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ABSTRACT

The essential mycobacterial transcriptional regula-
tors RbpA and CarD act to modulate transcription
by associating to the initiation complex and in-
creasing the flux of transcript production. Each of
these factors interacts directly with the promoter
DNA template and with RNA polymerase (RNAP)
holoenzyme. We recently reported on the energet-
ics of CarD-mediated open complex stabilization on
the Mycobacterium tuberculosis rrnAP3 ribosomal
promoter using a stopped-flow fluorescence assay.
Here, we apply this approach to RbpA and show that
RbpA stabilizes RNAP-promoter open complexes
(RP,) via a distinct mechanism from that of CarD. Fur-
thermore, concentration-dependent stopped-flow ex-
periments with both factors reveal positive linkage
(cooperativity) between RbpA and CarD with regard
to their ability to stabilize RP,. The observation of
positive linkage between RbpA and CarD demon-
strates that the two factors can act on the same tran-
scription initiation complex simultaneously. Lastly,
with both factors present, the kinetics of open com-
plex formation is significantly faster than in the pres-
ence of either factor alone and approaches that of E.
coli RNAP on the same promoter. This work provides
a quantitative framework for the molecular mecha-
nisms of these two essential transcription factors
and the critical roles they play in the biology and
pathology of mycobacteria.

INTRODUCTION

The regulation of gene expression serves as a gateway be-
tween genotype and phenotype. By modulating the out-
put of specific genes, cells tune their molecular makeup to

best suit environmental conditions. Much of this regulation
is enacted by modulating the rates of transcription initia-
tion to control the flux of RNA production. In bacteria,
the basal transcriptional machinery is composed of RNA
polymerase holoenzyme which consists of a catalytic core
enzyme (BB ’a;w) and a dissociable sigma factor (o) that
directs promoter recognition. Transcription initiation pro-
ceeds via the binding of RNAP holoenzyme to promoter
DNA to form closed complex (RP,) followed by the sponta-
neous unwinding of approximately a turn of DNA to form
open complex (RP,). In RP,, the single-stranded DNA
template is correctly positioned in the polymerase active
site, incoming ribonucleotides may bind and RNA polymer-
ization may ensue. The polymerization of the initial ribonu-
cleotides leads to promoter escape, the formation of a sta-
ble elongation complex and the production of transcript. In
Escherichia coli, transcription initiation mechanisms have
been well-studied and multiple kinetic intermediates have
been identified between the initial DNA-holoenzyme closed
complex and open complex (1). These details are of crucial
importance in understanding the structural transitions that
the complexes go through during the isomerization to open
complex. However, a minimal kinetic scheme that describes
promoter binding and opening in two reversible steps (R+P
< RP, <> RP,) has proven to be a useful and practical start-
ing point when investigating mechanisms of open-complex
formation and regulation (2).

The regulation of transcription initiation involves factor-
dependent tuning of the stabilities of transcription interme-
diates and the rates of interconversion between these states.
Examples include modulation of polymerase-promoter
affinity, changing the equilibrium between RP. and RP,
and influencing the rate of NTP-dependent promoter es-
cape (3-5). It has recently become apparent that initiation
in Mycobacterium tuberculosis (Mtb) is controlled via mech-
anisms that are distinct from those found in E. coli. For ex-
ample, mycobacteria lack Fis (6), DksA (7) and AT-rich up-
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stream activating elements (8,9). Furthermore, mycobacte-
ria possess unique transcription factors not found in E. coli
including CarD (10-12) and RbpA (13-15).

CarD is an RNAP- and DNA-binding protein that is es-
sential for growth in M. tuberculosis, other mycobacteria
(10-12). Furthermore, CarD is required for the response
of Mtb to oxidative stress, some antibiotics and infection
of mice (10). In vitro, CarD binds to initiation complexes
and stimulates the production of RNA by stabilizing the
relatively unstable RP, generated by mycobacterial RNAP
holoenzyme on ribosomal promoters (11,12,16). In initia-
tion complexes, it makes direct molecular interactions with
the B1 lobe of the RNAP B subunit through its N-terminal
RNAP-interaction domain (RID) (10,17,18) (Figure 1A
and B). CarD also binds DNA non-specifically through
its C-terminal domain (CTD) (19, Srivastava: 2013ga; 20),
which contains a tryptophan residue that interacts with
the upstream edge of the transcription bubble to stabilize
RP, (18). Mutations in the RID, CTD or tryptophan lead
to distinct in vivo and in vitro effects suggesting that full
CarD activity requires each of these three functional mod-
ules (12,17,20). Based on these studies and previous anal-
yses by our group, our working model for how CarD sta-
bilizes open complex and stimulates transcription consists
of a two-tiered, concentration-dependent mechanism. The
model predicts that at low concentrations (i.e. <100 nM),
CarD binds RP, and slows the rate of bubble collapse by
conformational selection, while at higher concentrations,
CarD binds RP, and accelerates the rate of DNA unwind-
ing by induced fit (12). We expect both of these kinetic ef-
fects to play roles in vivo where the concentration of CarD
is well in excess of 100 nM (12).

