. This review discusses the key challenges to the development of the carriers for miRNA-

based therapy and explores current strategies to systemically deliver miRNAs to cancer without 

induction of toxicity.
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1. Introduction

MicroRNAs (miRNAs), distinct from high-molecular-weight microsomal RNA, are small 

non-coded strands of RNAs discovered in a decade [1]. Many studies aid in the development 

of miRNA-based therapy for clinical applications. Nowadays, many of the monoclonal 

antibodies (mAbs) and small molecule inhibitors serve as effective cancer therapeutics in the 

clinic. However, there are some limitations with regard to the specificity of inhibitors and 

capability of antibodies to access intracellular targets.

⋆This review is part of the Advanced Drug Delivery Reviews theme issue on “miRNAs as targets for cancer treatment: Therapeutics 
design and delivery”.
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1.1 . Limitations of current cancer therapies

Conventional chemotherapy, which disrupts the functions of cell organelles such as the 

mitochondria, cytoskeleton, inhibits the key enzyme activity to block DNA replication, 

mRNA transcription or translation, or directly damages DNA to stop the proliferation of 

cancer cells and induces toxicity in cancer cells. However, the conventional cancer 

therapeutic agent does not target the cancer cells specifically. It also displays the toxicity in 

rapidly dividing normal tissues such as the bone marrow and the gastrointestinal tract, 

resulting in side effects [2]. Therefore, the targeted therapy was developed to specifically 

block molecular targets regulating tumor formation and progression.

The targets of small molecule inhibitors are usually overexpressed in the cancer cells and 

located intracellularly. For example, the tyrosine kinase inhibitor, which targets the growth 

factor receptors or the downstream effectors recently emerged as the systemic therapy for 

cancer [2–4]. However, the inhibitors sometimes bind to a broad set of receptors or the 

downstream mediators, leading to reduced specificity and increased toxicity. Thus, 

monoclonal antibody-based cancer therapy has been established and becomes one of the 

most efficient and safe strategies for cancer treatment [5]. For example, therapeutic mAbs 

targeting the ERBB family including epidermal growth factor receptor (EGFR) and vascular 

endothelial growth factor (VEGF) showed significant therapeutic effect when treating 

patients with solid tumors [6,7]. Recent evidences showed that EGFR-specific antibodies 

extended patient survival with colorectal cancer [7,8]. Nevertheless, there are multiple 

hurdles for efficient antibody-based cancer treatment. For instance, physical properties and 

pharmacokinetics make it difficult for mAbs to penetrate the tumor tissue efficiently and 

homogeneously. Immune escape due to ineffective FcγR binding and immunosuppressive 

microenvironment leads to the reduced therapeutic efficacy [9,10].

Besides, neither inhibitors nor monoclonal antibodies can successfully treat cancer – a 

heterogenic disease – by suppressing a single target. Heterogeneity exists in expression 

between individual primary lesions, primary and metastatic lesions, and even tumor lesions 

before and after treatment. Particularly, it has been known tumors can develop resistant 

mechanisms in response to the treatment. For example, although the high-level target protein 

expression is detected before treatment, it may be downregulated during and after treatment 

as part of the resistance development. Furthermore, some cancer cells will develop the 

compensation mechanisms by activating other survival signaling pathways to overcome the 

targeted cancer treatment. For example, it has been reported that B-raf inhibitors such as 

vemurafenib and dabrafenib develop acquired drug resistance via hyperactivation of the 

PI3K/Akt pathway, leading to increased expression of adipocyte enhancer-binding protein 1 

(AEBP1) and activation of NF-κB in melanoma [11]. To this end, the therapeutic response 

to the targeted agents including small molecule inhibitors and mAbs is usually partial and 

only causes a transient delay in tumor growth, after which most tumors continue or even 

accelerate their progression and metastasis [12].

1.2 . Advantages of miRNA-based cancer therapy

miRNAs, on the other hand, can silence target genes efficiently and regulate a broad set of 

genes of interest simultaneously, which benefits treatment of cancer as a heterogenic disease. 
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It has been shown that targeting a set of related oncogenic genes or pathways simultaneously 

triggered synergistic therapeutic effect in cancer. In spite of targeting cancer cells only, 

miRNAs can also target the tumor-promoting stromal cells such as endothelial cells and 

tumor-associated fibroblasts to inhibit angiogenesis and tumor fibrosis, which are required 

during tumor formation, progression and metastasis [13–16]. Moreover, miRNAs, as natural 

antisense nucleotides, showed reduced immune response and low toxicity when compared to 

plasmid DNA-based gene therapy and protein-based drug molecules. Thus, miRNAs may 

play a significant role in cancer therapy. As a novel therapeutic strategy, several miRNA 

modulators have entered the clinical trials. Locked nucleic acid (LNA)-antimir-122 is the 

first drug to successfully enter Phase II trials for the treatment of hepatitis C virus (HCV) 

infection [17]. For cancer diagnosis, miRNA-126 targeting VEGF and EGFL7 showed the 

prognostic value to provide predictive information in relation to the therapeutic outcome of 

anti-angiogenic agents in metastatic colorectal cancer [18]. Accordingly, miRNA-based 

therapeutics may serve as promising anti-cancer drugs for the clinical application in cancer 

therapy if they can be efficiently and safely delivered to cancer cells.

The charged miRNAs have small size and low molecular weight making them possible to be 

formulated into an effective delivery system and become attractive options for clinical 

cancer therapy development. To this end, in order to achieve effective gene silencing in 

cancer cells, the development of strategies for efficient In vivo delivery and escape from 

blood clearance, enzyme degradation and intracellular trapping, such as an endosome, is 

required. This review will focus on current challenges and strategies for delivery of miRNAs 

In vivo through local and systemic or targeted administration. The strategies employed in In 
vivo miRNA delivery for cancer therapy are summarized in Table 1.

2. Mechanisms of miRNAs

The regulation of gene expression plays an important role in mediating cellular functions. 

Small RNA molecules, including short interfering RNAs (siRNAs) and miRNAs are 

effective modulators of gene expression through translation repression, chromatin 

remodeling or mRNA degradation [19]. After post-transcriptional modifications, the 

structures of the endogenous mature miRNAs are similar to the exogenous siRNAs. Both 

siRNAs and miRNAs are processed by the common enzyme — Dicer and incorporated into 

an active RNA-induced silencing complex (RISC). Subsequently, miRNAs and siRNAs 

share the same processing mechanism to achieve gene-silencing effect. However, siRNAs 

are exogenous double-stranded RNAs that bind to the target mRNA sequences via perfect 

sequence matching. In contrast, miRNAs are endogenous single-stranded RNAs targeting 

multiple sequences via imperfect pairing, which leads to simultaneous suppression of 

multiple target genes. It creates an overwhelming advantage when applied to cancer therapy.

miRNAs, referring to endogenous non-coding RNAs have recently emerged as master 

regulators of cancer. miRNAs can affect cancer progression through regulating the 

expression of target genes, which mediate cell cycle progression, metabolism, cell death, 

angiogenesis, metastasis and immunosuppression in cancer. As illustrated in Fig. 1, miRNAs 

are derived from 70-nucleotide hairpin-forming miRNA precursors (pre-miRNAs) after long 

RNA primary transcripts (pri-miRNAs) are cleaved by the ribonuclease III termed DROSHA 
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in the nucleus. Pre-miRNAs are subsequently transported to the cytoplasm by exportin-5 and 

further converted into double-stranded 18 ~ 25 nt RNAs by Dicer. Mature miRNAs, the short 

double strand RNAs (dsRNAs), are incorporated into the RISC complex composed of Dicer, 

many associated proteins, and target mRNAs carrying complementary sequences. One of the 

strands of mature miRNAs, known as the guide strand, binds to Argonaute (Ago) protein in 

the RISC complex, while the passenger strand is degraded. By the imperfect base pairing 

between the guide strands of miRNAs and the 3′ or 5′ untranslated region of the target 

mRNAs, miRNAs are able to regulate tens to hundreds of mRNAs. Despite only the 

imperfect base pairing between miRNAs and the 3′ or 5′ untranslated region of the target 

mRNAs is required for miRNAs to regulate the expressions of target mRNAs, the “seed” 

region (nucleotides 2 ~ 7 from the 5′ end of the miRNA) of the miRNA still have to be 

perfectly matched with the complementary mRNA sequence [20]. The miRNA–mRNA 

interaction suppresses the expression levels of the target genes through mRNA cleavage or 

translational regression. The gene suppression mechanism depends on the degree of 

complementarity sites between the miRNAs and mRNAs [21,22]. Extensive base pairing is 

required for Argonaute2 (Ago2) endonuclease-mediated mRNA cleavage, while moderate 

base pairing is adequate to achieve translational inhibition [21–23].

Interestingly, some miRNAs generated in the cytoplasm cannot only affect the function of 

the cell that produces the miRNAs, but also be released into the bloodstream and taken up by 

other cells to regulate gene expression of the distant target cells. These endogenous miRNAs 

released into plasma are packaged in microparticles (exosomes, microvesicles, and apoptotic 

bodies) or bound to RNA-binding proteins such as Ago2 or lipoprotein complexes such as 

high-density lipoprotein (HDL) to maintain their stabilities [24–26]. It was found that the 

cell-free miRNAs in plasma could also be detected and expressed in platelets, erythrocytes, 

and nucleated blood cells [27,28]. For example, of 79 tumor-specific circulating miRNAs, 

58% (46 of 79) are highly expressed in one or more blood cell types such as myeloid (e.g., 
miR-223, miR-197, miR-574-3p, and let-7a), lymphoid blood cells (e.g., miR-150), and red 

blood cells (e.g., miR-486-5p, miR-451, miR-92a, and miR-16) [29]. Consequently, 

miRNAs can target various gene expressions, contribute cell-to-cell communication and 

regulate the key cell signaling pathways to maintain regular functions in normal cells. Thus, 

abnormal miRNA expressions may participate in cancer formation and progression.

3. miRNAs in cancer

Misexpression or dysfunction of miRNAs is associated with tumor formation and 

progression via manipulating the oncogenic pathways that influence the processes in tumor 

progression, such as cell cycle regulation, apoptosis, senescence, metabolism, angiogenesis 

and metastasis.

3.1. Cell proliferation and cell death

Five groups of miRNAs, including the miR-15a/16 cluster, the miR-17/20 cluster, the 

miR-221/222 cluster, and the let-7 and miR-34 families, can target cell cycle regulators to 

control cell cycle checkpoints and progression [30]. Dysfunction of the cell cycle-related 

miRNAs increases cell proliferation, leading to tumor growth promotion. In contrast, recent 
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study has highlighted miRNAs as anti-apoptotic or pro-apoptotic regulators by targeting 

various mRNAs associated with key apoptotic pathways in cancer. For instance, 

miRNA-221/222 cluster targeting p27, PTEN, and PUMA, miRNA-128 targeting BAX and 

miRNA-17/19 cluster targeting BIM act as anti-apoptotic miRNAs to maintain survival of 

cancer cells and contribute to drug resistance [31–33]. On the other hand, pro-apoptotic 

miRNAs 15a/b and 16 targeting BCL2 family serve as anti-cancer guardians [34].

3.2. Metabolism

The miRNA expression profiles associated with metabolism are distinct from normal cells. 

miRNAs play as key regulators of metabolism in cancer cells to increase nutrient uptake and 

the accumulation of materials for controlling metabolic flux [35]. For example, miRNAs 

such as miR-133, miR-138 and miR-150 targeting glucose transporter, miR-33a/b targeting 

metabolic enzymes to regulate fatty acid metabolism and AMPK pathway and miR-29b 

targeting amino acid catabolism are involved in modulating cancer cell metabolism and 

biogenesis to support tumor growth and proliferation [36–39].

3.3. Metastasis and angiogenesis

miRNAs have impact on both intrinsic signaling pathways of cancer cells and interactions 

between cancer cells and tumor stroma to regulate invasion and metastasis. For instance, 

miR-200 family and miR-205 are downregulated in various tumors to promote epithelial– 

mesenchymal transition (EMT) progression and facilitate cancer cell invasion [40]. miR-29b 

upregulated in breast cancer cells suppresses the expression of MMP2 and MMP9 and 

consequently triggers extracellular matrix (ECM) remodeling to facilitate cancer cell 

migration and local invasion [40]. Besides, angiogenesis is required for supporting the 

formation of both primary and metastatic lesions. miR-424 triggered by hypoxia stabilizes 

hypoxia-inducible factor-α (HIF-α) and enhances angiogenesis in tumor microenvironment 

[41]. miR-503 suppresses the expression of angiogenic factors like fibroblast growth factor 

(FGF) 2 and VEGF-A. miR-503 is downregulated in hepatocellular carcinoma (HCC), 

resulting in increased angiogenesis and tumorigenesis [42].

3.4. miRNAs in cancer diagnosis and cancer therapy

As we summarized above, the aberrant expressions of miRNAs are associated with tumor 

formation, progression and metastasis. Moreover, the abnormal expressions of miRNAs are 

also correlated with the resistant mechanisms to chemotherapy. Thus, miRNAs can serve as 

both diagnostic and prognostic biomarkers in cancer [43]. For example, miR-155 

overexpression and let-7a downregulation are associated with poor disease outcome in lung 

cancer [44]. For prognostic applications, overexpression of miR-221 and miR-222 are 

associated with poor therapeutic outcome of anti-estrogenic therapies such as Tamoxifen and 

Fulvestran, while tumor suppressor miR-205 is responsible for enhanced therapeutic effect 

of tyrosine kinase inhibitors [45–47]. Many reports have demonstrated the significance of 

microRNAs as diagnostic and prognostic biomarkers. Besides, miRNAs can also serve as 

either therapeutic agents or therapeutic targets in cancer. In the following sections, we will 

further focus on the therapeutic applications of miRNAs.
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4. miRNAs: therapeutic agents or therapeutic targets?

According to the functions of miRNAs, cancer types and stages, both antagonists and 

mimics are developed as miRNA-based therapeutic strategies to achieve tumor regression 

[48]. miRNA antagonists – single-stranded oligonucleotides with miRNA complementary 

sequences – are designed to interrupt the miRNA processing as well as RISC assembly, and 

result in increased expression of the tumor suppressor genes. For example, miR-21, 

overexpressed in various tumor types, downregulates many tumor suppressor genes 

regulating cell proliferation, cell death, metastasis and chemoresistance. miR-21 antagonist 

reverses EMT phenotype and blocks angiogenesis in breast cancer through inactivation of 

AKT and MAPK pathways [49,50]. The targeted endogenous miRNA can also serve as a 

noninvasive biomarker for early cancer diagnosis, prediction of response to miRNA 

antagonist therapy and therapy monitoring.

By contrast with miRNA antagonists, miRNA mimics, known as miRNA replacement 

therapy, play an opposite role in regulating the expression of target genes. Genomic loss of 

tumor suppressor miRNAs can be restored by miRNA mimics, which behave like 

endogenous miRNAs. Moreover, miRNA mimics cannot only provide obvious benefits to 

those cancer cells with low tumor suppressor miRNA expression levels, but also show 

therapeutic benefits in cancer with normal miRNA expression levels. For example, the 

miR-34 family is dysregulated in different cancer types including several epithelial tumors, 

melanomas, neuroblastomas, leukemias and sarcomas [51]. miR-34 serves as a downstream 

effector of p53 pathway, which is defective in about half of human cancers and plays an 

important role in the suppression of tumor development [52]. Therefore, miR-34 is referred 

as a potential tumor suppressor and a possible therapeutic target. Interestingly, delivery of 

miR-34 mimics to cancer cells with both reduced and normal expression levels of miR-34 

showed growth inhibitory effect. Therefore, miRNA mimics could be a promising treatment 

for various types and stages of cancer diseases.

During miRNA processing, double-stranded miRNAs are loaded onto the RISC complex and 

one strand of the miRNAs, the passenger strand, is cleaved by Ago2. Furthermore, the other 

RNA strand, the guide strand, remains and matches the complementary sequences of the 

target mRNAs, leading to mRNA cleavage or translational repression. Thus, the information 

of the miRNA guide strands is more important for designing miRNA antagonists or miRNA 

mimics.

Both miRNA antagonists and miRNA mimics are low molecular weight oligonucleotides 

and thus easier to deliver into the target cells compared with large viral vectors or plasmids 

normally used for gene therapy. However, the lack of correlation between in vitro and In 
vivo efficacies was observed due to inefficient In vivo delivery of miRNAs. Like other 

therapeutic oligonucleotides, the delivery of the miRNA antagonists or mimics as cancer 

therapies encounter several barriers such as poor bioavailability, limited tissue permeability 

and payload instability.
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5. Pharmacokinetics and pharmacodynamics of miRNAs

miRNA antagonists or miRNA mimics, the poly-anionic molecules with low molecular 

weights, are highly water-soluble and suitable for intravenous and subcutaneous injections. 

