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Abstract

Objectives. Neutrophil elastase (NE), a granule-associated enzyme, participates in connective tissue break-

down and promotes cytokine release and specific receptor activation during various inflammatory diseases

like RA. NE is increased in the SF and cartilage of RA patients and represents a target for the development

of new therapeutic possibilities. The present research aimed to evaluate the preclinical pharmacological

profile of the N-benzoylpyrazole derivative EL-17, a potent and selective NE inhibitor, in a rat model of RA.

Methods. Complete Freund’s Adjuvant (CFA) was injected in the tibiotarsal joint and the effect of acute or

repeated treatments with EL-17 (1�30 mg/kg by mouth) were evaluated.

Results. On day 14 after CFA injection, a single administration of EL-17 significantly reduced CFA-de-

pendent hypersensitivity to mechanical noxious stimuli and the postural unbalance related to spontaneous

pain. To evaluate the preventive efficacy, EL-17 was administered daily starting from the day of CFA

treatment. Behavioural measurements performed on days 7 and 14 showed a progressive efficacy of EL-

17 against hypersensitivity to mechanical noxious and non-noxious stimuli, as well as a decrease of hind

limb weight-bearing alterations. Histological evaluation of the tibiotarsal joint (day 14) demonstrated sig-

nificant prevention of articular derangement after EL-17 (30 mg/kg) treatment. The protective effects of EL-

17 directly correlated with a complete reversion of the plasma NE activity increase induced by CFA.

Conclusions. The NE inhibitor EL-17 relieved articular pain after acute administration. Furthermore, re-

peated treatment reduced the development of hypersensitivity and protected joint tissue, revealing a

disease-modifying profile.

Key words: polymorphonuclear neutrophil, neutrophil serine proteases, CFA, mechanical and thermal hyper-
sensitivity, elastase activity, joint derangement, TGF-b

Rheumatology key messages

. EL-17 decreases neutrophil elastase activity in a rat RA model.

. EL-17 reduces adjuvant-induced articular pain in rats.

. EL-17 prevents pain progression and joint derangement related to adjuvant-induced arthritis in rats.

Introduction

PMNs play a critical role in host defence against microbial

pathogens and secrete a number of proteases involved in

the immune response. Nonetheless, prolonged neutrophil

accumulation can damage host tissue and has been

linked to chronic inflammation, which in turn is thought

to contribute to the development of autoimmunity [1, 2].
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Thus PMNs are a prominent feature of joint inflammation

and cartilage alteration in RA, a chronic systemic inflam-

matory disease characterized by destructive synovitis, re-

sulting in significant pain, deformity and disability [3].

The major components of PMN azurophilic granules are

neutrophil serine proteases (NSPs), including neutrophil

elastase (NE), CTG and PR3, which participate in the

non-oxidative pathway of intracellular and extracellular

pathogen destruction [4]. Neutrophil exposure to inflam-

matory stimuli evokes the release of these positively

charged enzymes [5], which are fully active in a neutral

environment [6]. NSPs can proteolytically modify chemo-

kine and cytokine activity, interact with specific cell-

surface receptors and potentially participate in neutrophil

migration by cleaving adhesion molecules [6]. In particu-

lar, NE is able to hydrolyse important connective tissue

components, such as elastin, collagens, proteoglycan,

fibronectin, laminin and other extracellular matrix proteins

components [7]. In the SF and cartilage of patients with

RA, PMN elastase activity and expression have been

shown to be increased [8, 9].

The physiological activity of NE is regulated by endogen-

ous inhibitors, mainly members of the serine proteinase

inhibitor family (serpins) [10], such as a1-protease inhibitor

(a1-PI) [11] and a2-macroglobulin [12]. Moreover, endogen-

ous low-molecular weight PIs such as the secretory leuco-

cyte PI elafin and its biologically active precursor trappin-2

have a pivotal role in the control of NSP enzymatic activity

[13]. In recent years, continued efforts to identify and opti-

mize novel inhibitors has led to compounds characterized

by promising profiles [14] for the treatment of inflammatory

diseases such as RA [7, 15]. Sivelestat (ONO-5046), a com-

petitive and selective inhibitor of NE, is currently available

for the clinical treatment of acute lung injury associated

with systemic inflammatory response syndrome [16]. The

efficacy of sivelestat against neuropathic pain was recently

described [17], highlighting the benefit of leucocyte elas-

tase inhibitors in persistent pain [18].

Our interest in this field led us to develop new classes of

NE inhibitors with indazole and cinnoline scaffolds [19�21].

The most interesting series, featuring N-benzoylindazoles

derivatives, was extensively investigated using struc-

ture�activity relationship analysis and biological profiling.

Structure�activity relationship analysis clearly demon-

strated that the benzoyl substituent at N-1 is essential for

activity, while analysis of specificity showed that the new

compounds are relatively selective for human neutrophil

elastase vs other evaluated proteases. Kinetic experiments

indicated that the N-benzoylindazoles act as competitive

and pseudo-irreversible inhibitors, and studies of molecular

modelling elucidated the effective fit of active compounds

into the NE catalytic site. Of the compounds characterized,

compound EL-17 (14f of Crocetti et al. [20]), which showed

a good balance of potency (IC50 = 20 nM), selectivity and

spontaneous hydrolysis, was selected for the present study

and is represented in Fig. 1.

The purpose of the present study was to evaluate the EL-

17 profile in a rat model of RA, including measurement of its

efficacy against pain and cartilage tissue derangement.

Materials and methods

Animals

Sprague Dawley rats (Harlan, Varese, Italy) weighing

�200�250 g at the beginning of the experimental proced-

ure were used. Animals were housed in the Centro

Stabulazione Animali da Laboratorio (University of

Florence) and used at least 1 week after their arrival.

Four rats were housed per cage (size 26 cm� 41 cm); ani-

mals were fed a standard laboratory diet and tap water ad

libitum and kept at 23 ± 1 �C with a 12 h light/dark cycle

(light at 7 A.M.). All animal manipulations were carried out

according to the European Community guidelines for

animal care [DL 116/92, application of the European

Communities Council Directive of 24 November 1986

(86/609/EEC)]. The ethical policy of the University of

Florence complies with the Guide for the Care and Use

of Laboratory Animals of the US National Institutes of

Health (NIH Publication No. 85-23, revised 1996;

University of Florence assurance number A5278-01).

Formal approval to conduct the experiments described

was obtained from the Animal Subjects Review Board of

the University of Florence. Experiments involving animals

have been reported according to Animal Research:

Reporting of In Vivo Experiments guidelines [22]. All efforts

were made to minimize animal suffering and to reduce the

number of animals used.

Complete Freund’s adjuvant-induced arthritis

Articular damage was induced by injection of complete

Freund’s adjuvant (CFA; Sigma-Aldrich St Louis, MO,

USA), containing 1 mg/ml of heat-killed and dried

Mycobacterium tuberculosis in paraffin oil and mannide

monooleate, into the tibiotarsal joint [23, 24]. Briefly, the

rats were lightly anesthetized by 2% isoflurane, the left leg

skin was sterilized with 75% ethyl alcohol and the lateral

FIG. 1 1-(3-methylbenzoyl)-5-nitro-1H-indazole-3-

carboxylic acid ethyl ester
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malleolus located by palpation. A 28-gauge needle was

then inserted vertically to penetrate the skin and turned

distally for insertion into the articular cavity at the gap

between the tibiofibular and tarsal bone until a distinct

loss of resistance was felt. A volume of 50 ml of CFA was

then injected (day 0). Control rats received 50 ml of saline

solution (day 0) in the tibiotarsal joint.

Administration of EL-17

EL-17 was synthesized following the procedure re-

ported [20] and suspended in a 1% solution of carboxy-

methylcellulose. In the acute protocol, EL-17 (1, 10, 30

and 100 mg/kg) was administered orally once on day 14

after CFA intra-articular (i.a.) injection and the effects were

evaluated over time. A second experimental protocol to

evaluate the preventive efficacy of EL-17 was performed

by administering the molecule orally (10 and 30 mg/kg)

daily starting from the day of CFA i.a. injection.