RbpA is also an essential RNAP- and DNA-binding pro-
tein found in M. tuberculosis and other Actinobacteria, but
not in E. coli (13,15). RbpA consists of an unstructured N-
terminal tail, a central core B-barrel domain, a 15 amino
acid basic linker (BL) and a C-terminal sigma-interacting
domain (SID) (15,21) (Figure 1A). The SID binds to the
second domain of sigma (o,, domains 1.2, 2.3 and the non-
conserved region) in both the presence and absence of the
core RNAP enzyme and has specificity to the housekeep-
ing sigma factor ¢ and the stress-response sigma factor
B (15,21,22). A crystal structure of a BL/SID construct
bound to o, has been solved (15) and can be used to po-
sition RbpA in the initiation complex (Figure 1B). RbpA’s
sigma specificity has led to proposals that RbpA plays a role
in the competition of sigma factors for RNAP core (14,23).
RDbpA potentially stabilizes RNAP holoenzyme by binding
both sigma and either B2 or another region of the core sub-
units (14,15). Furthermore, RbpA can increase the affinity
of holoenzyme to the promoter, presumably via the interac-
tion of the BL with DNA (15,24). An arginine residue (R79)
in the BL is thought to play a role in RbpA’s ability to bind
DNA, although it is unknown whether this interaction may
contribute to RbpA’s promoter specificity (15). RbpA stim-
ulates transcription in vitro and the BL/SID region of the
protein are sufficient for partial stimulation (15). However,
the mechanism of transcriptional stimulation by RbpA re-
main unclear.

Here, we perform a mechanistic analysis of the function
of Mth RbpA during open complex formation on the Mtbh
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rrmAP3 promoter using a real-time fluorescence assay (25)
and show that RbpA stabilizes open complex. Furthermore,
RbpA accelerates the approach to equilibrium providing in-
sight into the kinetic mechanism at play. Interestingly, this
trend is qualitatively distinct from that of CarD, suggest-
ing that the two factors function in fundamentally different
ways.

Furthermore, stopped-flow fluorescence experiments
performed in the presence of both factors reveal positive
linkage between the effect of CarD and RbpA on RP,, sta-
bility at the Mtbh rrmAP3 promoter. The observation that
the two factors bind cooperatively demonstrates for the first
time that RbpA and CarD can act on the same initiation
complex simultaneously. This is consistent with the predic-
tion that CarD and RbpA have distinct binding sites on
initiation complexes (15,18). We present a thermodynamic
analysis to quantitatively describe the positive linkage be-
tween the two factors. Lastly, we observe a dramatic accel-
eration in observed rates when both factors are present, and
the approach to equilibrium under these conditions resem-
bles that of E.coli RNAP acting on the same promoter.

The data and analysis presented here reveal important
details regarding the mechanistic differences between CarD
and RbpA and provide a kinetic framework for the function
of these two essential mycobacterial transcription factors
both independently and cooperatively. This work brings us
a step closer to understanding the functional logic of tran-
scription regulation in a pathogenic bacteria that represents
a significant burden to human health worldwide.

MATERIALS AND METHODS
Protein purification

Mbo RNAP, Mbo o™ and Mtbh CarD were prepared as pre-
viously described (12). Mthb RbpA was cloned into a pET-
SUMO-Hisg vector and introduced into E. coli BL21(DE3)
cells. After growth at 37°C to an ODgg of 0.8, protein over-
expression was induced by the addition of 1 mM Isopropyl
B-D-1-thiogalactopyranoside (IPTG). The tagged protein
was purified by nickel affinity chromatography (HP HiTrap,
GE Healthcare) and the SUMO tag was cleaved overnight
with His-tagged Ulpl protease. Pure untagged RbpA was
collected in the flow through of a second nickel affinity col-
umn. The protein was stored in 20 mM Tris (pH 8.0), 150
mM NaCl and 1 mM beta-mercaptoethanol at —80°C.