After intravenous administration, the plasma levels of miRNA antagonists or miRNA 

mimics reduce quickly. They further distribute broadly but later accumulate mostly in the 

liver and kidney. Tissue concentrations of miRNA antagonists or miRNA mimics in the 

brain, heart and lung decline rapidly after systemic injection. Nevertheless, tissue 

concentrations of miRNA-based therapeutics in the liver and kidney remain high and 

sustained levels up to 24 h after injection [53]. The modified miRNAs show distinct 

pharmacokinetics from unmodified ones. As unmodified miRNAs, plasma levels of modified 

miRNA antagonists or miRNA mimics are reduced within hours and accumulated into 

tissues. However, after entering into cells, the modified miRNAs remain stable that their 

clearance rate in tissues is reduced, leading to prolonged therapeutic benefit.

The duration of the pharmacological effects (or pharmacodynamics) of miRNA antagonists 

or miRNA mimics is determined by their retention in the target tissues. On the other hand, 

the onset of their pharmacological effects is often delayed because of the time delay between 

internalization of miRNA antagonists/miRNA mimics and regulation of the target proteins. 

Furthermore, the fact that miRNA-based therapeutics may indirectly mediate the diseased 

phenotype further delays the pharmacological effect. For example, both miR-122 and 

mi-208 antagonists have delayed effect on their target cholesterol and β-MHC respectively 

and cause a postponed change in the disease phenotype [54–56]. To this end, there are still 

many challenges remaining in developing miRNAs as effective therapeutic agents in cancer.

6. Current challenges in miRNA delivery

Several problems encountered in clinical development of miRNA delivery limit the 

application of miRNAs as a therapeutic option to treat cancer [57–60] (Fig. 2).

6.1. Poor penetration of miRNAs into tumor tissues due to mechanical and biological 
barriers

The major challenge of miRNA delivery into cancer is to successfully deliver miRNA 

antagonists or miRNA mimics to the target tumor tissue with efficient penetration of cargos 

into the tumor. The leaky structure and compression of abnormal tumor vessels lead to poor 

blood perfusion, which reduces the delivery efficacy of naked miRNAs [61] (Fig. 2). In 

addition, the slowdown of miRNA diffusion in solid tumors caused by higher interstitial 

fluid pressure holds the hurdle of miRNA delivery in cancer therapy [62]. The complex 

extracellular matrix (ECM) also plays an important role to hinder miRNAs from reaching 

the cancer cells (Fig. 2). For example, the fibrotic microenvironment of pancreatic cancer 

results in poor diffusion of therapeutic drugs [63, 64]. The nonmalignant cells in the tumor 

microenvironment also appear to be an important extracellular barrier. For instance, tumor-

associated macrophages, neutrophils and monocytes can nonspecifically uptake and trap 

miRNAs encapsulated in the delivery system [65]. Besides, the blood–brain-barrier (BBB) 

represents a problem to the miRNA therapy involving cancer in central nervous system. 
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Tight junctions between the brain endothelial cells reduce miRNA diffusion and delivery 

into brain tumors [66].

6.2. Unmodified miRNA antagonists and miRNA mimics are quickly degraded and cleared 
in the blood circulation

The other challenge that remains in miRNA delivery is to maintain the stability and integrity 

of miRNAs in circulation. Naked miRNAs are degraded within seconds by the abundant 

nucleases such as serum RNase A-type nucleases in the blood (Fig. 2) [67]. In addition, 

naked miRNAs are cleared rapidly via renal excretion, leading to a short half-life in systemic 

circulation [68]. miRNAs carried by nanoparticles larger than 100 nm in diameter increase 

the reticuloendothelial system (RES) clearance in the liver, spleen, lung and bone marrow, 

which results in non-specific uptake by innate immune cells such as monocytes and 

macrophages (Fig. 2) [69].

6.3. miRNAs, as other ssRNAs or dsRNAs have the potential to induce immunotoxicity

Systemic miRNA delivery, like other types of nucleic acid, activates innate immune system 

leading to unexpected toxicities and significant undesirable side effects. Systemic 

administration of miRNA duplexes can trigger secretion of inflammatory cytokines and type 

I interferons (IFNs) through Toll-like receptors (TLRs) (Fig. 2). TLRs 3, 7 and 8 are 

activated by single or double-stranded RNAs (dsRNAs) to drive innate and adaptive immune 

responses. These TLRs sensing dsRNA molecules in cellular endosomal and lysosomal 

compartments stimulate the type I interferon (IFN) pathway and trigger cytokine production 

according to the structure, sequence, and the delivery system [70,71]. IFN induced by the 

activation of TLRs further upregulates the expressions of TLRs and primes the surrounding 

immune cells such as monocytes, dendritic cells (DCs), natural killer (NK) cells, and B cells 

to become more sensitive to RNA stimulation. For example, dsRNAs with uridine- and 

guanosine-rich sequences up-regulate gene expression of TLRs 3 and 7, and trigger the 

release of IFN-α, IFN-β, interleukin (IL)-1β, and interleukin (IL)-6 [72]. TLR 8 is activated 

by dsRNAs containing AU-rich sequences. TLRs are expressed by different types of cells 

and involved in different immune responses as they bind to the corresponding RNAs. For 

example, TLR 3 is mainly expressed in mature myeloid DCs. When dsRNAs bind to TLR 3, 

they activate DCs to secret IL-12, and trigger immune responses more polarized toward 

CD4+ [73]. TLR 7 is expressed in plasmacytoid DCs and B cells. TLR 8 is expressed in 

myeloid DCs, monocytes and macrophages. TLR 8 bound to RNAs secrets IL-6 and tumor 

necrosis factor (TNF).

Although the perspective of immunogenicity of either single-stranded or double-stranded 

RNAs is well established, the immune response triggered by miRNAs still requires further 

studies. miR-21 and miR-29a can bind to TLR 7 and TLR 8 as agonists, leading to NF-κB 

signaling activation and secretion of IL-6 and TNF-α, which locally promote cancer cell 

growth and metastasis when treating cancer, and may cause systemic immune toxicity [74]. 

miRNAs may bind to the TLR 7 and TLR 8 via the GU-rich motif (GUUG for miR-21 and 

GGUU for miR-29a), which is crucial for RNA–TLR recognition [75,76].
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However, some miRNAs induced by TLRs, such as miR-146, miR-9, miR-147, miR-21 and 

miR-155, can block the activation of inflammatory pathways in myeloid cells. For example, 

miR-146 attenuates inflammation by inhibition of IL-1R-associated kinases 1 and 2, TNFR-

associated factor, and the downstream molecules of TLRs. miR-155 suppresses the 

expression of interleukin-1β and pro-inflammatory protein TAK1-binding protein 2, and 

decreases the activity of NF-κB transcription factor. Such mechanism leads to an anti-

inflammatory effect in human myeloid-derived DCs [77,78]. When the anti-inflammatory 

miRNAs are delivered as therapeutic agents, they may suppress the systemic immune 

response instead of causing immune toxicity.

6.4. Neurotoxicity occurs as the result of exposure to miRNAs

When it comes to toxicity induced by miRNA-bound TLRs, neurotoxicity is another cause 

of concern. Some miRNAs can trigger neurodegeneration and cause neurotoxicity through 

TLRs (Fig. 2). For example, miRNA let-7b can bind and activate TLR 7 signaling in neurons 

and induce neurodegeneration [79]. The GU-rich sequence of let-7b displays a binding motif 

interacting with TLR 7 [80]. Furthermore, it has been shown that the intrathecal injection of 

let-7b into mice caused significant axonal injury and loss of neurons. Thus, let-7b may cause 

marked neuron damage and injury. Occurrence of neurotoxicity with exposure to miRNAs 

might be a problem when using miRNAs for systemic cancer therapy.

6.5. Poor intracellular delivery and aggregation within the endosomes of naked miRNAs 
result in inefficient gene silencing

Even though some miRNAs can reach the target tumor tissues successfully, there is another 

challenge remaining unsolved — how to increase the uptake of miRNAs in cancer cells. The 

endocytosis process also creates a challenge for the intracellular delivery of miRNAs, as 

most of the miRNAs are trapped in the endosomes and are further transported to late 

endosomes/lysosomes for degradation (Fig. 2). Strategies to enhance endosomal escape and 

release therapeutic miRNA cargoes into the cytoplasm to achieve target gene silencing are 

necessary. Moreover, gene silencing in cancer cells should be sufficiently prolonged to 

achieve therapeutic benefit.