Behavioural measurements were conducted on days 7

and 14, 24 h after the last treatment with EL-17.

Moreover, on day 14 a new administration of EL-17 was

performed in the repeatedly treated animals to measure

an eventual additive effect.

Paw-pressure test

The nociceptive threshold in the rat was determined with

an analgesimeter (Ugo Basile, Varese, Italy) according to

the method described by Leighton et al. [25]. Briefly, con-

stantly increasing pressure was applied to a small area of

the dorsal surface of the hind paw using a blunt conical

mechanical probe. Mechanical pressure was increased

until vocalization or a withdrawal reflex occurred while

rats were lightly restrained. Vocalization or withdrawal

reflex thresholds were expressed in grams. Rats scoring

<40 g or >75 g during the test before drug administration

were rejected (25%). For analgesia measures, mechanical

pressure application was stopped at 120 g.

Incapacitance test

Weight-bearing changes were measured using an incapa-

citance apparatus (Linton Instrumentation, Norfolk, UK) to

detect changes in postural equilibrium after a hind limb

injury [26]. Rats were trained to stand on their hind paws

in a box with an inclined plane (65� from horizontal). This

box was placed above the incapacitance apparatus. This

allowed us to independently measure the weight that the

animal applied on each hind limb. The value reported for

each animal is the mean of five consecutive measure-

ments. In the absence of hind limb injury, rats applied

an equal weight on both hind limbs, indicating postural

equilibrium, whereas an unequal distribution of weight

on the hind limbs indicated a monolateral decreased

pain threshold. Data are expressed as the difference be-

tween the weight applied to the limb contralateral to the

injury and the weight applied to the ipsilateral limb

(�weight).

Von Frey test

The animals were placed in 20 cm� 20 cm Plexiglas

boxes equipped with a metallic mesh floor, 20 cm above

the bench. Animals were allowed to habituate themselves

to their environment for 15 min before the test. An elec-

tronic Von Frey hair unit (Ugo Basile, Varese, Italy) was

used: the withdrawal threshold was evaluated by applying

forces ranging from 0 to 50 g with a 0.2 g accuracy. A

punctate stimulus was delivered to the mid-plantar area

of each anterior paw from below the mesh floor through a

plastic tip, and the withdrawal threshold was automatic-

ally displayed on the screen. The paw sensitivity threshold

was defined as the minimum force required to elicit a

robust and immediate withdrawal reflex of the paw.

Voluntary movements associated with locomotion were

not considered as a withdrawal response. Stimuli were

applied to each anterior paw at 5 s intervals.

Measurements were repeated five times and the final

value was obtained by averaging the five measurements

[27, 28].

Plantar test

The Hargreaves radiant heat method was carried out as

reported by Tao et al. [29]. The rats were placed individu-

ally in clear plastic chambers of the Ugo Basile plantar test

apparatus for 20 min prior to the experiment for the pur-

pose of adaptation. Heat stimulation was applied at infra-

red intensity 60 (IR 60) on the plantar surface of the paw

with a 30 s cut-off time. The paw withdrawal latency time

was measured. Measurements were repeated up to three

times and the final value was obtained by averaging the

results.

Evaluation of TGF-b concentration

On day 14, venous blood was collected using heparinized

syringes (Westmed, Tucson, AZ, USA). The TGF-b con-

centration (BioLegend, San Diego, CA, USA) was mea-

sured by ELISA using a specific anti-rat polyclonal

antibody.

Dosage of NE activity

On day 14, venous blood was collected using heparinized

syringes (Westmed). The elastase activity was evaluated

as described by Yoshimura et al. [30] and Fujimura et al.

[31]. Briefly, 180ml of 0.1 mM elastase substrate (N-

methoxysuccinyl-Ala-Ala-Pro-Valp-nitronaliline; Sigma

Aldrich, Milan, Italy) solubilized in 0.1 M tris(hydroxy-

methyl)aminomethane l HCl buffer (pH 8.0) containing

0.5 M NaCl was incubated with 20 ml of plasma at 37 �C

for 24 h. The amount of p-nitroanilide produced was mea-

sured at 405 nm and considered as the NE activity level.