Promoter DNA

A total of 150 base-pair Mtb rrnAP3 promoter fragments
with a Cy3 label on the +2 non-template dT were prepared
as previously described (12), with one notable exception:
residues flanking the promoter sequence were replaced with
those native to the Mtb genome (H37Rv coordinates 1 471
577-1 471 727, Supplemental Sequence) (26,27). Control
experiments indicated that this change had no effect on pre-
viously published results describing the effect of CarD on
open-complex stabilization on the same promoter with ran-
dom flanking sequence (12).
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Figure 1. Mycobacterial transcription factors and a fluorescence assay for following open complex formation. (A) CarD is made up of an N-terminal
RNAP-interaction domain (RID, light blue) and a C-terminal DNA-binding domain (dark blue). RbpA consists of a core domain (white), a basic linker
domain (BL) and a sigma-interacting domain (SID, red). (B) Ribbon representations of both factors are shown in the context of an open complex structure.
Both domains of CarD and the SID of RbpA are modeled together based on the structure of CarD bound to open complex (4XLS (18)) and the structure
of the RbpA SID domain bound to domain 2 of o (4X8K (15)). (C) Fluorescence assay for following the formation of open complexes. A Cy3 fluorophore
attached to the +2 non-template dT undergoes fluorescence enhancement upon open-complex formation.

Stopped-flow fluorescence assay

The stopped-flow assay was performed as previously de-
scribed (12). In brief, Mbo RNAP core was mixed with 3- to
6-fold molar excess Mbo o* at 25°C to form holoenzyme.
Holoenzyme was mixed with transcription factor(s) or an
equivalent volume of transcription factor storage buffer
such that the proteins were initially at twice the desired final
reaction concentrations. Promoter DNA was also prepared
at twice the desired final reaction concentration. Equal vol-
ume mixing was performed in a stopped-flow apparatus
(Applied Photophysics SX-20, total shot volume 150 l,
dead time < 2 ms), so the initial protein and DNA solutions
were each diluted by half in order to reach their final reac-
tion concentrations. All experiments were performed using
a final MboRNAP holoenzyme concentration of 225 nM
and a DNA concentration of 10 nM unless otherwise noted.
Excitation light was provided by a 510 nm LED light source,
as opposed to a 515 nm light source from an arc lamp passed
through a monochromator. Emission was collected at 570+
nm using a long-pass filter. Control experiments indicated
that this subtle change in excitation wavelength had no ef-
fect on previously published results describing the effect of
CarD on mycobacterial open-complex stabilization. All ex-
periments were performed at 25°C in the following final so-
lution conditions: 14 mM Tris pH 8.0, 120 mM NaCl, 10
mM MgCl,, | mM DTT, 0.1 mg/ml BSA and 10% glycerol
by volume.

Two to three traces were collected per condition. Traces
for each condition were averaged and plotted as fold-change
over DNA by first subtracting the buffer signal from all
traces and then plotting the data as (F—F;)/F,, where F is

the signal for DNA alone and F is the signal for DNA mixed
with protein. The fold-change traces were fit to a triple ex-
ponential from 0.1-1200 s using the ProData Viewer soft-
ware from Applied Photophysics:

3
F(1) =) Aobsi- e 6]

i=1

where Aqpsi and kobs i are the amplitude and observed rate of
the ith kinetic phase. To facilitate consistency in assignment
of fast, intermediate and slow phases, traces were anchored
to the intermediate and slow phases using either a single or
double exponential before fitting the fast phase of the trace.
Fractional amplitudes were calculated according to:

Aobs,i

N
Zizl Aobs,i
In order to estimate an overall rate for the approach to

equilibrium, an amplitude-averaged rate was calculated us-
ing the intermediate and slow phases according to:

k be) = (Aobs,2 : kobs,Z) + (Aobs,3 : kobs,S)
b Aobs,Z + Aobs,B

Afrc,i - (2)

A3)

Conditions that were repeated multiple times on differ-
ent days were used to estimate standard error of the mean
(SEM). An average SEM was used to estimate uncertainty
for specific conditions that were only repeated multiple
times on the same day to better estimate the actual error
for these points.



