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Abstract

Angiotensin Converting Enzyme Inhibitors (ACEI) and Angiotensin II Receptor Blockers (ARB) 

are two common medication classes used for heart failure treatment. The ADAHF (Automated 

Data Acquisition for Heart Failure) project aimed at automatically extracting heart failure 

treatment performance metrics from clinical narrative documents, and these medications are an 

important component of the performance metrics. We developed two different systems to detect 

these medications, rule-based and machine learning-based. The rule-based system uses dictionary 

lookups with fuzzy string searching and showed successful performance even if our corpus 

contains various misspelled medications. The machine learning-based system uses lexical and 

morphological features and produced similar results. The best performance was achieved when 

combining the two methods, reaching 99.3% recall and 98.8% precision. To determine the 

prescription status of each medication (i.e., active, discontinued, or negative), we implemented a 

SVM classifier with lexical features and achieved good performance, reaching 95.49% accuracy, 

in a five-fold cross validation evaluation.
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Introduction

Heart Failure (HF) is characterized by the inability of the heart to pump blood at a rate 

sufficient to answer metabolizing tissues needs. It is a frequent condition in the U.S. adult 

population, causing more hospitalizations than all forms of cancer combined.[1] HF 

treatment can include dietary and physical activity therapies and invasive therapies, but 

pharmacologic therapies are the most common. Among pharmacologic therapies, 
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Angiotensin converting enzyme inhibitors (ACEI) are a mainstay of treatment in patients 

who can tolerate them; for patients who cannot take these drugs, Angiotensin receptor 

blockers (ARB) agents offer an alternative. Assessment of the care HF patients benefit from 

relies on detecting evidence of current treatment with these medications in clinical notes, 

along with analysis of the status of these medications. This information, combined with the 

functional assessment of the left ventricular function, is a key component of HF treatment 

performance measures.

This study was realized in the context of the ADAHF (Automated Data Acquisition for 

Heart Failure) project, a U.S. Department of Veterans Administration (VA) project which 

aims to automatically extract data for HF treatment performance measures from clinical 

notes. These performance measures include left ventricular ejection fraction (LVEF) 

assessments (their mention and measured values), medications (ACEIs and ARBs), or 

reasons not to administer these medications, as part of the Joint Commission National 

Hospital Quality Measures Heart Failure Core Measure Set that the VA has adopted for use 

in Veteran care.

Previous efforts have focused on detecting LVEF mentions and values in clinical notes and 

determining their abnormality (LVEF < 40%).[2–4]

However, to assess whether each patient’s clinical record substantiates proper treatment for 

HF, active medications should be considered as well. In this study, we focused on ACEIs and 

ARBs detection and classification of the status of these detected medications.

Clinical notes are mostly composed of unstructured text and have multiple different formats 

depending on specialties and institutions. Misspelled words and non-narrative text formats 

can be found in clinical notes, especially when directly typed into the system by healthcare 

providers. For example, one of the medications included in our study, “Losartan”, was found 

with the following issues:

“Lorsartan” (misspelled word)

“Losartan30 mg” (tokenization problem: missing whitespace)

“L [newline] osartan” (word wrapping problem: word wrongly split)

These problems make medication detection based on a simple dictionary lookup more 

difficult.

Medications can be mentioned in multiple contexts in clinical notes. Most are currently 

taken by the patient (i.e., active), but some can be mentioned in the patient medical history 

as discontinued, or even mentioned as specifically not taken by the patient, because of an 

allergic reaction for example. This contextual information, the status of the medication, 

therefore needs accurate analysis, and we designated three different categories: active (the 

patient currently takes the medication), discontinued (the patient remains off the medication 

or is temporarily taken off the medication), and negative (the medication does not pertain to 

the patient or is negated).
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The automatic extraction of medication information from clinical notes was the main task of 

the 2009 i2b2 NLP challenge.[5] It focused on the identification of medications and 

attributes including dosage, frequency, treatment duration, mode of administration, and 

reason for the administration of the medication. Almost twenty teams participated in this 

challenge, and Meystre and colleagues built a system called Textractor that combined 

dictionary lookups with machine learning approaches and reached a performance of about 

72% recall and 83% precision.[6]