Histological evaluation

Animals were sacrificed by cervical dislocation. Legs were

cut under the knee, flayed and fixed in 4% formaldehyde

in PBS for 48 h at room temperature. Subsequently, sam-

ples were decalcified by treatment with 0.76 M sodium

formate, 1.6 M formic acid solution in H2O for 4 weeks

with a change of solution every 7 days. At the end of the
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decalcification, these samples were dehydrated in alcohol

and embedded in paraffin. Sections (6 mm thick) of the

tibiotarsal joint and the phlogistic fibrous pannus located

around the joint were haematoxylin and eosin stained and

analysed qualitatively by two independent observers in a

blind fashion.

Statistical analysis

Behavioural measurements were performed on eight rats

for each treatment carried out in two different experimen-

tal sets. For elastase activity measurements, experiments

were performed in triplicate on samples for rats. Results

were expressed as mean (S.E.M.) with one-way analysis of

variance. A Bonferroni’s significant difference procedure

was used as a post hoc comparison. P-values <0.05 or

<0.01 were considered significant. Data were analysed

using the Origin 9 software (OriginLab, Northampton,

MA, USA). For histological qualitative evaluations, two

sections for each animal were analysed.

Results

Acute effect of EL-17 on CFA-induced articular pain

The acute effect of EL-17 was evaluated 14 days after

CFA intra-articular treatment. In Fig. 2, hypersensitivity

to a mechanical noxious stimulus (paw pressure test)

showed that the weight tolerated on the ipsilateral paw

in the CFA + vehicle group decreased to 41.6 g (S.E.M.

1.8) with respect to the control (vehicle + vehicle) value

of 68.3 g (S.E.M. 1.1). EL-17 administered orally induced a

significant effect starting from 10 mg/kg: the pain thresh-

old of the ipsilateral paw increased by 60% 15 min after

treatment and by 75% after 30 min. The effect dis-

appeared at 60 min. Thirty and 100 mg/kg EL-17 were

also active, showing slightly increased efficacy (Fig. 2A).

The postural unbalance related to spontaneous pain

was evaluated measuring hind limb weight-bearing alter-

ations (incapacitance test). The difference between the

weight loaded on the contralateral and the ipsilateral

paw was significantly increased in the CFA + vehicle

group [63.2 g (S.E.M. 2.1)] compared with the control

group [6.7 g (S.E.M. 4.9)] (Fig. 2B). EL-17 10, 30 and

100 mg/kg similarly reduced the �weight value over time

after a single administration, peaking between 15 and

30 min after treatment (unbalance decreased by �60%)

(Fig. 2B).

Effect of repeated treatment with EL-17 on CFA-
induced articular pain

To evaluate the preventive effects of EL-17, a second

treatment protocol was applied. The compound was

orally administered daily (10 and 30 mg/kg) starting from

the same day of CFA i.a. injection and behavioural meas-

urements were performed on days 7 and 14. The

CFA + vehicle�treated rats tolerated a paw pressure on

the ipsilateral paw of 44.4 g (S.E.M. 0.6) and 43.8 g (S.E.M.

0.7) on days 7 and 14, respectively, compared with con-

trol animals [64.4 g (S.E.M. 0.6)] (Fig. 3A). The group treated

repeatedly with 10 mg/kg EL-17 showed a pain threshold

increase of 53 and 73% on days 7 and 14, respectively,

which is consistent with a progressive disease-modifying

effect (Fig. 3A). The highest dose (30 mg/kg) showed com-

parable preventive effects. Values measured on the

contralateral paw did not show EL-17 activity on the

normal pain threshold (data not illustrated). In addition,

the measurements were repeated after a new injection

on day 14 (supplementary Table S1, available at

Rheumatology Online). Over 60 min, both dosages of EL-

17 maintained similar efficacy without additive effects

(supplementary Table 1, available at Rheumatology

Online).