6.6. Off-target effects of miRNAs

After miRNAs are delivered into the cytoplasm and released from the endosome, one of the 

biggest issues regarding miRNA therapy is the off-target effect of miRNAs. Since miRNAs 

are designed to target multiple pathways via imperfect matching with 3′ UTRs, they may 

cause unwanted gene silencing of the tumor suppressor genes. Such off-target gene silencing 

may cause potential toxicities and reduced therapeutic effects. The combination strategy can 

be added into the miRNA therapy to avoid unintended off-target effects [81]. A 

multifunctional nanoparticle co-delivering miRNA, siRNA and mRNA cocktails to silence 

several oncogenic pathways and activate the tumor suppressive and off-target pathways 

simultaneously can minimize unintended side effect and maximize the therapeutic effect.
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6.7. Insufficient or saturated miRNA processing enzymes lead to dysfunction of 
therapeutic miRNAs

One of the important factors to regulate the silencing efficacy of miRNAs is the expression 

of RISC complex. RISC is a key enzyme that facilitates the mature miRNAs interacting with 

complementary 3′ UTRs of target mRNAs, enabling miRNAs to regulate the target gene 

expression [23]. However, in certain cancer cells or under certain tumor microenvironment 

such as hypoxia, the activity of RISC complex is downregulated [82]. Thus, the tumor 

suppression miRNAs are dysfunctional. For example, EGFR, a well-characterized oncogene 

in human cancers, inhibits the function of tumor suppressor miRNAs via phosphorylation 

and inactivation of argonaute 2 (AGO2) under hypoxic conditions [83]. In addition, 

generation of mature miRNAs requires Dicer, another key enzyme involved in miRNA 

processing. In some tumor types such as ovarian cancer, Dicer is downregulated leading to 

miRNA dysregulation [84]. Moreover, the extrinsic therapeutic miRNA may compete with 

endogenous miRNA for the processing enzymes, which may lead to decreased expression of 

mature tumor suppressor miRNA [85,86]. In addition, the saturation of miRNA processing 

enzymes may also result in the inefficient gene-silencing efficacy of the extrinsic therapeutic 

miRNA [87]. Thus, the enzyme activity in the target tumors should be carefully evaluated 

and considered when miRNAs are delivered and introduced as therapeutic agents against 

cancer. Besides, using mature miRNA or miRNA-mimicking siRNAs as therapeutic agents 

may minimize the potential disadvantage of miRNA therapy due to over-saturation of the 

processing enzymes.

Some success has already been achieved in the application of RNA therapeutics including 

siRNA and miRNA in some topical or localized target tissues (i.e. the eye, the lungs, and the 

central nervous system) [56,88,89]. However, critical challenges remain before safe and 

highly efficient miRNA therapeutics can be derived for clinical applications in cancer 

therapy. Thus, many groups have worked on overcoming those hurdles to achieve safe, 

specific and efficient miRNA therapy. Several carrier systems and delivery strategies were 

developed to solve the problems that arise during In vivo delivery of miRNAs for treating 

cancer. These studies reveal the possibility for regulation of cancer-related gene expression 

profiles via systemic administration of therapeutic miRNAs or miRNA antagonists. Among 

various cancer treatments, miRNAs might represent a revolution in cancer therapy.

7. In vivo miRNA delivery strategies for cancer therapy

A lot of work has been done in exploiting and evaluating the features of tumor and tumor 

microenvironment to improve RNA delivery. There are two classes of strategies for miRNA 

delivery — local and systemic delivery.

7.1. Local delivery of miRNAs

Effective gene-silencing and anti-tumor effects have been demonstrated via intratumoral 

injection or local administration of miRNAs with or without carriers. Local delivery of 

miRNAs can achieve the desired gene silencing due to higher bioavailability. Furthermore, 

local delivery of miRNAs shows reduced toxicity when compared with systemic delivery. 

Several local delivery strategies have been developed, ranging from direct intratumoral 

Chen et al. Page 10

Adv Drug Deliv Rev. Author manuscript; available in PMC 2016 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



injection of miRNA vectors to the nanoparticle formulation with surface modification. For 

example, intracranial delivery of miRNA is developed for treatment of glioblastoma 

multiforme (GBM) [90]. Topical delivery is another example. For skin disease, topical 

administration allows the easy accessibility of the target region, a focused delivery and 

potential for systemic delivery with reduced side effect [91]. Inoue et al. has demonstrated 

the successful delivery of siRNA via electroporation silenced the target gene expression in 

the skin [92]. Zheng et al. showed that spherical nucleic acid nanoparticle conjugates (SNA-

NCs), gold cores modified by a dense shell of highly oriented, covalently immobilized 

siRNA, can efficiently penetrate skin and silence the target gene [93]. Topical delivery of 1.5 

μM EGFR siRNA incorporated in SNA-NCs to hairless mouse skin almost completely 

silenced EGFR expression and inhibited downstream MAPK signaling. Although the topical 

delivery hasn't been applied in miRNA-based therapy yet, we believe it may be a promising 

delivery system for miRNA-based therapeutic agents in skin cancer.

The modified miRNAs were used for local miRNA delivery. For example, intratumoral 

administration of cholesterol-conjugated 2′-O-methyl-modified miR-375 mimics could 

target astrocyte elevated gene-1 (AEG-1) and significantly suppress tumor growth in 

hepatoma xenograft models [94]. Virus vectors were used to deliver let-7 miRNA into lung 

cancer. let-7 miRNA family usually serves as tumor suppressor and is downregulated in non-

small-cell lung cancer (NSCLC). Trang et al. showed intranasal delivery of lentiviral vector 

expressing let-7a increased let-7 expression in lung and effectively inhibited the growth of 

K-ras-dependent lung tumors [95]. They tested the tumor growth inhibition effect in 

subcutaneously inoculated human H460 lung tumor models — the most aggressively 

growing NSCLC xenografts. They showed that local delivery of synthetic let-7b triggered a 

specific inhibitory response and the tumor size could be reduced by 60 to 70% compared 

with control groups after four continuous treatments at 3-day treatment intervals. Moreover, 

polymer-based delivery system was applied for local delivery of miRNAs. Loss of miR-145 
function in various cancers decreased apoptosis and promoted proliferation. In addition, 

downregulation of miR-33a in different types of cancers upregulates the oncogenic kinase 

Pim-1 leading to tumor formation and growth. After local administration of the unmodified 

miRNAs — miR-145 and miR-33a formulated in low molecular weight polyethyleneimine 

(PEI)/miRNA complexes, intact miR-145 and miR-33a could be successfully delivered into 

mouse xenograft colon carcinoma and achieve significant anti-tumor effects [96].

Besides, some siRNAs can act as miRNA antagonists or miRNA inducers delivered 

intratumorally for cancer therapy. For example, DCAMKL-1 specific siRNA delivered by 

poly(lactide-co-glycolide)-based nanoparticles (NPs) were injected intratumorally into 

colorectal cancer xenografts. NP-DCAMK-1 siRNA downregulated proto-oncogene c-Myc 

and Notch-1 through upregulation of let-7a and miR-144 miRNA expressions in colorectal 

cancer xenograft model. Intratumoral administration of NP-DCAMKL-1 siRNA into 

colorectal cancer xenografts led to tumor growth inhibition [97].

Local delivery of miRNAs improved therapeutic effect in cancer therapy, especially in the 

readily accessible primary tumors such as melanoma, breast cancer or cervical cancer. The 

advantage of local delivery is more focused delivery of miRNAs into target tumor tissues 

without non-specific uptake of therapeutic miRNAs by normal healthy organs and undesired 
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toxicity induced by systemic miRNA delivery. However, since local delivery is not an option 

for late stage metastatic cancer, it has a limited role in miRNA cancer therapy. To this end, it 

is important to develop systemic delivery system to fill the current need for miRNA cancer 

therapy.

7.2. Systemic delivery of miRNAs

Significant progress has been made in developing the systemic miRNA delivery strategies to 

overcome the hurdles of In vivo miRNA delivery and enhance the efficacy of cancer therapy. 

The first strategy developed for systemic delivery of miRNAs into tumors is to synthesize 

the chemical modified miRNAs or miRNA antagonists such as anti-miRNA oligonucleotides 

(AMOs) [98]. Such modifications can prevent miRNA antagonists or miRNA mimics from 

nuclease degradation in the blood circulation. Moreover, the modified oligonucleotides have 

higher binding affinity with the target sequence. However, the modified miRNAs require a 

targeting moiety for intracellular miRNA uptake. In addition, the small modified miRNA 

molecules may show rapid renal and hepatic clearance resulting in short half-lives and their 

tumor uptake and biodistribution are still limited.