Patrick and Li trained a sequence-tagging model using conditional random fields (CRF) to 

detect medications with various lexical, morphological, and gazetteer features. Their tagger 

reached about 86% recall and 91% precision (the highest score in the challenge).[7]

No published research attempted prescription status classification, but some developed 

systems to recognize the context or assertions of medical concepts. Chapman and colleagues 

created the NegEx algorithm, a simple rule-based system that uses regular expressions with 

trigger terms to determine whether a medical term is negated. They reported 77.8% recall 

and 84.5% precision for medical problems in discharge summaries.[8] Chapman and 

colleagues also introduced the ConText algorithm, which extended the NegEx algorithm to 

detect four context categories: negated, hypothetical, historical, and not associated with the 

patient.[9]

Kim and colleagues [10] developed a Support Vector Machines (SVM [11])-based assertion 

classifier for the 2010 i2b2 NLP challenge [12] and their system reached 94.17% accuracy 

by regulating un-balanced class probabilities and adding features designed to improve 

performance recognizing minority classes. Our system for medication status classification 

expanded this system with a simplified feature set.

In the following sections, we will describe the methods we used for medication detection 

and prescription status classification and present our experimental results.

Methods

Materials

The ADAHF project included development of a large annotated corpus of clinical narrative 

text notes from patients with HF treated in a group of VHA medical centers in 2008. Each 

document in this corpus was annotated by two reviewers independently, and a third reviewer 

adjudicated their disagreements.

For this study, we randomly sampled 3,000 clinical notes from our training corpus. The most 

common clinical note types were progress notes, discharge summaries, history and physical 

notes, cardiology consultation notes, and echocardiogram reports. These 3,000 notes 

included 6,007 medication annotations (4,911 ACEIs and 1,096 ARBs). Medications 

annotated in our project included all ACEI and ARB preparations available in the U.S. The 

distribution of the most common medications annotated in our corpus is presented in Table 

1.
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Each annotated medication was also assigned a status category: active, discontinued, or 

negative. Among annotated medications, 4,491 (74.76%) were active, 1,191 (19.83%) were 

discontinued, and 325 (5.41%) were negative. Even though the discontinued or negative 

status was not common, they have to be classified accurately.

Rule-Based Medication Detection

Our first approach was based on a dictionary lookup with pre-defined medication entries. We 

used a modified version of ConceptMapper,[13] a highly configurable UIMA [14] dictionary 

annotator.

To build this baseline system (DL1 system), the dictionary of medication terms has to be 

manually built. For each ACEI and ARB medication, we included generic names, brand 

names, and other frequently used name variations (from RxNorm and clinical experts’ 

experience with clinical text).

Misspelled medication names are common in our corpus. For example, “Lisinopril”, the 

most frequent I medication had 21 different misspellings in our corpus:

Lisinipril Lisinoppril Lisnopril

Lasinopril Lisiniprli Lisinopiril

Lisinorpril Linsinopril Liinopril

Linsopril Lisiniopril Lisiniprol

Lisinoril Lisinorpil Lisinorpirl

Lisinpril Lisionpril Lisniopril

Lisnoril Lisonopril Loisinopril

To improve the sensitivity of our detection and include misspellings, we added fuzzy string 

searching for spelling variant replacement (DL1 + fuzzy searching system). We used the 

edit distance (or Levenshtein distance),[15] the minimum number of single-character edits 

needed to transform one word into another, to check whether each text token was a spelling 

variant of our pre-defined medication terms.

To reduce the number of false positive matches in a second version of our system (DL2 
system), we only considered matched word tokens as medication name candidates when 

they met the following criteria: 1) the first character was matched or the last four characters 

matched one of our dictionary terms, and 2) the edit distance between the word token and 

one of our dictionary terms was less than 2.

In addition to fuzzy searching for each word token, we also analyzed all tokens separated by 

a newline to reconstruct wrongly split words like “L [newline] osartan.” After removal of the 

newline character between two word tokens, treating them as one word token, we considered 

them as a correctly reconstructed word if they met the following criteria: 1) the first 

character was matched and the last four characters matched with one of our dictionary terms, 

and 2) the edit distance between the word token and one of our dictionary terms was less 

than 2.
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These fuzzy searching strategies allowed detection of more medications even when they 

were misspelled or erroneously split by some newline character.