The pain threshold was also evaluated by the Von Frey

test, which employs a mechanical stimulus that does not

normally provoke pain (Fig. 3B). The ipsilateral paw with-

drawal threshold of the CFA + vehicle group decreased to

13.8 g (S.E.M. 0.8) on day 7 and 13.4 g (S.E.M. 1.0) on day

14, compared with the vehicle + vehicle group at 24.3 g

(S.E.M. 1.2). EL-17 treatments significantly prevented

CFA-induced hypersensitivity, with progressively increas-

ing efficacy during the treatment. Both dosages increased

the paw withdrawal threshold by �23% on day 7 and

�45% on day 14 (Fig. 3B). The effects of repeated treat-

ments with EL-17 were evaluated on CFA-dependent hind

limb weight-bearing alterations by the incapacitance test

(Fig. 3C). The increased unbalance [50.3 g (S.E.M. 3.5) on

day 7 and 57.9 g (S.E.M. 1.9) on day 14, compared with the

control value 3.6 g (S.E.M. 1.7)], was reduced on day 7 with

10 mg/kg EL-17 (48%) and 30 mg/kg EL-17 (32%). On day

14, both dosages were able to decrease unbalance by

�44% (Fig. 3C).

Finally, the pain threshold to thermal noxious stimuli

was evaluated by the plantar test, applying a heat stimu-

lation (IR 60) to the injected paw with a 30 s cut-off time.

CFA treatment induced a slight alteration on day 7 [6.5 s

(S.E.M. 0.5) vs 9.0 (S.E.M. 0.4) for control animals] that van-

ished on day 14. EL-17 treatment did not appear to alter

this response (supplementary Table S2, available at

Rheumatology Online).

TGF-b plasmatic levels

CFA i.a. injection was able to induce a plasmatic increase

of TGF-b (day 14; Table 1). The repeated treatment with

EL-17 did not significantly prevent this systemic alteration

(Table 1).

NE activity measurement

On day 14 after repeated treatments with EL-17, plasma

samples were collected from all groups and plasma NE

activity was evaluated. The NE enzymatic activity was

about doubled in the CFA + vehicle animals compared

with the controls (Fig. 4). The plasma NE activity of EL-

17-treated rats (both dosages) was comparable to or less

than the control rats (Fig. 4), indicating EL-17 effectively

inhibited NE in vivo during these treatments.

Morphological analysis of tibiotarsal joint

The effect of EL-17 on morphological derangement of the

tibiotarsal joint was evaluated in repeatedly treated
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animals on day 14. As shown in Fig. 5, CFA injection

induced a total ablation of the joint space, which appears

to be replaced by fibrous tissue. Articular cartilage com-

pletely disappeared (CFA + vehicle vs vehicle + vehicle).

Animals treated with 10 mg/kg EL-17 showed an ablation

of the joint space, which is occupied by fibrous tissue;

however, this tissue seems to be slightly more rarefied

than observed in animals treated with CFA. Furthermore,

FIG. 2 Acute effect of EL-17

(A) A paw pressure test was performed to evaluate the hypersensitivity to noxious mechanical stimuli. (B) Incapacitance

test. The hind limb weight-bearing alterations were measured as postural imbalance related to pain. Data are expressed

as the difference between the weight applied on the limb contralateral to the injury and the weight applied on the

ipsilateral limb (�weight). Measurements were performed on day 14 after CFA i.a. administration. EL-17 was suspended

in 1% CMC and orally acutely administered and the pain threshold was evaluated over time. Control animals were treated

with vehicle. The values represent the mean of eight rats performed in two different experimental sets. **P < 0.01 vs

vehicle + vehicle�treated animals;
y

P< 0.05 and
yy

P< 0.01 vs the pre-test (time 0 min) of the same group. CFA: Complete

Freund’s Adjuvant; CMC: carboxymethylcellulose.
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we observed cartilage tissue, especially on the tibial side,

even though this tissue appears degenerated and

damaged. Treatment with the high dose (30 mg/kg)

better preserved the joint space, showing similar features

to the controls. Nevertheless, tissue residues within the

joint space were observable and interpretable as fibrin

or actual fibrous tissue. In some cases this fibrous tissue

adhered directly to the articular head, producing cartilage

loss. Furthermore, articular cartilage still showed some

signs of degeneration and seemed to be thinned at

some points on the articular surfaces of both tibial and

tarsal locations (Fig. 5).

