Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Oct 1;89(19):9215–9219. doi: 10.1073/pnas.89.19.9215

Interleukin 6: a fibroblast-derived growth inhibitor of human melanoma cells from early but not advanced stages of tumor progression.

C Lu 1, M F Vickers 1, R S Kerbel 1
PMCID: PMC50096  PMID: 1409627

Abstract

Recently we reported that human dermal fibroblasts, or conditioned media obtained from such cells, affect the growth of human melanoma cells as a direct function of tumor progression: melanoma cells obtained from early-stage (metastatically incompetent) primary lesions were growth inhibited, whereas cells obtained from more advanced (metastatically competent) primary lesions, or metastases, were growth stimulated. Ion-exchange and gel-filtration chromatography of fibroblast conditioned medium revealed the inhibitor to be a protein of molecular mass between 20 and 30 kDa and distinct from the stimulator. This is the approximate molecular mass of interleukin 6 (IL-6), a ubiquitous multifunctional cytokine known to affect in particular many kinds of hemopoietic and lymphoid cells. Since this cytokine is known to be made by fibroblasts, we attempted to determine if the human fibroblast-derived growth inhibitor (hFDGI) was identical to IL-6. Neutralizing antibodies specific for IL-6 completely eliminated the inhibitory activity of hFDGI. Moreover, exposure to human recombinant IL-6 was found to inhibit the growth of early-stage melanoma cells obtained from radial growth phase (RGP) or early vertical growth phase (VGP) primary lesions in three of four cases. In contrast, melanoma cells from a number of more advanced VGP primary lesions, or from distant metastases, were completely resistant to this IL-6-mediated growth inhibition. Acquisition of an "IL-6-resistant" phenotype by metastatically competent melanoma cell variants may provide such cells with a proliferative advantage within the dermal mesenchyme (a hallmark of melanoma cells that are malignant), helping them eventually to dominate advanced primary lesions and to establish secondary growths elsewhere.