The second delivery strategy is further established to design the nanoparticle formulation for 

passive diffusion into tumor tissues based on the enhanced permeability and retention (EPR) 

effect [99,100]. The leakiness of tumor-associated neovasculature contributes to the EPR 

effect, by which the nanoparticles with optimal size distribution can accumulate in tumor 

microenvironment compared with healthy tissues. Although miRNAs formulated in 

nanoparticles can enhance favorable tissue distribution and tumor localization compared 

with naked miRNAs, the degree of enhancement is often not sufficient. Thus, the tumor-

targeting approach is needed to enhance the miRNA uptake in cancer cells. Third-generation 

delivery strategy has recently emerged to add surface modifications to the nanoparticles, 

which allow specific binding to the target cancer cells and facilitate the internalization of the 

nanoparticles into the cancer cells through receptor-mediated endocytosis [101,102].

As more and more approaches were developed for In vivo delivery of miRNAs, those studies 

open new opportunities for miRNA-based cancer therapeutics. This review further focuses 

on current developments in the systemic delivery of miRNAs.

7.2.1. Modified miRNA antagonists or miRNA mimics—Several chemical 

modifications can enhance the stability of miRNA modulators and improve the systemic 

delivery efficacy by increasing the resistance to degradation by nucleases in the blood 

circulation.

7.2.1.1. The 2′ OH group modification: The 2′-OH in the ribose ring is easily attacked by 

nuclease action. 2′-O-methyl (2′-OMe), 2′-O-methoxyethyl or 2′-fluoro carried by the 

modified anti-miRNA oligonucleotides show enhanced stability, higher binding affinity with 

the targeted miRNA and improved gene silencing In vivo compared with unmodified anti-

miRNA oligonucleotides [103]. Krützfeldt et al. showed that intravenous administration of 

antisense 2′-OMe oligoribonucleotides efficiently and specifically silenced the targeted 

endogenous miRNAs expressed in the liver, lung, kidney, heart, intestine, fat, skin, bone 
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marrow, muscle, ovaries and adrenals in mice. They demonstrated the chemically engineered 

miRNA antagonist has a potent and long-lasting effect [104].

7.2.1.2. LNA modification: LNA is a conformational RNA analog that specifically interacts 

with the complementary miRNA with high affinity and “neutralizes” the function of the 

targeted miRNA (Fig. 3A). LNA oligonucleotides can silence the function of miRNAs In 
vivo. For example, a LNA-miRNA antagonist was developed to inhibit the function of 

miR-122 – a miRNA regulating HCV replication – in vitro and In vivo [105]. By systemic 

administration of the LNA-miRNA antagonist into mice, miR-122 levels were 

downregulated dose-dependently in the liver and the silencing effect was sustained for 

several weeks. The study demonstrated the promising potential of the LNA-miRNA 

antagonist in inhibition of HCV replication and HCC tumor formation.

Seed-targeting 8-mer LNA oligonucleotides, termed tiny LNAs are developed as miRNA 

antagonists to target seed region of miRNAs. Tiny LNAs can simultaneously silence 

miRNAs within families sharing the same seed region, efficiently eliminate the functions of 

miRNAs within the families and thus upregulate the target mRNAs. Systemic delivery of 

anti-miR-21 tiny LNA showed significant repression of the miR-21 luciferase reporter in 

orthotopic breast tumors [106]. It demonstrated that anti-miR-21 tiny LNA can be 

successfully delivered to tumor sites and this antagonist molecule can serve as a platform for 

developing new therapeutic strategies to treat cancer.

7.2.1.3. The passenger strand modification: Modified miRNA mimics can increase the 

stability and avoid the interferon secretion triggered by TLRs when delivered In vivo [107]. 

To achieve the maximized protection, the heavier modifications on the passenger strand were 

designed to protect the duplex miRNA mimics from nuclease degradation and 

immunotoxicity induction. Such modifications included application of nucleotide analogs, 

backbone modifications and terminal modifications such as addition of inverted bases and 

biotin or alkyl groups [48,69]. The advantage of this approach is that the target specificity 

and silencing activity still remain in the guide strand that is less modified [58,108]. 

Accordingly, Akao et al. edited the sequences of the passenger strand of the miR-143 duplex 

and modified the 3′-overhang portion of miR-143, resulting in enhanced efficacy and better 

stability [109]. Systemic administration of the modified miR-143 showed 15% (low dose) to 

50% (high dose) tumor growth inhibition effect on xenografted DLD-1 human colorectal 

tumor models. Their finding indicated that the tumor suppressor miRNA mimics, whose 

passenger strands were chemically modified may serve as a potential candidate for cancer 

treatment.

Although modified miRNA therapeutics have shown enhanced stability In vivo and 

increased affinity with the target sequence, they fail to show efficient and specific uptake by 

tumor cells, and elevated accumulation of miRNAs in tumor. Consequently, modified or 

unmodified miRNA modulators have been engineered by using viral and non-viral carriers. 

The biocompatible and biodegradable carriers for miRNAs with favorable size and surface 

modification are designed to improve tumor-specific delivery, achieve immune evasion and 

reduce toxicity. Both viral and non-viral vectors can serve as carriers for miRNAs.
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7.2.2. Viral delivery of miRNAs—Vectors encoding miRNA antagonists or miRNA 

mimics can be carried by viral vectors (Fig. 3B). Several viruses such as lentiviruses, 

adenoviruses and adeno-associated viruses (AAVs) can be used to deliver vectors encoding 

miRNAs into the cell nuclei and efficiently express miRNAs. To aid specific delivery into 

tumors, the targeting moieties can be added on the viral capsid through genetic manipulation 

of viral capsid proteins to modulate the affinity between viral vectors and cancer-specific 

receptors. For example, lentiviral vectors expressing miR-15a/16 were systemic delivered 

into the de novo New Zealand Black (NZB) mouse model, a naturally occurring age-

associated mouse model of chronic lymphocytic leukemia (CLL). Systemic lentiviral 

delivery of miR-15a/16 restored the expression of the targeted miRNAs and ameliorated 

disease manifestations of CLL [110]. In addition, miR-494, induced by tumor-derived 

factors such as TGF-β1, increases tumor accumulation and pro-angiogenesis and metastasis 

activity of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. 

Intravenous administration of lentivirus containing miR-494 antagonists significantly 

decreased tumor-infiltrating MDSCs, reduced the activity of MDSCs and inhibited the tumor 

growth and metastasis in the murine breast cancer model [111]. However, lentiviruses 

integrate their own reverse transcribed DNAs into the host cellular genome, which may lead 

to insertional mutagenesis and activation of oncogenic pathways. Thus, non-integrating 

adenoviruses and AAVs are used as alternative miRNA carriers. Unlike lentiviruses, 

adenoviruses and AAVs keep their own genomes in episomal form. For example, AAVs 

were used as tools to perform miRNA replacement therapy for liver cancer and showed 

promising therapeutic effect. Systemic delivery of miR-26a carried by AAVs showed cell 

cycle arrest and apoptosis induction in cancer cells and tumor growth inhibition in HCC. 

Furthermore, systemic administration of AAV-miR-26 displayed undetectable toxicity [112]. 

It indicated that miRNA replacement therapy using AAVs provides a safe and efficient 

strategy for cancer therapy.

Recent studies demonstrate exosomes, nano-sized lipid vesicles, produced and released by 

virus-infected cells can encapsulate and deliver RNA therapeutics into the target cells. Pegtel 

et al. showed that virus-infected cells packaged virus-encoded RNAs into exosomes and the 

RNA cargoes were later taken into non-infected target cells [113, 114]. Subsequently, it 

indicated that exosomes could be exploited for therapeutic miRNA delivery strategies, with 

increased targeting efficacy [115]. For example, the exosomes derived from viruses 

specifically targeting liver cells can be engineered to carry therapeutic miRNAs for treating 

liver cancer [115].

Despite the fact that viral vectors can efficiently deliver miRNA antagonists or miRNA 

mimics into tumor tissues and regulate target gene expressions, they are more immunogenic 

and more difficult to scale up manufacturing compared with non-viral delivery systems. 

Moreover, the possibility of the production of a replication competent virus may cause the 

potential of pathogenetic disease. For example, some retroviruses develop CNS disease as a 

consequence of their active replication [116,117]. As discussed above, virus delivery system 

may generate insertional mutagenesis, leading to upregulation of oncogenes and cancer 

formation [118]. Thus, although viral vector-mediated miRNA delivery is an attractive 

option for cancer therapy, the extra care and refinement of this technology are required to 
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minimize the adverse effect. To this end, non-viral carriers such as polymer or lipid-based 

delivery vehicles are developed as safer and more manufacturable delivery systems for 

miRNA cancer therapy.

7.2.3. Non-viral delivery of miRNAs—Even though non-viral delivery systems usually 

show lower transfection efficacy and shorter duration of target gene expression compared 

with viral vectors, recent studies successfully demonstrated that non-viral carriers with 

rational design and suitable modifications can also achieve clinically relevant efficiency. The 

last part of this review is to provide an update and concise perspective on development and 

applications of non-viral miRNA delivery for cancer therapy.

7.2.3.1. Inorganic nanoparticles-based miRNA delivery: Lately, inorganic materials such 

as gold, carbon and silica are used to compose a non-viral gene delivery system with 

controlled size and morphology. The unique physical and chemical properties of inorganic 

nanoparticles offer potential for development of a biocompatible, non-immunogenic and 

non-toxic delivery system, which is also easier to scale up manufacturing. Gold 

nanoparticles functionalized by cysteamine were developed to incorporate therapeutic 

miRNAs and deliver them into target tumor cells [119]. AuNP-S-polyethylene glycol or 

AuNP-S-PEG showed high miRNA loading capacity and low toxicity and triggered efficient 

endosomal release of the cargoes in cancer cells. Furthermore, miRNA containing AuNP-S-

PEG showed efficient gene silencing effect and inhibited proliferation of cancer cells.

Another example of inorganic miRNA delivery system is the silica-based vehicle [101]. 

Silica nanoparticles modified with disialoganglioside GD2 (GD2) antibody specifically 

deliver miR-34a into neuroblastoma, which overexpresses GD2 (Fig. 3C). Systemic 

administration of miR-34a containing anti-GD2-silica nanoparticles resulted in increased 

apoptosis in tumor tissues, a marked reduction in vascular density of tumors and inhibition 

of tumor growth. However, the inorganic gene delivery system is limited by drawbacks such 

as lack of cargo protection, low loading efficiency, and inefficient endosomal escape.

7.2.3.2. Polymer-based miRNA delivery: Polymers such as poly(lactic-co-glycolic acid) or 

PLGA and PEI are commonly used as miRNA carriers for gene therapy in cancer (Fig. 3D). 

For the purpose of efficient and effective delivery into cancer cells or more specifically, 

cytosol, many studies have concentrated on designing polymer-based nanoparticles with 

special modifications. PLGA – which has been studied for many years and well-

characterized by its safe, biocompatible, and biodegradable nature – is chosen for making 

nanoparticles with high production efficiency and stable mechanical property. PLGA-based 

nanoparticles are capable of sustained release of drugs in cytosol through endo/ lysosomal 

escape owing to reversal of the surface charge after cellular internalization [120–123]. 

Furthermore, surface modification of PLGA nanoparticles with PEG greatly increases the 

circulation time and retention of nanoparticles in tumor sites In vivo [124]. Here are some 

studies utilizing PLGA-based nanoparticles for delivery of miRNAs as cancer therapy. 

Antagonists of miR-21 and miR-10b encapsulated in PEGylated-PLGA nanoparticles were 

systemically injected into mice bearing subcutaneous breast cancer tumor model. It showed 

that nanoparticles with size about 150 to 200 nm and encapsulation efficiency around 60–

70% sustainably released the miRNA antagonists for a long period of time. The fluorescent 
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labeled miR-21 antagonists encaptured in the PLGA nanoparticles still remained in SUM159 

triple negative breast cancer cells even 126 h after treatment as detected by flow cytometry. 

For In vivo experiment, miRNAs delivered by PLGA nanoparticles were accumulated in the 

tumor tissues 24 h after injection. Thus, the miRNA antagonists containing PEGylated-

PLGA nanoparticles may achieve great therapeutic effect In vivo [125]. Babar et al. 

examined whether the induction or withdrawal of miR-155 expression would cause tumor 

regression. They showed that PLGA-based nanoparticles, with surface modification of a 

cell-penetrating peptide, performed a great delivery efficiency and therapeutic effect in a 

murine lymphoma model via local administration [126]. In the cultured cells, antagonists of 

miRNAs delivered by the peptide-modified PLGA nanoparticles showed 65% reduction of 

miR-155 levels, and unmodified nanoparticles yielded 23% reduction. For the therapeutic 

outcome, treatment of peptide-modified PLGA nanoparticles loaded with scramble control 

antagonists showed an approximately 10-fold increase in tumor volume compared with 

starting volume, while treatment of miR-155 antagonists delayed tumor growth to less than 

an approximately twofold increase compared with starting volume. Furthermore, the 

nanoparticles were retained in the tumor tissues 2 days after injection. These studies indicate 

that PLGA-based nanoparticles can be a potential approach for efficient miRNA delivery.

Another widely used material – polyethyleneimine (PEI)– is water-soluble and positively 

charged. In physiological milieus, the positively charged PEI-based nanoparticles can 

encapsulate negatively charged DNA, siRNAs or miRNAs by electrostatic interaction. After 

endocytosis of the nanocomplexes, the strong buffer effect of the complex causes endosome 

swelling by influx of protons and water through the ‘proton sponge effect’ in endosomes, 

and subsequently promote endosome destabilization and release of miRNA-encapsulated 

nanoparticles into cytosol, achieving the gene silencing effect [127–129]. Some studies have 

provided successful examples of utilizing PEI-based nanoparticles in miRNA delivery. 

miR145 encapsulated in nanospheres with a short polyurethane and a branched 

polyethylenimine (PU-PEI) greatly reduced growth of lung adenocarcinoma (LAC) that 

carries cancer stem cell-like properties. Furthermore, PU-PEI-miR145 in combination with 

ionizing radiation and cisplatin nearly eradicated metastatic tumor nodules. The study 

indicated that effective delivery of miR145 can promote inhibition of tumor growth. 

Furthermore, it shows that PU-PEI nanocarriers have great potential for miRNA-based 

cancer therapy [130]. Another study also successfully validated efficient systemic delivery 

of therapeutic miRNAs in cancer via PEI-based formulations. Locally and systemically 

administrations of miR-145 and miR-33a formulated with low molecular weight PEI showed 

repression of c-Myc and knockdown of Pim-1 in mouse models of colon carcinoma, 

respectively [96]. The miR-145 and miR-33a containing PEI delivery system suppressed 

cancer cell proliferation, increased apoptosis and caused profound reduction of tumor 

growth.

Synthetic polymers as nanocarriers can be a promising approach in miRNA delivery. Among 

different polymers, cationic polymers are potent carriers to stabilize and deliver miRNAs 

due to strong electrostatic interactions with miRNA cargoes and enhanced cellular uptake 

via negatively charged cell membrane. These novel polymer-based nanoparticles become 

potential therapeutic agents to treat cancer [131]. However, their systemic toxicity must be 

carefully evaluated.
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7.2.3.3. Lipid-based miRNA delivery: Liposomes, composed of a lipid bilayer and an 

internal aqueous phase are used to incorporate and deliver cargoes such as chemotherapy 

drugs and nucleic acids into tumor lesions. Similar to other nucleic acid therapeutics, the 

lipids such as cationic, anionic, neutral lipids or a mixture thereof can be used to form 

lipoplexes for miRNA delivery. The lipid carriers can protect miRNAs from degradation and 

increase the stability of miRNAs in blood circulation. Thus, liposomes have been developed 

as useful tools to systemically deliver miRNAs. When miRNAs are formulated with cationic 

lipids, the negatively charged hydrophilic miRNAs bind to the positively charged lipids, 

which form complexes to enhance the uptake of the incorporated miRNAs through 

interaction between the positively charged complexes and negatively charged cell 

membranes (Fig. 3E).

For example, miR-122, which is usually downregulated in HCC, serves as a tumor 

suppressor miRNA in liver cancer. A cationic lipid nanoparticle - LNP-DP1, composed of 2-

dioleyloxy-N,N-dimethyl-3-aminopropane (DOTMA), egg phosphatidylcholine, cholesterol 

and cholesterol-polyethylene glycol was developed to deliver miR-122 for treatment of 

HCC. The miR-122 mimic delivered by LNP-DP1 restored the gene downregulation, 

inhibited angiogenesis and suppressed tumor growth in HCC without induction of systemic 

toxicity [132]. In addition, miR-133b, which plays an important role in tumor suppression, 

has been selected as a therapeutic target. Pre-miRNA-133B containing DOTMA lipoplexes 

led to downregulation of prosurvival gene MCL-1 in target lung cancer cells in vitro [133]. 

Systemic delivery of pre-miR-133b encapsulated in DOTMA lipoplexes resulted in 30% 

accumulation and increased mature miR-133b expression in lung. Furthermore, miR-29b 

was also reported as a tumor suppressor and downregulated in lung cancer tissues [134]. 

miR-29b delivered systemically via cationic lipoplexes (LPs)-based carriers reduced the 

expression of the key target oncogenes such as cyclin-dependent protein kinase 6 (CDK6), 

DNMT3B, and myeloid cell leukemia sequence 1 (MCL1) and blocked tumor growth in 

NSCLC.

Wu et al. also reported a cationic lipid-based delivery system composed of DOTMA and 

cholesterol to formulate therapeutic miRNAs for cancer therapy. miR-133b, a tumor 

suppressor targeting the prosurvival gene MCL-1, regulates cell proliferation and sensitizes 

the lung cancer cells to chemotherapy. After intravenous administration, lipoplexes tended to 

accumulate in lung tissue (30%). Furthermore, pre-miR-133b formulated in lipoplexes 

efficiently increased the expression of mature miR-133b in lung, indicating that cationic 

lipoplexes may serve as a promising delivery system for miRNA-based therapeutics in lung 

cancer [133].

Solid lipid nanoparticles (SLNs) were also applied as miRNA carriers for cancer therapy. A 

SLN system containing cationic lipids was established to deliver miR-34a mimics into 

cancer stem cells (CSC), which cause tumor growth and drug resistance [135]. Treatment 

with miR-34a loaded SLNs led to induction of apoptosis in CSCs and increased survival of 

CSC-bearing mice. These studies showed that cationic lipoplexes could serve as a potential 

miRNA delivery system for cancer therapy. However, several problems caused by the 

positively charged lipids such as type I and type II interferon induction and liver toxicity 
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hinder the development and clinical application of cationic lipid-based delivery system 

[57,58].

To overcome these drawbacks, neutral lipids were used to replace the cationic lipids and 

serve as the non-toxic carriers for miRNA delivery. Wiggins et al. demonstrated that 

miR-34a formulated in a neutral lipid-based delivery vehicle achieved significant miRNA 

accumulation and downregulation of the target genes in the lung tumor tissues in NSCLC 

xenograft mouse models [136]. Systemic delivery of miR-34a containing vehicles displayed 

unchanged levels of cytokines and liver enzymes in the blood circulation, indicating the 

neutral lipid-based delivery system is a safe and non-immunogenic formulation. 

Furthermore, formulated miR-34a inhibited tumor growth significantly in xenograft mouse 

models of NSCLC. They further continued the study and expanded the application of the 

neutral lipid-based delivery system. Trang et al. later demonstrated that systemic delivery of 

miR-34a or let-7 miRNA mimics in the neutral lipid-based formulation showed a 60% 

reduction of tumor burden in a K-ras-activated autochthonous mouse model of NSCLC 

compared with a control miRNA [137]. The study provides a promising delivery platform 

for the systemic delivery of tumor suppressing miRNAs without inducing toxicity.

Even though neutral lipid-based delivery systems are less toxic than cationic lipid-based 

formulations, the transfection efficacy of miRNAs incorporated in neutral lipids remains 

poor. In addition, vehicles composed of neutral lipids have a lower loading efficacy for 

miRNAs compared with miRNA-cationic liposome complexes. To achieve both – high 

efficacy and safety – in one formulation, we have developed a nanoparticle formulation – 

liposome–polycation– hyaluronic acid (LPH) post-inserted DSPE-PEG – to systemically 

deliver miRNAs into tumor tissues with low toxicity [102]. We modified LPH nanoparticles 

with GC4 single-chain variable fragment (scFv), a tumor-targeting human monoclonal 

antibody, to effectively deliver miRNAs to lung metastasis in a syngeneic murine model 

(Fig. 3F).

In our studies, we found that miR-34a delivered by GC4-targeted nanoparticles significantly 

silenced the expression of the target protein survivin and inactivated the downstream 

signaling such as MAPK pathway in the B16F10 lung metastasis. Apoptosis was induced 

after the treatment with miR-34a containing GC4-targeted nanoparticles in the B16F10 lung 

metastasis. To increase the anti-tumor effect of the miRNA containing nanoparticles, we 

further co-delivered miR-34a and multi-targeted siRNA cocktails against c-Myc, MDM2 

and VEGF via GC4-targeted nanoparticles. Systemic administration of siRNAs and miR-34a 

in the GC4-targeted nanoparticles showed a significant inhibition of the metastatic tumor 

load in the lung. In addition, the pro-inflammatory cytokines and liver enzymes in the blood 

remained unchanged after treatment with GC4-targeted LPH nanoparticle. Thus, GC4-

targeted LPH nanoparticle formulation is a safe and effective vehicle to deliver miRNAs for 

cancer therapy either at the early stage of primary tumor growth or the late stage of 

metastasis development.

In conclusion, liposomes were developed as an effective miRNA delivery system with 

reduced toxicity and side effect. The lipid-based carriers developed to date can facilitate a 

rapid route for miRNA-based cancer therapy into the clinic.
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8. Future perspectives

There has been tremendous improvement in understanding the mechanisms of miRNAs and 

the development of strategies for miRNA delivery In vivo. However, some problems are still 

unsolved. One of the main issues is poor cancer tissue permeability. The penetration of 

miRNA-containing delivery vesicles with or without targeting moieties in the tumor 

microenvironment still remains inefficient due to heterogeneous tumor perfusion and 

interstitial fibrosis leading to poor efficacy outcome in the preclinical studies.

The latest generation delivery system is to design a “smart” nanoparticle, whose size and 

property are changeable due to different microenvironments, conditions or time series. The 

smart nanoparticles contain multi-component and multi-function carriers leading to 

controlled release and efficient diffusion of the therapeutic cargoes in tumor tissues. The aim 

is to change the structures or sizes of smart nanoparticles by using a stimulus property of the 

tumor microenvironment, such as low pH, low partial oxygen pressure, or high 

concentrations of proteases. An example is a pH-sensitive nanoparticle formulation. 

Materials with biodegradable and pH-sensitive properties can be used to formulate a 

nanoparticle-based miRNA therapy for tumor-specific delivery [138,139]. The structure of 

pH-sensitive nanoparticles is destabilized and undergoes rapid dissolution when the pH of 

the surrounding environment is lower than 6.5 and hence facilitated release of the cargoes 

encapsulated in the nanoparticles within the acidic tumor microenvironment. Another 

example is an enzyme-sensitive nanoparticle formulation. A linker susceptible to proteases 

cleavage such as MMP-2 cleavage can be conjugated to the well PEGylated nanoparticles to 

achieve the efficient tumor penetration of the modified nanoparticles [140]. The size of 

nanoparticles can be changed from 100 nm to 10 nm after MMP-2 cleavage. There is 

abundant MMP-2 released at the region where the invasion starts and at the sites of 

angiogenesis, leading to efficient enzymatic degradation of the modified nanoparticles by 

MMPs. The size-reduced nanoparticles can more readily penetrate leaky vessels into the 

dense collagen matrix and release the cargoes such as therapeutic miRNAs into the tumor 

microenvironment. Thus, miRNAs delivered by the smart nanoparticles may remain 

sustained gene silencing and promote anti-tumor effects.

In addition to designing tunable nanoparticles, nanoparticles targeting tumor-associated 

fibroblasts in the tumor stoma provide another therapeutic strategy to modulate tumor 

microenvironment and inhibit tumor progression. Some miRNAs such as miR-31, 155 and 

214 mediating the activation or differentiation of the tumor-associated fibroblasts can serve 

as a therapeutic target for treating cancer [141–143]. To overcome the stroma-mediated 

hurdles, miRNAs can be delivered by vesicles modified by the ligands or antibodies directly 

or indirectly targeting stromal cells via binding to endogenous receptors. One example is to 

conjugate chemotherapy drugs with albumin-nanoparticles. The albumin-conjugated 

nanoparticles can bind to secreted protein acidic and rich in cysteine (SPARC) and 

efficiently deliver the cargoes into both tumor and stromal cells, leading to enhanced tumor 

accumulation [144–146]. Another example is to develop lipid-based nanoparticles 

containing either gemcitabine monophosphate or cisplatin targeting tumor-associated 

fibroblast [147]. The combination of gemcitabine monophosphate nanoparticles and 

Cisplatin nanoparticles significantly depleted tumor stroma and triggered synergistic anti-
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tumor effects in a stroma-rich bladder tumor model. The nanoparticle-based combination 

treatment increased levels of apoptotic cells by approximately 1.3 folds and decreased 

infiltration of activated tumor-associated fibroblast by more than 87% in the tumor tissue 

compared with free drugs [147]. Thus, it provides an alternative for cancer treatment without 

targeting cancer cells directly by developing a stroma-specific delivery system, resulting in 

the enhanced uptake of those therapeutic cargoes, including miRNAs in the tumor site and 

significant tumor regression.