Machine Learning-Based Medication Detection

The second approach for medication detection was based on machine learning methods. We 

built a token-based classifier without sequential learning. A sequential tagger requires 

sentences as inputs and predicts the sequence of labeled tags with probabilities. In a Hidden 

Markov Model,[16] a popular choice for sequence tagging, transition probabilities from one 

tag to the next tag are considered when learning a model with a dynamic learning algorithm 

like Viterbi path.[17]

In token-based learning, the tagger only predicts a label for each token, independently from 

the previous tags. We used LIBLINEAR[18] with a linear SVM classifier to train our token-

based model (SVM system). We used lexical features (the word itself, two words preceding 

it, and two words following it) and morphological features (prefix and suffix up to length of 

five) with B-I-O tags (B denotes the beginning of a term, I a token inside a term, and O a 

token outside a term). Because the classifier predicts each tag independently from the 

previous tags, we did some post-processing (using a few heuristic rules) to avoid undesirable 

tag sequences like a “B-ACEI” (token at the beginning of an ACEI name) followed by “I-

ARB” (token inside an ARB name).

Finally, we combined the rule-based and machine learning-based methods by using DL2 

system’s predictions as new features for the SVM classifier (SVM + DL2 system). The 

feature vector was augmented with the DL-II system predictions for the current token, the 

two previous tokens, and the two following tokens.

Medication Status Classification

To classify medications as active, discontinued, or negative (details in the Introduction), pre-

processing included tokenization with a modified version of the cTAKES [19] tokenizer. The 

prescription status classifier only used lexical features from the tokenizer (i.e., all word 

tokens). We also used LIBLINEAR for this task, with a wider context window than for 

medication detection (five preceding and five following words) and no morphological 

features.

Metrics and Statistical Analysis

Accuracy of the detection of medications is reported using typical metrics for information 

extraction or retrieval: Recall (equivalent to sensitivity in this context; equals true positives/

(true positives + false negatives)), Precision (equivalent to positive predictive value on this 

context; equals true positives/(true positives + false positives), and the F1-measure 
(harmonic mean of recall and precision; equals (2*recall*precision)/(recall+precision) when 

giving equal weight to recall and precision). These metrics were macro-averaged to obtain 

average values for each system (i.e., each metric was calculated for each document, and then 

averaged across all 3,000 documents).
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Descriptive statistics are reported with 95% confidence intervals. Statistical analysis to 

compare our different approaches to detect medications was realized using the Student’s t-

test as well as the Mann-Whitney U test for its higher efficiency with non-normal 

distributions.

Results

Medication Detection

As an easily accessible baseline system for our evaluation, we used eHOST,[20] the 

Extensible Human Oracle Suite of Tools, an open source text annotation tool, to detect 

medications with a pre-compiled dictionary of medication terms, as specified in our 

annotation guideline.

This dictionary listed multiple terms for 44 different medications and general categories. 

eHOST reached moderate performance (Table 2, Figures 1 and 2).

However, many medications detected by eHOST would be considered true positives if 

partial span matches were counted. For example, medication names are sometimes attached 

to punctuation in our corpus (e.g., “Losartan;”, “Losartan)” ) and punctuation (; or ) in the 

same examples) should be excluded for exact matches, but eHOST detected these 

medications with the punctuation characters.

Our first dictionary lookup system (DL1) reached good performance, especially for 

precision (96.7%). Adding fuzzy string searching to DL1 increased recall to 96.6%. When 

adding wrongly split words correction (DL2), recall reached more than 99% by detecting 

medication names that contained newline characters.

When evaluating the machine learning-based system with a five-fold cross validation, the 

SVM classifier achieved lower recall and precision than the DL2 system, but closer to the 

DL1 system with fuzzy searching. SVM with DL2output allowed for the best performance, 

with the highest recall at 99.3% and a 98.9% F1-measure.

As indicated in Table 3, pairwise comparion and statistical analysis of the results reported in 

Table 2 and Figures 1 and 2 demonstrated that all differences were significant (p<0.001) 

except all metrics between DL2 and SVM+DL2 (p=0.306–368), and precision between DL1 

and DL1+fuzzy searching (p=0.411), and between DL1+fuzzy searching and SVM 

(p=0.233).