Discussion

This report demonstrates the efficacy of the NE inhibitor

EL-17 in relieving articular pain and tissue damage

induced by CFA. EL-17 reduces hypersensitivity after a

FIG. 3 Preventive effect of EL-17

(A) Paw pressure test: response to noxious mechanical stimuli. (B) Von Frey test: withdrawal latency to a non-noxious

mechanical stimulus. (C) Incapacitance test: hind limb weight-bearing alterations evaluated as postural imbalance related

to pain (�weight, expressed as the difference between the weight applied on the limb contralateral to the injury and the

weight applied on the ipsilateral limb). EL-17 (10 and 30 mg/kg) was suspended in 1% CMC and orally daily administered

starting on the day of CFA i.a. injection. Measurements were performed on days 7 and 14. Control animals were treated

with vehicle. The values represent the mean of eight rats performed in two different experimental sets. **P < 0.01 vs

vehicle + vehicle�treated animals;
yy

P< 0.01 vs CFA + vehicle�treated animals. CFA: Complete Freund’s Adjuvant; CMC:

carboxymethylcellulose.

TABLE 1 Plasmatic level of TGF-b

Treatment

TGF-b plasmatic
concentration, ng/ml,

mean (S.E.M.)

Vehicle + vehicle 30.5 (3.4)
CFA + vehicle 49.5 (4.0)*

CFA + EL-17 10 mg/kg 45.1 (4.7)

CFA + EL-17 30 mg/kg 44.4 (3.9)

EL-17 (10 and 30 mg/kg) was suspended in 1% CMC and

orally daily administered starting on the day of CFA i.a. in-

jection. On day 14, plasma was collected. TGF-b was ana-

lysed by ELISA. Each value represents the mean (S.E.M.) of
eight rats performed in two different experimental sets.

*P< 0.05 vs vehicle + vehicle�treated animals. CFA:

Complete Freund’s Adjuvant.
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single treatment, and when repeatedly administered, in-

hibits pain progression during a persistent noxious condi-

tion, preventing articular damage.

CFA is able to induce articular damage, which is charac-

terized by diffuse lesions that are similar to an immune re-

action towards antigens of joint or connective tissue [32].

The immune response is primarily mediated by T cells,

which are responsible for the destruction of collagen.

Pathogenesis is characterized by an increase in inflamma-

tory cytokines [33] and neutrophil infiltrate (evaluated as

MPO-positive cells [34, 35]), followed by hyperplasia of

synoviocytes and formation of the pannus [33]. The inflam-

matory infiltrate that develops at the level of the damaged

articulation contains T lymphocytes activated by specific

antigens that inhibit the synthesis of cartilage proteoglycans

[36]. The result is a gradual degradation of collagen, matrix

and bone. CFA-induced joint damage has similarities with

the clinical features of RA, where inflammation of the syn-

ovial membrane is followed by damage to the cartilage and

bone. In patients, these functional changes appear to con-

tribute to hyperalgesia and spontaneous pain associated

with tissue lesions [37]. In our experiments, rats showed

progressive development of hypersensitivity to mechanical

noxious (hyperalgesia-related measure) and non-noxious

(allodynia-related measure) stimuli, as well postural imbal-

ance related to spontaneous pain [38]. Characteristically,

the response to thermal (hot) noxious stimuli was reduced,

showing a slight decrease of the pain threshold in the plan-

tar test on day 7 that completely disappeared on day 14,

indicating low involvement of the thermal nociceptive path-

way. CFA evoked a plasmatic increase of the anti-inflam-

matory cytokine TGF-b that did not achieve protective

effects (according to Wu et al. [39]). Moreover, to the best

of our knowledge, the present data are the first evidence of

a plasma increase of NE activity in the CFA arthritis model.

Fourteen days after CFA i.a. injection, NE activity was

doubled compared with control animals.

In rats treated with CFA, a single administration of EL-

17 reduced pain evoked by noxious stimuli, as well as

postural imbalance, suggesting a symptomatic pain

relief profile. On the other hand, in the same model of

persistent inflammatory articular pain, repeated treatment

with EL-17 significantly prevented the development of

spontaneous pain and hypersensitivity induced by mech-

anical noxious and non-noxious stimuli and exhibited

increased efficacy over time. The preventive efficacy

seems to be related to a disease-modifying effect, since

the articular damage clearly present in the histological

examination of the tibiotarsal joint was greatly reduced,

at least by the higher dose of EL-17. EL-17 did not

modify the TGF-b concentration in plasma.

The protective effects of EL-17 were concomitant with a

complete reversion of the CFA-dependent NE activity in-

crease measured in the plasma of rats repeatedly treated

with both dosages of EL-17. The involvement of NE inhib-

ition in the pharmacodynamics of EL-17 is suggested and

further supported by the important role of NSPs the regu-

lation of inflammatory processes [40, 41]. Bank and

Ansorge [42] showed that the regulatory functions of

these enzymes in local inflammatory processes, as well

as their primary catalytic functions and the capacity to

attack plasma proteins like immunoglobulins, clotting fac-

tors and complement components, are properties that may

further contribute to the harmful effects of NSPs in rheum-

atic diseases. After neutrophil activation at inflammatory

sites, NSPs are secreted from granules into the extracellu-

lar environment, while a fraction of proteases remained

bound in an active form on the external surface of the

plasma membrane [43, 44]. Both soluble and membrane-

bound NSPs are able to proteolytically regulate the activ-

ities of a variety of chemokines and cytokines. In particular,

NE participates in the activation of TNF-a, IL-2, IL-8 and

epidermal growth factor receptor. NE can also modulate

the function of other inflammatory cells, for example,

lymphocyte activation, platelet aggregation and PMN

influx into the site of inflammation, as well as activate spe-

cific cell surface receptors [45, 46]. For example, NE

induced acute inflammation and pain in the knee joints of

mice by a proteinase-activated receptor 2�dependent

mechanism involving activation of a p44/42 MAPK pathway

[47]. NE may activate fibroblasts through a proteinase-acti-

vated receptor 2 pathway that involves phospholipase C

and the nuclear factor kB�releasing chemokines, such as

C-X-C motif ligand 8 (CXCL8) and chemokine (C-C motif)

ligand 2 (CCL2) [48]. In a subcutaneous air pouch model of

inflammation, mice deficient in NE presented decreased

neutrophil recruitment and decreased levels of CXCL1

and 2, soluble TNF-a and IL-1b [49]. NE has been shown

to induce the expression of cathepsin B and MMP2 [50]

by a Toll-like receptor 4 (TLR4)�dependent mechanism.

Furthermore, it can directly upregulate the expression

of CXCL8 mRNA through a myeloid differentiation

FIG. 4 Effects of EL-17 on neutrophil elastase activity in

the plasma of CFA-treated rats

Plasma samples were collected on day 14 after repeated

treatment with EL-17 (10 and 30 mg/kg orally, daily start-

ing from the day of CFA i.a. injection). The values repre-

sent the mean of eight rats performed in two different

experimental sets. Measurement for each rat was per-

formed in triplicate. **P < 0.01 vs vehicle + vehicle�treated

animals;
yy

P< 0.01 vs CFA + vehicle�treated animals.

CFA: Complete Freund’s Adjuvant.
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primary-response gene 88 (MyD88)/IL-1 receptor�

associated kinases/TNF receptor�associated factor 6-de-

pendent pathway that also implicates TLR4 [51, 52].

The multifunctional role of NE suggests a composite

activity of NE inhibitors. Thus, although the impairment

of NE by EL-17 prevents the hydrolysing activity towards

connective tissue components, the indirect modulation of

inflammation-related mediators (like proteinase-activated

receptors, TLR4 or cytokines) by the NE inhibition also

cannot be excluded in the symptomatic and disease-

modifying activities of EL-17. Further work with EL-17 is

clearly warranted to develop a possible novel opportunity

to treat or prevent the progression of RA.
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