Another novel approach is to apply cell-based delivery mechanisms to deliver miRNA 

mimics and miRNA antagonists for cancer therapies. For example, neural stem cells and 

mesenchymal stem cells can serve as drug carriers targeting GBM [148]. Mesenchymal stem 

cells own the advantages such as efficient delivery of the cargos, specific tropism to the 

target region, ease to amplification and collection and ability to suppress allogeneic 

responses [149,150]. Thus, mesenchymal stem cells can be used to deliver the therapeutic 

cargos such as miRNA mimics or miRNA antagonists into the target cancer cells via gap 

junctional intercellular communication and secreted exosomes [151,152]. Munoz et al. 

successfully blocked miR-9 expression in GBM by delivery of miR-9 antagonist through 

MSCs resulting in reversed chemoresistance of GBM cells [153]. It revealed cell-based 

delivery systems might be the next generation strategies for systemic delivery of miRNA 

therapeutics to cancer cells.

Moving forward, we believe that miRNA-based therapy will play a key role in cancer 

therapy in the future. Particularly, personalized cancer medicine can be realized by designing 

the specific miRNA mimic or antagonist sets for individuals based on individual patient 

miRNA expression profiles. We expect those new strategies developed can overcome the 

biological barriers for miRNA delivery and reveal great therapeutic potential of miRNAs in 

the oncology clinic.
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Abbreviations

AAVs adeno-associated virusesy

AEBP1 adipocyte enhancer-binding protein 1

AEG-1 astrocyte elevated gene-1

Ago argonaute protein

Ago2 argonaute2 protein

AMOs anti-miRNA oligonucleotides

BBB blood–brain-barrier

CDK6 cyclin-dependent protein kinase 6
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CLL chronic lymphocytic leukemia

CSC cancer stem cells

DCs dendritic cells

dsRNAs short double strand RNAs

ECM extracellular matrix

EGFR epidermal growth factor receptor

EMT epithelial–mesenchymal transition

EPR enhanced permeability and retention

FGF fibroblast growth factor

GBM glioblastoma multiforme

HCC hepatocellular carcinoma

HCV hepatitis c virus

HDL high-density lipoprotein

HIF-α hypoxia-inducible factor-α

IFN type I interferon

IL interleukin

LAC lung adenocarcinoma

LNA locked nucleic acid

LPH liposome–polycation–hyaluronic acid

mAbs monoclonal antibodies

MCL1 myeloid cell leukemia sequence 1

MDSCs myeloid-derived suppressor cells

miRNA microRNA

NPs nanoparticles

NSCLC non-small-cell lung cancer

PEG polyethylene glycol

PEI polyethyleneimine

PLGA poly(lactide-co-glycolide)

pre-miRNAs hairpin-forming miRNA precursors
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pri-miRNAs long RNA primary transcripts

PU polyurethane

RES reticuloendothelial system

RISC RNA-induced silencing complex

scFv single-chain variable fragment

siRNA short interfering RNA

SLNs solid lipid nanoparticles

SNA-NCs spherical nucleic acid nanoparticle conjugates

SPARC secreted protein acidic and rich in cysteine

TLRs Toll-like receptors

TNF tumor necrosis factor

VEGF vascular endothelial growth factor
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Fig. 1. 
Schematic representation of the microRNA generation and silencing mechanisms. Hairpin-

forming pre-miRNAs are generated by pri-miRNAs, which is cleaved by Drosha. Later, pre-

miRNAs are transported into the cytoplasm by exportin-5 and further converted into double-

stranded mature miRNAs by Dicer. Mature miRNAs are incorporated into the RISC 

complex, unwound and annealed to the target mRNAs carrying complementary sequences. 

miRNAs are able to regulate tens to hundreds of mRNAs via the imperfect base pairing 

between miRNAs and the 3′ or 5′ untranslated region of the target mRNAs. The miRNA-

mRNA interaction silences the target genes through mRNA cleavage or translational 

inhibition.
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Fig. 2. 
Barriers of In vivo miRNA delivery for cancer therapy. The leaky structure and compression 

of abnormal tumor vessels lead to poor blood perfusion, which reduces the delivery efficacy 

of naked miRNAs. Extravascular miRNAs encounter the ECM, which blocks the penetration 

of miRNAs into tumors. Intravascular barriers including enzyme degradation disrupt the 

unmodified naked miRNAs. Also, miRNAs carried by nanoparticles larger than 100 nm in 

diameter increase the RES clearance in the liver, spleen, lung and bone marrow, which 

results in non-specific uptake by innate immune cells such as monocytes and macrophages. 

Moreover, miRNAs can cause immunotoxicity by triggering secretion of inflammatory 

cytokines through Toll-like receptors. Neurotoxicity may also be induced via miRNA-bound 

TLRs. Once miRNAs reach the target tumor cells, the intracellular miRNAs may be trapped 

in the endosomes and degraded in lysosomes. Off-target effects of miRNA may cause 

unwanted side effects and insufficient or saturated miRNA processing enzymes may result in 

deficiency of miRNAs.
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Fig. 3. 
Strategies for miRNA delivery In vivo. Many strategies such as modified miRNA 

antagonists or miRNA mimics, viral vectors, inorganic or organic non-viral delivery systems 

have been established for delivery of miRNAs for cancer therapy. miRNA antagonists 

modified with LNAs bind to the targeted miRNAs with high affinity (A). Vectors encoding 

miRNA antagonists or miRNA mimics can be carried by viral vectors for In vivo delivery 

(B). Silica nanoparticles modified with GD2 antibody specifically deliver miRNAs into 

tumors overexpressing GD2 (C). miRNAs can be encapsulated in organic non-viral delivery 

systems such as PLGA, PEI (D) and liposome based nanoparticle (E) that are modified 

either with ligands or with antibodies for tumor-targeted delivery (F).
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Table 1

Summary of studies using miRNA for cancer therapy in vivo.

Vehicle Targeted miRNA Antagonist
or mimics

Model Effect Reference

Local Delivery

Cholesterol-conjugated 2′-O-
 methyl-modified

miR-375 Mimics Hepatoma xenograft Inhibition of tumor 
growth

[94]

Lentiviral vector let-7 Mimics Non-small-cell lung cancer 
(NSCLC)

Inhibition of the growth 
of K-ras-dependent lung 
tumors

[95]

Polyethyleneimine (PEI) miR-145
miR-33a

Mimics Colon carcinoma xenograft Induction of apoptosis, 
inhibition of tumor 
growth and
downregulation of the 
oncogenic kinase Pim-1

[96]

Systemic delivery

Seed-targeting tiny LNAs miR-21 Antagonist Breast cancer Repression of the 
miR-21 function in 
tumor

[106]

Cationic liposomes miR-143 Mimics Colorectal carcinoma Inhibition of tumor 
growth

[109]

Lentiviral vectors miR-15a/16 Mimics Chronic lymphocytic leukemia Restoration of 
miR-15a/16 expression 
and inhibition
of tumor cell 
proliferation

[110]

miR-494 Antagonist Breast cancer Inhibition of tumor 
growth and metastasis

[111]

Adeno-associated viruses
 (AAVs)

miR-26a Mimics Hepatocellular carcinoma Inhibition of tumor cell 
proliferation and 
induction of apoptosis

[112]

Silica nanoparticles miR-34a Mimics Neuroblastoma Induction of apoptosis, 
reduction in vascular 
density of
tumors and inhibition of 
tumor growth

[101]

PEGylated-PLGA miR-21 Antagonists Breast cancer Efficient delivery of 
antagomiR-21 and 
prolonged release

[125]

PLGA-penetratin miR-155 Antagonists Lymphoma Induction of apoptosis 
and reduction of tumor 
growth

[126]

PEI miR-145
miR-33a

Mimics Colorectal carcinoma Reduction of tumor cell 
proliferation and tumor 
growth

[130]

LNP-DP1 miR-122 Mimics Hepatocellular carcinoma Inhibition of 
angiogenesis and tumor 
growth

[132]

Cationic DOTMA lipoplexes miR-133b Mimics NSCLC Increased expression of 
miR-133b and 
downregulation
of prosurvival gene 
MCL-1

133]

miR-29b Mimics NSCLC Reduced expression of 
the key target oncogenes 
and
inhibition of tumor 
growth

[134]
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Vehicle Targeted miRNA Antagonist
or mimics

Model Effect Reference

Neutral lipid miR-34a Mimics NSCLC Inhibition of tumor 
growth

[136]

miR-34a
let-7

Mimics NSCLC Inhibition of tumor cell 
proliferation and 
induction of apoptosis

[137]

LPH-PEG-GC4 miR-34a Mimics Lung cancer Reduction of tumor 
growth, induction of 
apoptosis,
inhibition of survivin 
expression and 
downregulation
of pathway

[102]
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