Medication Status Classification

We also used a five-fold cross validation with the 6,007 medication annotations to measure 

performance of medication status classification (Table 4). The overall accuracy was 95.49%. 

Precision of each status was above 90%, and recall of the discontinued status was 86.23%. 

Interestingly, recall was higher than precision with the negative status, even though they 

were associated with only 5.41% of the annotated medications in our corpus.
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Discussion

The dictionary lookup approach for medications detection was very efficient and the fuzzy 

string searching boosted performance, especially recall. The main advantages of this method 

are that there is no need for manually annotated training examples and processing is fast. 

With the SVM classifier, morphological features helped detect misspelled medication names 

but didn’t help with erroneously split medication names. We observed that a machine 

learning-based method could be applied successfully to this task without an external medical 

knowledge base, but it didn’t add any significant performance improvement when compared 

to the improved dictionary-based and rule-based system (DL2). Overall, it and was probably 

not a worthy effort in our case, considering the requirement for annotated training examples 

to train the SVM classifier.

Medication status classification was satisfactory, and even though performance with active 
and negative cases was quite good, there is ample room for improvement with the 

discontinued status. A total of 230 (71+159) active or discontinued cases were misclassified 

as the other class (Table 5).

One possible avenue for future work is to develop specific patterns or lexicons for this 

discontinued status, including terms like ‘hold’, ‘discontinue’, or ‘d/c’. Recognizing clinical 

document sections or detecting phrases mentioning why the patient was not on the 

medication might play an important role as classifier.

Our experimentation with machine learning-based approaches to detect specific medications 

was limited to one method: SVMs. Other machine learning algorithms such as Conditional 

Random Fields have been successfully applied to similar tasks and could also be applied to 

detect ACEIs and ARBs.

Conclusion

This study showed that information extraction methods using rule-based or machine 

learning-based approaches could be successfully applied to the detection of ACEI and ARB 

medications in unstructured and somewhat messy clinical notes. We boosted medication 

detection performance with fuzzy string searching and combining the two approaches. The 

preliminary work to classify the status of each medication showed that the words 

surrounding medication names were the most beneficial features.
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Figure 1. 
Systems Recall Comparison
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Figure 2. 
Systems Precision Comparison
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Meystre et al. Page 11

Table 1

Most Frequent Medications with Term Variants

Medication Type % Frequent term variants

Lisinopril ACEI 39.9 Lisinopril

ACEI ACEI 16.7 ACE, ACEi, ACE inhibitor

Benazepril ACEI 16.2 Benazepril, Lotensin

Losartan ARB 8.2 Losartan

Fosinopril ACEI 6.0 Fosinopril, Fos

Valsartan ARB 5.0 Valsartan, Diovan

ARB ARB 4.5 ARB, Angiotensin receptor blocker

Captopril ACEI 1.6 Captopril

Enalapril ACEI 0.8 Enalapril

Irbesartan ARB 0.4 Irbesartan

Others 0.7
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Meystre et al. Page 12

Table 2

Five-fold Cross Validation Results for Medication Detection (macro-averaged percentages)

System R P F

eHOST 83.7 ±1.1 87.2 ±1.1 84.8 ±1.1

DL1 94.8 ±0.7 96.7 ±0.6 95.3 ±0.6

DL1+fuzzy searching 96.6 ±0.5 97.0 ±0.5 96.5 ±0.5

DL2 99.2 ±0.3 98.6 ±0.3 98.7 ±0.3

SVM 97.9 ±0.4 97.4 ±0.4 97.5 ±0.4

SVM+DL2 99.3 ±0.2 98.8 ±0.3 98.9 ±0.2

R=Recall, P=Precision, F=F1-measure. Percentages reported with 95% confidence intervals
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Table 4

Five-fold Cross Validation Results for Medication Status Classification

Medication Status R P F

Active 98.0 96.3 97.1

Discontinued 86.2 92.9 89.5

Negative 94.2 93.3 93.7

Overall 95.5 95.5 95.5

R=Recall, P=Precision, F=F1-measure.

Stud Health Technol Inform. Author manuscript; available in PMC 2016 September 02.



V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript

Meystre et al. Page 15

Table 5

Medication Status Classification Confusion Matrix

Active Classified as Discontinued Negative

Active 4403 71 17

Discontinued 159 1027 5

Negative 12 7 306
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