Full text

PDF
9215

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaronson S. A. Growth factors and cancer. Science. 1991 Nov 22;254(5035):1146–1153. doi: 10.1126/science.1659742. [DOI] [PubMed] [Google Scholar]
  2. Albelda S. M., Mette S. A., Elder D. E., Stewart R., Damjanovich L., Herlyn M., Buck C. A. Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res. 1990 Oct 15;50(20):6757–6764. [PubMed] [Google Scholar]
  3. Bennicelli J. L., Elias J., Kern J., Guerry D., 4th Production of interleukin 1 activity by cultured human melanoma cells. Cancer Res. 1989 Feb 15;49(4):930–935. [PubMed] [Google Scholar]
  4. Bradley G., Juranka P. F., Ling V. Mechanism of multidrug resistance. Biochim Biophys Acta. 1988 Aug 3;948(1):87–128. doi: 10.1016/0304-419x(88)90006-6. [DOI] [PubMed] [Google Scholar]
  5. Clark W. H. Tumour progression and the nature of cancer. Br J Cancer. 1991 Oct;64(4):631–644. doi: 10.1038/bjc.1991.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cornil I., Theodorescu D., Man S., Herlyn M., Jambrosic J., Kerbel R. S. Fibroblast cell interactions with human melanoma cells affect tumor cell growth as a function of tumor progression. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6028–6032. doi: 10.1073/pnas.88.14.6028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dotto G. P., Weinberg R. A., Ariza A. Malignant transformation of mouse primary keratinocytes by Harvey sarcoma virus and its modulation by surrounding normal cells. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6389–6393. doi: 10.1073/pnas.85.17.6389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Folkman J. Tumor angiogenesis. Adv Cancer Res. 1985;43:175–203. doi: 10.1016/s0065-230x(08)60946-x. [DOI] [PubMed] [Google Scholar]
  9. Herlyn M., Clark W. H., Rodeck U., Mancianti M. L., Jambrosic J., Koprowski H. Biology of tumor progression in human melanocytes. Lab Invest. 1987 May;56(5):461–474. [PubMed] [Google Scholar]
  10. Herlyn M. Human melanoma: development and progression. Cancer Metastasis Rev. 1990 Sep;9(2):101–112. doi: 10.1007/BF00046337. [DOI] [PubMed] [Google Scholar]
  11. Herlyn M., Kath R., Williams N., Valyi-Nagy I., Rodeck U. Growth-regulatory factors for normal, premalignant, and malignant human cells in vitro. Adv Cancer Res. 1990;54:213–234. doi: 10.1016/s0065-230x(08)60812-x. [DOI] [PubMed] [Google Scholar]
  12. Hirano T. Interleukin 6 (IL-6) and its receptor: their role in plasma cell neoplasias. Int J Cell Cloning. 1991 May;9(3):166–184. doi: 10.1002/stem.5530090303. [DOI] [PubMed] [Google Scholar]
  13. Holzmann B., Bröcker E. B., Lehmann J. M., Ruiter D. J., Sorg C., Riethmüller G., Johnson J. P. Tumor progression in human malignant melanoma: five stages defined by their antigenic phenotypes. Int J Cancer. 1987 Apr 15;39(4):466–471. doi: 10.1002/ijc.2910390410. [DOI] [PubMed] [Google Scholar]
  14. Jennings M. T., Maciunas R. J., Carver R., Bascom C. C., Juneau P., Misulis K., Moses H. L. TGF beta 1 and TGF beta 2 are potential growth regulators for low-grade and malignant gliomas in vitro: evidence in support of an autocrine hypothesis. Int J Cancer. 1991 Aug 19;49(1):129–139. doi: 10.1002/ijc.2910490124. [DOI] [PubMed] [Google Scholar]
  15. Johnson J. P., Stade B. G., Holzmann B., Schwäble W., Riethmüller G. De novo expression of intercellular-adhesion molecule 1 in melanoma correlates with increased risk of metastasis. Proc Natl Acad Sci U S A. 1989 Jan;86(2):641–644. doi: 10.1073/pnas.86.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kerbel R. S. Expression of multi-cytokine resistance and multi-growth factor independence in advanced stage metastatic cancer. Malignant melanoma as a paradigm. Am J Pathol. 1992 Sep;141(3):519–524. [PMC free article] [PubMed] [Google Scholar]
  17. Kerbel R. S. Growth dominance of the metastatic cancer cell: cellular and molecular aspects. Adv Cancer Res. 1990;55:87–132. doi: 10.1016/s0065-230x(08)60469-8. [DOI] [PubMed] [Google Scholar]
  18. Kerbel R. S., Waghorne C., Korczak B., Lagarde A., Breitman M. L. Clonal dominance of primary tumours by metastatic cells: genetic analysis and biological implications. Cancer Surv. 1988;7(4):597–629. [PubMed] [Google Scholar]
  19. Kishimoto T. The biology of interleukin-6. Blood. 1989 Jul;74(1):1–10. [PubMed] [Google Scholar]
  20. Klein G. Multistep emancipation of tumors from growth control: can it be curbed in a single step? Bioessays. 1990 Jul;12(7):347–350. doi: 10.1002/bies.950120708. [DOI] [PubMed] [Google Scholar]
  21. Köck A., Schwarz T., Urbanski A., Peng Z., Vetterlein M., Micksche M., Ansel J. C., Kung H. F., Luger T. A. Expression and release of interleukin-1 by different human melanoma cell lines. J Natl Cancer Inst. 1989 Jan 4;81(1):36–42. doi: 10.1093/jnci/81.1.36. [DOI] [PubMed] [Google Scholar]
  22. Levy Y., Tsapis A., Brouet J. C. Interleukin-6 antisense oligonucleotides inhibit the growth of human myeloma cell lines. J Clin Invest. 1991 Aug;88(2):696–699. doi: 10.1172/JCI115355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Miki S., Iwano M., Miki Y., Yamamoto M., Tang B., Yokokawa K., Sonoda T., Hirano T., Kishimoto T. Interleukin-6 (IL-6) functions as an in vitro autocrine growth factor in renal cell carcinomas. FEBS Lett. 1989 Jul 3;250(2):607–610. doi: 10.1016/0014-5793(89)80805-1. [DOI] [PubMed] [Google Scholar]
  24. Nicolson G. L. Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev. 1988 Jun;7(2):143–188. doi: 10.1007/BF00046483. [DOI] [PubMed] [Google Scholar]
  25. Schwarz L. C., Gingras M. C., Goldberg G., Greenberg A. H., Wright J. A. Loss of growth factor dependence and conversion of transforming growth factor-beta 1 inhibition to stimulation in metastatic H-ras-transformed murine fibroblasts. Cancer Res. 1988 Dec 15;48(24 Pt 1):6999–7003. [PubMed] [Google Scholar]
  26. Serve H., Steinhauser G., Oberberg D., Flegel W. A., Northoff H., Berdel W. E. Studies on the interaction between interleukin 6 and human malignant nonhematopoietic cell lines. Cancer Res. 1991 Aug 1;51(15):3862–3866. [PubMed] [Google Scholar]
  27. Swope V. B., Abdel-Malek Z., Kassem L. M., Nordlund J. J. Interleukins 1 alpha and 6 and tumor necrosis factor-alpha are paracrine inhibitors of human melanocyte proliferation and melanogenesis. J Invest Dermatol. 1991 Feb;96(2):180–185. doi: 10.1111/1523-1747.ep12460991. [DOI] [PubMed] [Google Scholar]
  28. Tabibzadeh S. S., Poubouridis D., May L. T., Sehgal P. B. Interleukin-6 immunoreactivity in human tumors. Am J Pathol. 1989 Sep;135(3):427–433. [PMC free article] [PubMed] [Google Scholar]
  29. Theodorescu D., Caltabiano M., Greig R., Rieman D., Kerbel R. S. Reduction of TGF-beta activity abrogates growth promoting tumor cell-cell interactions in vivo. J Cell Physiol. 1991 Sep;148(3):380–390. doi: 10.1002/jcp.1041480308. [DOI] [PubMed] [Google Scholar]
  30. Theodorescu D., Cornil I., Sheehan C., Man S., Kerbel R. S. Dominance of metastatically competent cells in primary murine breast neoplasms is necessary for distant metastatic spread. Int J Cancer. 1991 Jan 2;47(1):118–123. doi: 10.1002/ijc.2910470121. [DOI] [PubMed] [Google Scholar]
  31. Van Snick J. Interleukin-6: an overview. Annu Rev Immunol. 1990;8:253–278. doi: 10.1146/annurev.iy.08.040190.001345. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES