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ABSTRACT

Nuclear receptors (NRs) are ligand-activated transcriptional regulators that play vital roles in key biological processes such
as growth, differentiation, metabolism, reproduction, and morphogenesis. Disruption of NRs can result in adverse health
effects such as NR-mediated endocrine disruption. A comprehensive understanding of core transcriptional targets
regulated by NRs helps to elucidate their key biological processes in both toxicological and therapeutic aspects. In this
study, we applied a probabilistic graphical model to identify the transcriptional targets of NRs and the biological processes
they govern. The Tox21 program profiled a collection of approximate 10 000 environmental chemicals and drugs against a
panel of human NRs in a quantitative high-throughput screening format for their NR disruption potential. The Japanese
Toxicogenomics Project, one of the most comprehensive efforts in the field of toxicogenomics, generated large-scale gene
expression profiles on the effect of 131 compounds (in its first phase of study) at various doses, and different durations, and
their combinations. We applied author-topic model to these 2 toxicological datasets, which consists of 11 NRs run in either
agonist and/or antagonist mode (18 assays total) and 203 in vitro human gene expression profiles connected by 52 shared
drugs. As a result, a set of clusters (topics), which consists of a set of NRs and their associated target genes were
determined. Various transcriptional targets of the NRs were identified by assays run in either agonist or antagonist mode.
Our results were validated by functional analysis and compared with TRANSFAC data. In summary, our approach resulted
in effective identification of associated/affected NRs and their target genes, providing biologically meaningful hypothesis
embedded in their relationships.

Key words: nuclear receptor; transcriptional regulation; Tox21; toxicogenomics project; author-topic model; integrative
analysis

Nuclear receptors (NRs) are a superfamily of multifunctional li-
gand-activated, DNA-binding transcription factors which play a
critical role in a variety of important biological functions such as
growth, differentiation, metabolism, and reproduction (Tata,
2002). NR ligands encompass endogenous hormones (eg, 17b-es-
tradiol), lipids and bile acids as well as exogenous chemicals like
drugs and toxins. NRs play key roles not only in normal physiol-
ogy but also in many pathological processes (Tenbaum and
Baniahmad, 1997). Due to their significant contribution to patho-
physiology, the mechanisms of transcriptional regulation by li-
gand-bound NRs have been extensively studied over the past
several decades. Transcriptional regulation by NRs includes a

multistep process involving: binding of NRs to regulatory sites in
the genome, ligand-dependent recruitment and function of co-
regulators to modify chromatin and associated factors, regulation
of Pol II binding and activity at target genes’ promoter resulting in
increased gene expression. Disruption of NRs can result in ad-
verse health effects such as estrogen receptor mediated endo-
crine disruption. A comprehensive understanding of core
transcriptional targets regulated by NRs helps elucidate their key
biological processes in both toxicological and therapeutic aspects.
Consequently, the U.S. Tox21 program conducted many in vitro
NR assays. Tox21 is a collaboration between the National
Institute of Environmental Health Sciences (NIEHS)/National
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Toxicology Program (NTP), the U.S. Environmental Protection
Agency’s (EPA) National Center for Computational Toxicology
(NCCT), the National Institutes of Health (NIH) Chemical
Genomics Center (NCGC) (now within the National Center for
Advancing Translational Sciences), and the U.S. Food and Drug
Administration (FDA). The program profiled a collection of ap-
proximately 10 000 compounds (including both industrial chemi-
cals and drugs) against a panel of 11 human NRs in a quantitative
high-throughput screening (qHTS) format (Judson et al., 2013).
The assays were run in both agonist and antagonist modes at 15
different concentrations in triplicate with concentration-re-
sponse curves for each chemical. Meanwhile, in the toxicoge-
nomics field, the Japanese Toxicogenomics Project (TGP) in its
first phase of the study generated large-scale gene expression
profiles for 131 chemicals/drugs on rat liver and primary hepato-
cytes as well as human primary hepatocytes with varying both
doses and treatment durations (Uehara et al., 2010). The inte-
grated analysis of these 2 large datasets offers a unique opportu-
nity to investigate the relationship of drug-induced biological
processes and targets from the toxicogenomics study with NR
regulatory roles profiled by the Tox21 assays.

In this study, we used a probabilistic graphical model
namely author topic model (ATM) (Rosen-Zvi et al., 2004) to in-
vestigate biological processes regulated by NRs by combining
these 2 different data sources, NR assay data from Tox21 and
in vitro human gene expression profiles from TGP. ATM is a text
mining approach to investigate the relationship between topics
and authors. Specifically, ATM models authors’ interest by in-
ferring topics authors write about and to the extension on
which group of authors produce similar work. In many ways,
the 2 datasets resemble document collections. Specifically, the
TGP expression profiles can be considered as a set of docu-
ments, where each gene expression profile consists of mixtures
of biological processes that can be thought of as topics, and a bi-
ological process consists of a set of genes that can be thought of
as the words used to present a topic. In addition, each TGP ex-
pression profile has ‘authorship’ information—each expression
profile is resulted from a chemical treatment and its authors are
a set of NRs activated by the chemical in the Tox21 assays.
Using these analogies of the data structure, we applied ATM to
examine the relationship between NRs and their biological pro-
cess with these 2 different data sources.

MATERIALS AND METHODS

Probabilistic graphical model. Our probabilistic graphical model is
based on ATM, which is an extension of Latent Dirichlet
Allocation (LDA) to include authorship information for docu-
ment collections. LDA is a text mining approach developed by
Blei et al. (2003), to organize and classify a collection of docu-
ments. Its underlying concept is that a document has a mixture
of topics and that each word is selected with a probability given
one of the document topics. ATM is developed for extracting
information about authors and topics from large text collections
where an author writes a mixture of topics. Therefore, whereas
LDA does not require author information for each document,
ATM requires additional input indicating about which docu-
ments are written by which authors. The ATM analysis produ-
ces a set of topics (latent variables) and to the extension of
revealing which topics are preferably written by which authors.
As a result, each author is represented by a probability distribu-
tion over topics whereas each topic is represented as a probabil-
ity distribution over words. To estimate these 2 matrix
parameters, ATM assumes a probabilistically generative model

in which each document is generated by 3 sampling processes.
First, each word in a document by an author is chosen at ran-
dom. Next, a topic is chosen from a distribution over topics spe-
cific to that author. Lastly, the word is generated from the
chosen topic. In this study, the open-source Matlab Topic
Modeling Toolbox package from the University of California was
applied (http://psiexp.ss.uci.edu/research/programs_data/tool
box.htm) where a Gibbs sampling process was implemented to
maximize the posterior probability of 2 observed matrices,
authors-documents and documents-words based on the calcu-
lated author-topic and topic-word distribution matrix (Rosen-
Zvi et al., 2004). As mentioned above, the modeling produces 2
distributions: probability distribution over topics for each
author and probability distribution over words associated with
each topic. Figure 1 shows an overview of the methodology,
where 2 resulting matrices are colored with orange in the mid-
dle. Specifically, the former matrix (H) is formatted as A�T
(authors by topics), with each cell indicating probability of
assigning topic t to a word generated by author a. The latter
matrix (H) is formatted as T�W (topics by words), with each
cell indicating the probability of generating word w from topic t.
In the context of our study design, U (NRs by topics) includes
the topic distributions for each NR whereas A (topics by genes)
contains the gene distributions for each topic. By consolidating
the 2 matrices, we uncovered hidden biological relationships in
terms of target genes regulated by NRs. Our method requires
input of several parameters. The number of topics was heuristi-
cally determined as 18 by prior knowledge based on the number
of NRs to avoid extreme generalization of the model and maxi-
mize an informative discovery. Two parameters, a and b were
defined as 0.01 and 50/T (number of topics), respectively where
a and b is the Dirichlet hyperparameters for author-topic distri-
bution and topic-word distribution, respectively.

Dataset. We used the compound-assay activity data from the
Tox21 qHTS assays. Briefly, half-maximal activity (AC50) and
maximal response (efficacy) values were calculated from the
concentration response curves and each curve was assigned a
curve class of 1 to 5 based on potency, efficacy, and the quality
of curve fit (Inglese et al., 2006). The final activity outcome of a
compound in an assay was then determined based on assigned
class, reproducibility, and activity in control readouts and coun-
ter screens. A detailed description of the compound activity
assignment scheme can be found in (Huang et al., 2014). Detailed
descriptions of these assays including experimental conditions
and the Tox21 qHTS data and activity assignment results are
available in PubChem (http://www.ncbi.nlm.nih.gov/pcassay?
term¼tox21) (Supplementary Table 1). For androgen receptor
(AR) and estrogen receptor (ER) assays, 2 types of cell lines were
utilized. In this case, a chemical active in at least 1 cell line was
considered as active. The final input dataset for analysis was a
binary matrix for NR-chemical pairs, with 1 and zero represent-
ing a chemical active or inactive against a NR, respectively
(Figure 1’s right side green table, Supplementary Table 2).

The TGP dataset was downloaded from CAMDA 2013 (http://
dokuwiki.bioinf.jku.at/doku.php/start). The gene expression
data was generated using Affymetrix Human Genome U133 Plus
2.0 (in vitro human). After comparing the Tox21 and TGP data-
sets, we found that 18 NRs in either agonist or antagonist mode
are activated by at least 1 compound (Table 1) and 52 chemicals/
drugs are shared between Tox21 and TGP (Supplementary Table
2). The in vitro human gene expression profiles from TGP com-
prise 4 different conditions, the combinations of 2 durations
(8 and 24 h) and 2 doses (medium and high). A total of 203
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drug-treated gene expression profiles were compiled for further
analysis by including 4 combinations of 2 durations and 2 doses.
To measure expression level of each gene, the probe-level data
of the microarrays were quantile normalized followed by map-
ping of probe sets into corresponding genes (Dai et al., 2005).
Multiple probes for a gene were aggregated using the FARMS
method (Hochreiter et al., 2006).

We generated a ‘document’ for each TGP gene expression pro-
file, which contained ‘words’, ie, genes differentially expressed
when compared with the matched control. In the CAMDA data-
set, a total of 18 988 genes remained after the preprocessing pro-
cedure. We considered the same gene with different
transcriptional directions (ie, up or down) as 2 different words.
After eliminating genes with low expression in either direction
using the criteria jFold Changej>1.2, a total of 13 006 words were
used as the final corpus for our documents. The frequency of a
word appearing in each document was determined by multiply-
ing the fold change of the treated samples compared with the
time-matched controls by 10 times and rounded to the nearest
integer as described in Figure 1’s left side green table. In
summary, each TGP expression profile (TP) was represented
by 2 vectors; a binary vector consisting of NR activity
information whereas another is integer vector indicating sum-
marized expression level of each gene as presented in 2 green
tables of Figure 1.

Topic modeling. By learning the parameters of the model, 2 matri-
ces, NR-topic (H) and topic-gene (A) probabilities, were yielded.
The NR-topic matrix identifies which topics are preferably used
by which NRs whereas the topic-gene matrix identifies genes
associated with corresponding topics. To investigate the rela-
tionship between NRs and genes, we used topic variable, which
defines a pair of probability distributions over NRs and genes.
The highly ranked genes for each topic were defined as target
genes regulated by the mostly probable NR from the same topic.

Functional analysis. The second outcome of our model is the
probability distribution of genes within a given topic.
Specifically, /wt is the probability of gene w occurring in topic t,
giving a measure of contribution of gene w to topic t. Since our
probabilistic graphical model is to cluster genes co-occurring
frequently chosen by a certain NR with respect to a collection of
gene expression profiles, genes highly ranked in a topic are pre-
sumably regulated by the NR that is most likely associated with
that topic. To determine the overrepresentation of biological
processes governed by a particular NR, we extracted 300 genes
for each topic followed by a functional analysis using the Gene
Ontology and KEGG. Over-enriched terms were identified using
Fisher’s exact test. To construct an interaction network from
top 300 genes, we utilized the ‘Significant interactions within
set(s)’ feature of MetaCore.

FIG. 1. Overview of the workflow. First, 2 datasets were transformed into document-based form, on which author-topic model was constructed. As a result, 2 matrices,

NRs-topic and topic-genes probabilities, were estimated. Through shared topics, the associations between NRs and genes were investigated. (‘TP’ denotes a TGP

expression profile; ‘NR’ denotes a nuclear receptor; ‘T’ denotes a topic; ‘G’ denotes a gene).
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RESULTS

Nuclear Receptors and Topics
One of our modeling results is a probability matrix for each NR
over topics, with each element hta representing the probability
of assigning topic t to genes regulated by NR a. Some of the NRs
were highly relevant to the topics whereas others were less
apparent. This is expected because some of the chemicals acti-
vate a single NR whereas others activate as many as 11 NRs in
either agonist or antagonist modes. For example, acarbose
showed agonist activity against ER only whereas griseofulvin
showed agonist activity for 11 NRs. Figure 2A shows a heat map
of chemical-NR activity matrix generated from the activity pro-
file of the 52 chemicals across the NR assays. Figure 2B shows
the distribution of the number of chemicals in the context of
the number of active NRs. ROR antagonist shows the most
active frequency of 22 whereas VDR agonist, PPARd agonist and
PPARd antagonist have least active frequency by activating only
one single chemical. The average number of chemicals active
against an NR in agonist mode is 9 whereas the average number
of chemicals for antagonist is 11. Table 2 shows the top 2 NRs
assigned to each topic. Some of the NRs like PPARd agonist,
PPARd antagonist, VDR agonist and VDR antagonist are not
enriched with any of the topics whereas several other NRs are
enriched with several topics. For example, ER agonist is associ-
ated with as many as 3 topics (Topic 3, 13, and 17) as the most
probable NR. We found that topic 4, 5, 7, 9 and 13 showed a
strong association with only 1 NR such as RXR agonist, RAR ago-
nist, AhR, RAR agonist, and ER agonist, respectively (hta> 0.9).

Functional Analysis
The second outcome of our model is the probability distribu-
tion of genes conditioned on a given particular topic (A). Based
on the model, genes co-occurring frequently across expression
profiles are clustered together. Functional analysis of the
highly ranked genes in each topic provides the information
about the biological processes regulated by each NR. To deter-
mine the overrepresentation of biological processes governed
by a particular NR, we performed a functional analysis with
the top 300 ranked genes in each topic against Gene Ontology
and KEGG (P< .05, Supplementary Table 3). The most

frequently observed pathway from KEGG database was p53 sig-
naling, which appeared in 13 topics, followed by cell cycle
across 12 topics. Metabolism of xenobiotics by cytochrome
P450, retinol metabolism and drug metabolism were enriched
in 10 topics. Generally, p53 pathway responds to various stress
signals to disrupt cellular homeostatic mechanisms.
Specifically, drug-induced DNA damage and oxidative stress
cause a stressful state for cells, so that p53 signaling is trig-
gered as a defensive mechanism, ultimately resulting in cell
cycle arrest and apoptotic pathway. However, the aggressive
pro-oxidative mechanism of p53 was also discovered in instan-
ces where a high level of oxidative stress was leading to cell
death. We found that PPAR signaling pathway is enriched in 2
topics, topics 3 and 10 which the mostly associated NR is ER
agonist and PPARc antagonist, respectively. Both topics 5 and 9
have the RXR agonist as the mostly related NR. We found that
some of the biological processes over-represented in topic 5,
such as carboxylic acid metabolic process, organic acid meta-
bolic process, cofactor metabolic process, and oxidation reduc-
tion were identified in previous work (He et al., 2013). Topic 14
is associated with ER antagonist (hta¼ 0.54) and AR antagonist
(hta¼ 0.45). Both ER and AR are steroidal receptors and play
important roles in developing prostate and breast cancer. The
GO analysis indicated that cell proliferation related biological
processes such as cell cycle (P¼ 7.67E–07) and regulation of cell
cycle (P¼ 7.49E–05) were highly ranked. In the KEGG analysis,
DNA replication is top ranked (P¼ 4.00E–04). Topic 10 is associ-
ated with PPARc antagonist and its apoptotic mechanism in
various cancer cells are widely studied (Fajas et al., 2003). Our
result showed that apoptotic process was highly enriched in
topic 10 (P¼ .00015) and regulation of apoptotic process
(P¼ .00028). Topic 11 is highly associated with FXR antagonist.
The GO analysis showed that topic 11 was significantly associ-
ated with cell migration (P¼ .0029) and cell motility (P¼ .0042),
and abnormal regulation driving cancer metastasis. It is well
known that FXR plays a vital role in cancer metastasis and
FXR inhibition is an effective approach to diminish tumor
growth (Lee et al., 2011). Additionally, FXR is involved in choles-
terol homeostasis; in our result cholesterol homeostasis was sig-
nificantly identified (P¼ .026). Table 3 shows the unique KEGG
pathways over-represented in each topic and not in the other

TABLE 1. Eighteen Nuclear Receptors in Either Agonist or Antagonist Mode used for Analysis

No. Nuclear receptor Nuclear receptor full name

1 RAR agonist Retinoic acid receptor agonist
2 RAR antagonist Retinoic acid receptor antagonist
3 ROR antagonist Retinoic acid receptor-related orphan receptor antagonist
4 RXR agonist Retinoid � receptor agonist
5 AhR Aryl hydrocarbon receptor
6 AR agonist Androgen receptor agonist
7 AR antagonist Androgen receptor antagonist
8 ER agonist Estrogen receptor agonist
9 ER antagonist Estrogen receptor antagonist
10 FXR antagonist Farnesoid � receptor antagonist
11 GR agonist Glucocorticoid receptor agonist
12 GR antagonist Glucocorticoid receptor antagonist
13 PPARd agonist Proliferator activated receptor delta agonist
14 PPARd antagonist Proliferator activated receptor delta antagonist
15 PPARc agonist Proliferator activated receptor gamma agonist
16 PPARc antagonist Proliferator activated receptor gamma antagonist
17 VDR agonist Vitamin D receptor agonist
18 VDR antagonist Vitamin D receptor antagonist
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topics. Intriguingly, topic 10 is enriched in pathways for both
cancer and apoptosis. ER agonist is top NR in topic 10 (h¼ 0.49),
which has a critical role in breast cancer as mentioned above.
Topic 10 of which top NR is PPARc antagonist, is enriched with
fatty acid metabolism and, their relationship was also studied
(Ciaraldi et al., 2002).

Nuclear Receptor Target Genes
We defined the top 300 genes for each topic as target genes
regulated by the mostly probable NR from the corresponding
topic. The top 10 genes from 18 topics are presented in Table 4.
All 300 genes for each topic are provided in Supplementary
Table 4. Each of the 18 topics is unique, as evident by a pairwise
similarity assessment of topics using the Tanimoto method
based on the top 300 genes (Figure 3) where the largest
Tanimoto coefficient was only 0.15 between topic 2 and topic
15. This indicated that each topic represented a unique aspect
of biology. A literature search was conducted to validate target
genes regulated by NRs. We compared the known 13 AhR target
genes with top 300 genes of topic 7 (associated most strongly
with AhR). Among the 13 known genes, 5 genes with the same
regulation direction appeared such as Cyp1a1, Cyp1b1, Cyp1a2,
Nfe2l2, and Tiparp (P¼ 6.983e–06) (Watson et al., 2014). Cyp3a7
was appearing as most likely gene in 2 topics, topics 2 and 4 of
which top NR is GR agonist and RAR agonist, respectively.
Cyp3a7 is one of the biomarkers for human fetal liver; its gene
expression was induced after treatment of glucocorticoids (Pang
et al., 2012). PXR:RXR complex binds to ER6 elements upstream
of the Cyp3a4 and Cyp3a7 and activates their gene expression
(Pascussi et al., 1999). Topic 9 has Cyp26a1 as a top gene of which
top NR is RAR agonist, supported by (Pozzi et al., 2006). In topic
14, both AR and ER antagonist are highly associated. Its most
likely gene is GDF15 (upregulated) that is known for association
with estrogen resistance and liver injury as a member of the
transforming growth factor-beta superfamily.

For further validation, we compared our target genes with
TRANSFAC database which includes transcription factor’s
experimentally-confirmed binding sites and regulated genes
(Matys et al., 2003). We identified the target genes for 9 NRs as

FIG. 2. (A) Heatmap for chemical-NR activity matrix generated from the activity profile of the 52 chemicals across the NR assays. (B) Distribution of number of chemi-

cals in the context of the number of active NRs.

TABLE 2. Author-Topic Probabilities Matrix Includes Topic
Distributions for each NR

Topic Top NR Probability Second NR Probability

Topic 1 RXR agonist 0.46178 AR antagonist 0.30304
Topic 2 GR agonist 0.54651 AR agonist 0.42918
Topic 3 ER agonist 0.35156 RAR agonist 0.33942
Topic 4 RXR agonist 0.99838 AhR 0.00041
Topic 5 RAR agonist 0.9979 AhR 0.00025
Topic 6 ROR antagonist 0.64334 RXR agonist 0.35511
Topic 7 AhR 0.94849 PPARc antagonist 0.05068
Topic 8 AR antagonist 0.4382 AhR 0.27876
Topic 9 RAR agonist 0.99784 RAR antagonist 0.00029
Topic 10 PPARc antagonist 0.45153 RXR agonist 0.23791
Topic 11 FXR antagonist 0.55794 VDR antagonist 0.43917
Topic 12 RAR antagonist 0.66447 ROR antagonist 0.33393
Topic 13 ER agonist 0.99839 PPARd agonist 0.00019
Topic 14 AR antagonist 0.54336 ER antagonist 0.4545
Topic 15 ER antagonist 0.99758 ROR antagonist 0.00042
Topic 16 GR antagonist 0.45849 AR antagonist 0.21767
Topic 17 ER agonist 0.49531 AhR 0.38676
Topic 18 ROR antagonist 0.46391 ER agonist 0.44006

NRs are ranked according to the probability of each topic from author-topic

matrix. The table shows the top 2 NRs and their probabilities for each topic in

the model.
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presented in Table 5. We then counted the number of targets
that were common to TRANSFAC and our model for a given NR.
The largest intersection was 8 target genes of TRANSFAC’s GR
target genes, which were identified for Topic 2 (most likely NR
was GR, P¼ 1.946e–07)—Cyp2c9, Fkbp5, Igfbp1, Lpin1, Sepp1,
Tat, Tnfaip3, and Tsc22d3. Another example is Topic 13 of
which top NR is ER agonist, in which 6 genes are common with

TRANSFAC’s ER target genes such as Cdkn1a, Cyp2a6, Hmox1,
Nr0b2, Nr5a2, and Ugt2b15 (P¼ 8.688e�04).

To assess our results qualitatively, we generated another
target gene sets by using fold change. We gathered a collection
of gene expression profiles treated with the chemicals that are
activated for a certain NR then calculated average fold change
for each gene. Then top 300 genes were extracted on the ranking

TABLE 3. Functional Analysis was Conducted with 18 topics’ top 300 Genes Against KEGG and GO Database

Topic Top NR No. of pathways KEGG pathways

1 RXR agonist 1 Circadian rhythm
3 ER agonist 1 Purine metabolism, Propanoate metabolism
6 ROR antagonist 1 Aminoacyl-tRNA biosynthesis
7 AhR 1 Pentose and glucoronate interconversions
9 RAR agonist 1 Spliceosome
10 PPARc antagonist 1 Fatty acid metabolism
11 FXR antagonist 1 Nicotinate and nicotinamide metabolism
12 RAR antagonist 1 RNA degradation
13 ER agonist 1 Ascorbate and aldarate metabolism
16 GR antagonist 2 Nitrogen metabolism, Androgen and estrogen metabolism
17 ER agonist 2 Pathways in cancer, Apoptosis
18 ROR antagonist 2 Tyrosine metabolism, Citrate cycle (TCA cycle)

The table shows unique KEGG pathways over-represented in single topic.

TABLE 4. Each Topic is Composed of a Set of Genes

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6

SDS_up CYP3A7_up RRM2_down CYP3A7_up THRSP_up HSPA1B_up
RRM2_down THRSP_up SOX4_down CYP3A4_up CYP3A7_up ADM_up
PBK_down RRM2_down POR_up NDRG1_down NPTX2_up KRT7_down
CDK1_down CCL2_down BAAT_down TRIM22_down GPAM_up RRM2_down
PPP1R15A_up CYP3A4_up CP_down TYMS_down AHSG_down MAD2L1_down
CDC20_down CYP3A5_up ARL14_down ZWINT_down GPR37_up MAL2_down
AJUBA_down CTGF_down INSIG1_up INSC_down UGT2B15_down TFDP1_down
LDLR_up INSIG1_up CAD_down TSKU_up ALAS1_up TRPM8_down
TNFRSF10D_down HMGB2_down ACSL1_up PRC1_down CPEB4_up HSD17B2_up
ANLN_down ANLN_down CITED2_down MCM2_down BHMT_up CXCL6_down

Topic 7 Topic 8 Topic 9 Topic 10 Topic 11 Topic 12

CYP1A1_up HMOX1_up CYP26A1_up FGF21_up HIST1H4H_up RASD1_up
RRM2_down IL18_down CYP1A1_up CYP1A1_up LOC100507025_up PCK1_up
CYP1B1_up ZWINT_down RGS2_down ALAS1_up SLC2A2_down CYP1A1_up
CCL2_down MAFF_up H1F0_up TSKU_up ALDH1A1_down TAT_up
CYP1A2_up TYMS_down DIO1_up MTHFD2_up AKR1B10_down TIPIN_down
ANGPTL4_down PRSS23_down C8orf4_up UPP1_up RRAD_up RRM2_down
CXCL6_down IFT80_down CYP3A5_up UGT2B15_down BRD2_up A2M_up
CXCL1_down CITED4_down NDRG1_down ALDH8A1_down GSTA1_down CYP3A7_up
GLDC_down CLK1_up ZNF367_down PPP1R3C_down SERTAD1_up TSC22D3_up
FGF21_up SORBS2_down BBOX1_up SLC38A4_down HIST1H2AE_up NUAK2_down

Topic 13 Topic 14 Topic 15 Topic 16 Topic 17 Topic 18

RRM2_down GDF15_up RRM2_down TSKU_up SLC2A2_down ARG1_up
HMOX1_up CYP3A7_up INSIG1_up HSPA1B_up KRT7_down PCK1_up
CXCL2_down PCK1_down ANGPTL4_down TRPM8_down PPP1R15A_up ENC1_down
HSPA1B_up GINS1_down CCNE2_down ALDH8A1_down ID1_down PPP1R3C_down
GLDC_down CYP3A4_up PBK_down UGT2B15_down ALDH1A1_down FOS_up
GEM_up LINC00261_down ACSS2_up NAT8_down PBK_down FST_up
MIR22HG_up SLC2A2_down MELK_down SRXN1_up TYMS_down SDS_up
CLK1_up BIRC3_down DTL_down SLC3A1_down ADM_up FIGNL1_down
ANGPTL4_down CDK1_down TYMS_down TRIM22_down GDF15_up CCL2_down
HSPA1A_up RGCC_up NR0B2_up ARL14_down FSTL1_down ZWINT_down

Genes are ranked according to the probability of topic-gene matrix. The table shows the top 10 genes ranked by probability for each topic.
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of absolute average fold change. Those target genes were then
compared with TRANSFAC database that is presented in Table
6. When GR agonist’s 300 target genes extracted from fold
change were compared with GR’s 59 target genes from
TRANSFAC, 3 genes such as Cyp2c9, Lpin1, and Tat were found
to be common. The list of common target genes for entire pairs
is summarized in Supplementary Table 5.

Lastly, to validate further the modularity of our target genes,
we examined an interactivity of target genes by counting the
number of interaction pairs from top 300 genes using
MetaCore’s significant interactions within set(s). As a result, the
number of interactions was much higher than one from the ran-
domly selected 300 genes, presented in Figure 4 where the aver-
age number of interactions was 169 and 57.7 when it was our
discovered 18 topics and randomly selected 50 topics, respec-
tively. The statistical significance was .0001 against the null
hypothesis that the means of interaction numbers from topics
are randomization are equal. The entire set of interaction pairs
is presented in Supplementary Table 6, where topic 12 has the
largest number of interactions (389 interacting pairs), of which
the most likely NR is RAR antagonist. In the context of a net-
work from topic 12, there were several hub genes such as CDK2,
CDK1, and FOS. Their connection to RAR is supported by pre-
vious literature reports (Bao et al., 2006; Ødum, 2013; Talmage
and Lackey, 1992).

DISCUSSION

In this study, we performed an integrative analysis of 2 different
datasets, small molecule bioassays from Tox21 and in vitro
human gene expression profiles from TGP to discover transcrip-
tional targets that are regulated by NRs. We applied ATM that
analyzed these 2 different data sources efficiently with latent
variables for an enhanced integration. This approach originated
from Latent Dirichlet Allocation (LDA) whose objective is to
identify the hidden structure embedded in a set of documents.
Besides uncovering the hidden structure, ATM examines the
relationship between authors (ie, NRs) and words (ie, genes)
through latent topics (ie, biological processes). This ultimately
leads to modeling the content of documents (ie, gene expres-
sion profiles) and the interests of authors (ie, NRs).

Considering the similar data structure between authors-
documents and NRs-gene expression profiles, we successfully
applied an ATM to the 2 different data sources. ATM is a text
mining approach to interrogate authors’ interest by investigat-
ing which topics authors write about and to the extension of
revealing which group of authors often collaborate together in
writing the same topics. In many ways, differentially expressed
genes selectively regulated by NRs in gene expression profiles
can be viewed as if words are preferably selected by authors in
writing documents. Two matrices were yielded from the ATM

FIG. 3. Topic similarity calculated from Tanimoto coefficient based on shared genes. Darker represents strong similarity between 2 topics. For an intuitive visualization,

the pairs between same topics located on diagonal were colored with white.
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analysis: one is NR-topic probabilities matrix and the other is
topic-gene probabilities matrix. The NR-topic matrix identifies
which topics are preferably used by which NRs whereas the
topic-gene matrix identifies which genes are associated with
which topics. Here, a ‘topic’ consisted of a set of genes with
each having a probabilistic measure of its importance to the
topic and it is enriched in the expression profiles for sets of
chemicals that activate particular NRs (or pairs, triples, etc. of
NRs). The main goal of this analysis is to infer which genes are
targets by which NRs. Specifically, by analyzing 2 matrices, the
highly probable genes for each topic were defined as target
genes regulated by the most probable NR from the same topic.

For each topic, we performed functional analysis, which pro-
vides us with an intuitive understanding of the biological

processes associated with NRs. Among the functional analysis
results, some of the cell death related functions may be associ-
ated with potential cytotoxicity rather than NR’s induced effect
in the 2 data sets because some of the targets may be regulated
as a result of cell stress at high drug cocentration. In the Tox21
dataset, this issue is more relevant for the antagonist mode
assays, where an inhibitory effect caused by cytotoxicity could
be mistaken for antagonist action. We have tried to minimize
the interference from cytotoxic responses by running a cell via-
bility counterscreen for every antagonist mode assay, and only
considering a chemcial as active when it showed significantly
more potent activity against the NR target than in the cell viabil-
ity counterscreen. The method may not remove cytotoxicity
interference completely, but the target gene/pathway validation

TABLE 5. Number of Common Target Genes Between 18 Topics’ Top 300 Genes and 9 NRs’ Target Genes from TRANSFAC

ER (91) AR (58) AhR (23) PPARc (19) GR (59) VDR (16) RXR (16) RAR (14) FXR (11)

Topic1 1 1 0 1 2 0 0 1 0
Topic2 5 3 5 3 8 2 0 0 1
Topic3 2 2 1 2 0 1 0 0 1
Topic4 3 1 0 1 3 2 0 0 2
Topic5 3 2 1 1 3 1 0 0 0
Topic6 5 3 1 0 2 0 0 0 0
Topic7 4 1 4 1 3 0 0 1 1
Topic8 4 2 2 0 1 0 1 0 0
Topic9 3 3 4 0 1 1 3 1 1
Topic10 5 3 4 1 3 4 1 0 1
Topic11 4 3 0 2 3 0 0 0 0
Topic12 3 2 3 2 7 2 1 0 0
Topic13 6 3 2 1 5 0 0 0 1
Topic14 2 5 1 2 5 3 0 0 0
Topic15 5 2 2 2 3 0 2 0 1
Topic16 6 2 3 1 4 0 0 1 1
Topic17 4 1 3 2 3 0 1 0 1
Topic18 3 3 1 1 2 0 1 1 0

The row and column represents 18 topics and TRANSFAC’s 9 NRs, respectively. The number within parenthesis in the column name shows the number of total target

genes from TRANSFAC. If the topic in a certain row is most associated with NR in a particular column, that cell is colored with gray.

TABLE 6. Number of Common Target Genes Between Top 300 Genes when using Fold change and 9 NRs’ Target Genes from TRANSFAC

ER (91) AR (58) AhR (23) PPARc (19) GR (59) VDR (16) RXR (16) RAR (14) FXR (11)

AhR 5 2 4 1 1 2 1 1 1
AR agonist 5 1 5 2 4 3 0 0 0
AR antagonist 5 3 3 1 3 2 1 1 0
ER agonist 4 2 3 4 2 2 0 0 1
ER antagonist 5 3 3 1 3 2 1 1 0
FXR antagonist 4 2 4 3 2 2 0 1 0
GR agonist 4 2 4 4 3 3 0 1 1
GR antagonist 5 1 5 2 1 2 0 1 0
PPARd agonist 4 2 1 2 4 2 0 1 0
PPARd antagonist 3 2 4 0 2 4 0 0 1
PPARc agonist 4 1 3 3 2 2 1 0 1
PPARc antagonist 4 3 4 2 2 2 1 0 1
RAR agonist 4 5 5 2 2 2 2 1 1
RAR antagonist 4 2 4 1 3 2 0 0 0
ROR antagonist 4 2 4 1 1 2 2 0 0
RXR agonist 5 3 4 1 2 2 1 0 0
VDR agonist 4 2 1 2 4 2 0 1 0
VDR antagonist 4 1 1 4 2 2 0 1 1

The row and column represents 18 NRs in either agonist or antagonist mode and TRANSFAC’S 9 NRs, respectively. The number within parenthesis in the column

name shows the number of total target genes from TRANSFAC.
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results show that with our analysis method we can see true NR
related signals that are not merely responses to cytotoxicity.
We found that p53 signaling pathway is most frequently over-
represented on all the 18 topics. The relationship between NRs
and p53 has been widely studied in both structural and func-
tional aspects (Lee et al., 2010; Yang et al., 2012). For example, ER
interacts with p53, leading to the suppression of p53-mediated
transcriptional repression (Rasti et al., 2012). It is also reported
that both ER agonist (estradiol) and the ER antagonist (tamoxi-
fen) can promote p53 inhibition (Bailey et al., 2012). Besides the
functional analysis of each topic, we compared top 300 genes in
our 18 topics with TRANSFAC’s target genes. As a result, the
functions of some topics are verified, for example, among 300
genes in topic 2 where the most probable NR is GR, 8 genes are
overlapped with TRANSFAC GR’s target genes. Of note, a rela-
tively large false discovery could be anticipated due to the low
hit rate, 0.14 (8/59) and potential false positive targets.
Differences in experimental conditions, such as cell type, could
account for the relatively low overlap between the target genes
identified by our method and the TRANSFAC genes resulting in
potential false discoveries. Specifically, the gene expression
profiles of TGP are generated in primary human hepatocytes,
but most of the NRs-target relationships reported in TRANSFAC
are only validated in human cancer cells. Another common
approach to identify candidate targets is to compare DEGs (or
fold change alone) with TRANSFAC. This approach has only 3
genes overlapped with TRANSFAC’s GR target genes, which is
far less than our ATM approach. Thus, our approach is clearly
more robust in correctly identifying target genes despite of the
seemingly low hit rate for some targets. Lastly, we analyzed the
interaction/connection between top 300 genes for each topic,
which demonstrated our observed topics are much highly corre-
lated with each other than randomly selected 300 genes.

Uncovering hidden structure embedded in different datasets
is a non-trivial problem due to their distinct characteristics
such as different variable types and/or their scales. However,
utilizing the ATM method we were able to integrate 2 heteroge-
neous data sources in an efficient manner through latent varia-
bles (ie, topics), which connects NRs and associated (or
regulated) differentially expressed genes. With that said, we

found that certain NRs (such as PPARd agonist, PPARd antago-
nist, VDR agonist, and VDR antagonist) were not associated
with any topic. It is likely due to the fact that because the
method is model-based, if the hidden structure is not apparent
compared with others, it would not appear as detectable pat-
tern. In contrast, we could define target genes for every NR
when using fold change. Additionally, even though a few NRs is
associated with multiple topics, it does not imply that our topics
are redundant as evident by the pairwise similarity assessment
of 18 topics where the nearest pair was between topic 2 and 15
with a Tanimoto coefficient of 0.15 (80 genes were shared).
These results demonstrate that even though the same NR is
activated, the expression pattern could be different according to
the biological context. Importantly, our approach was success-
fully validated with functional analysis in comparison with a
curated database, leading to the discovery of transcriptional tar-
gets of NRs with interpretable biological insights.
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