In vitro aborted transcription assay

CarD and RbpA used in this assay were diluted into 1x
dialysis buffer (20 mM Tris pH 8.0, 150 mM NaCl and
1 mM BME). Mbo o* was mixed in 8-fold molar excess
with core RNAP to reconstitute the RNAP holoenzyme.
A total of 85 bp overlapping primers (IDT) were annealed
and extended to prepare a linear fragment of dSDNA M1b
Erdman strain genomic DNA containing nucleotides 1 470
151 to 1 470 300 which includes the Mtb rrnAP3 promoter.
The final reaction conditions were: 225 nM Mbo o*-holo
RNAP, 1-2 uM CarD or equivalent volume of buffer, 1-
2 .M RbpA or equivalent volume of buffer, 10 nM linear
DNA template, 210 wuM GpU dinucleotide, 21 pwM UTP,
0.1 L [a - 32 P]-UTP, 14 mM Tris pH 8.0, 100 mM NaCl,
10.2 mM MgCl,, 5% (vol/vol) glycerol, ] mM DTT and 0.1
mg/ml BSA (NEB) in a total volume of 20 pl. Mbo core
and o” were incubated for 10 min at room temperature.
CarD, RbpA and/or dialysis buffer were added to the poly-
merase and the proteins were incubated for 10 more minutes
at room temperature. The DNA template was added and the
reactions were diluted to 17.5 pl, followed by an additional
10 min at room temperature. Reactions were initiated with
addition of a 2.5 wl mixture containing GpU, UTP and the
radiolabeled UTP. After 20 min incubation at room temper-
ature, the reactions were stopped with 2x formamide buffer
[98% (vol/vol) formamide, 5 mM EDTA] and run on a 22%
urea PAGE gel.

RESULTS
RbpA stabilizes rrnAP3 open complexes

To study the effect of RbpA on transcription open com-
plexes (RP,) we used a fluorescence assay that reports on
RP, formation in real-time as previously reported (12,25).
For these experiments, we use M. bovis (Mbo) RNAP which
is virtually identical to MthRNAP differing only in the
69th amino acid of the B’ subunit which is a proline in
MboRNAP and an arginine in MthRNAP. A stopped-flow
apparatus was used to mix Mbo o*-saturated MboRNAP
with Cy3-labeled Mtb rrmAP3 promoter, and fluorescence
intensity was monitored over time. The dye is conjugated
to the +2 non-template thymine and exhibits enhanced flu-
orescence intensity upon RP, formation, providing a way
to measure the kinetics of open complex formation as well
as the amount of open complex at equilibrium (Figure 1C).
Several control experiments support our interpretation of
Cy3 fluorescence enhancement as a reporter of promoter-
opening. First, promoter-less templates do not show flu-
orescence enhancement, demonstrating sequence depen-
dence (12). Second, experiments performed at 10°C, 25°C
and 37°C showed increasing fluorescence enhancement by
RNAP with increasing temperature, consistent with the
known temperature dependence of promoter-melting (12).
Third, at high concentrations of RNAP, where promoters
are saturated with holoenzyme, CarD leads to a large flu-
orescence enhancement showing that CarD specifically af-
fects a step after holoenzyme binds the promoter (i.e. pro-
moter opening). Lastly, the CarD-dependent fluorescence
enhancement follows the same trend of open-complex stabi-
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Figure 2. RbpA and CarD stabilize open complex. (A) Fluorescent fold-
change is plotted over time from mixing MboRNAP and M1b factors with
a +2 T Cy3-labeled Mtb rrnAP3 promoter template. DNA alone mixed
with buffer (black), a titration of RbpA from 0-2 pM (red) and 1 uM
CarD (blue) are shown. (B) The equilibrium fluorescence fold change
over 225 nM RNAP alone is plotted versus the concentration of either
RbpA (red) or CarD (blue). The data are fit with the binding model
A*[factor]/([factor]+Kef) to extract amplitudes (Acayp = 6.1 = 0.1 and
ARrppa = 2.9 £0.1) and effective binding constants (Kefr,rbpa = 177 £ 23
nM and Kefrcarp = 73 =4 nM). Two to three shots were collected for each
condition and error bars represent standard error of the mean.

lization observed in potassium permanganate experiments
(12,16).

Incubating MboRNAP with increasing concentrations
of wild-type RbpA results in increasing equilibrium fluo-
rescence, demonstrating that RbpA stabilizes RP, at the
rrnAP3 promoter (Figure 2A). The R79A mutant of RbpA,
which is known to play an important role in transcriptional
activation (15), results in approximately half the increase in
equilibrium fluorescence when added at a concentration at
which WT RbpA saturates (2 wM, Supplementary Figure
S1). A fit of the equilibrium fluorescence fold-change gener-
ated by WT RbpA normalized to RNAP alone to the bind-
ing isotherm 1 + A*[RbpA]/([RbpA]+K.s) gives a value of
the concentration of half-maximal effect, Koy = 177 & 23
nM. This K is approximately 2-fold weaker than that of
CarD (73 &4 nM). At saturation, RbpA produces ~3 times
(A =2.9) more fluorescence enhancement than MboRNAP
alone, compared to CarD which saturates at ~6-fold (A =
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6.1) over RNAP (Figure 2B). Assuming equilibrium fluo-
rescence enhancement correlates with the extent of RP,, sta-
bilization, the lower equilibrium fluorescence generated by
RDbpA at saturation suggests that RbpA stabilizes RP, to a
lesser extent than CarD. However, given that Cy3 fluores-
cence enhancement is sensitive to local changes in the dye’s
microenvironment, we do not exclude the possibility that
the assay reports on multiple open complexes, each with
subtle conformational differences leading to different flu-
orescence enhancements. With this in mind, it is possible
that the RbpA-stabilized RP, produces lower fluorescence
enhancement than the RP, stabilized by CarD. If this were
the case, the extent of fluorescence enhancement would not
correspond to the extent of open complex stabilization, but
instead would report on the average fluorescence enhance-
ment of an ensemble of open complexes. Clearly, the dif-
ference in fluorescence enhancements contains information
regarding the mechanisms of open complex stabilization by
the two factors. Here, we can only speculate on the molecu-
lar details that lead to the observed enhancements, however,
these details do not impact the conclusions drawn from the
analyses that follow.

RbpA stabilizes open complexes through a different kinetic
mechanism than CarD

Although RbpA and CarD are unique proteins that bind
the transcription initiation complex at distinct sites, the two
factors share several important structure-function proper-
ties. Specifically, both factors bind RNAP-holoenzyme and
DNA, and both factors stabilize RP,. For these reasons,
we considered the possibility that RbpA stabilizes open-
complexes using a similar kinetic mechanism as CarD (12).
Curves in the presence of either RpbA or CarD were well-fit
by a triple exponential (see Materials and Methods) and the
phases were separable by approximately an order of mag-
nitude. The low fractional amplitude of ks made it chal-
lenging to measure, so we cannot exclude the possibility that
RbpA or CarD influence the kinetics of the fastest observed
phase.

We observed dramatic differences between RbpA and
CarD in the intermediate and slow phases. CarD traces
are dominated by the slowest phase (kobs3,), Whereas RbpA
traces contain significant contributions from both the inter-
mediate and slowest phases (kops2 and kops3, respectively)
(Supplementary Figure S2). Analysis of the trends in the ob-
served rates themselves also indicated differences between
RbpA and CarD (Figure 3B and C). We observe monotonic
and saturable increases in kops2 and kops3 With increasing
RbpA concentration (Figure 3B). Conversely, we were un-
able to discern a systematic trend in ko2 as a function of
CarD concentration (Figure 3B). Furthermore, ko3 dis-
plays a non-monotonic trend with increasing CarD concen-
tration (Figure 3C and Supplementary Figure S3). Thus,
RDbpA accelerates the approach to equilibrium at all concen-
trations tested while CarD decelerates equilibration at low
concentrations and accelerates equilibration at high con-
centrations.

We considered the mechanistic implications of the dis-
tinct kinetic trends observed for RbpA and CarD. CarD’s
non-monotonic trend in kops 3 can be explained in the con-
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Figure 3. Concentration dependence of observed rates. (A) The interme-
diate phase of stopped-flow time courses is different between RbpA and
CarD. For RbpA (red), kobs2 increases in a monotonic and saturable
manner with increasing concentration. For CarD, kyps 2, does not show
any systematic concentration dependence. (B) RbpA and CarD exhibit
different concentration-dependent trends in kops 3. The slowest phase of
time courses increases monotonically with increasing RbpA concentration
(red), unlike CarD (blue), which decelerates at low concentrations and ac-
celerates at higher concentrations. Two to three shots were collected for
each condition and error bars represent standard error of the mean.

text of a two-step reversible model coupled to factor bind-
ing (12) (Supplementary Figure S4A). However, the ob-
servation of multiple saturable observed rates in the pres-
ence of RbpA demonstrates that the simple two-step re-
versible mechanism of open complex formation cannot ac-
count for the observed kinetics. Therefore, our data sug-
gest that the mechanism of RpbA open complex stabiliza-
tion must involve more states. Since RbpA is known to bind
sigA, RNAP core and holoenzyme, one possibility is that
RbpA’s protein-binding interactions contribute to the ob-
served kinetics (Supplementary Figure S4B). Another pos-
sibility is that RbpA interacts with additional intermedi-
ates on pathway to RP,, (Supplementary Figure S4B). These
possibilities are not mutually exclusive, and a detailed anal-



ysis of the kinetic mechanism of RbpA’s stabilization of RP,
remains an active area of investigation.

RbpA and CarD cooperatively stabilize open complex

As each factor stabilizes RP, and structural modeling sug-
gests that they could both bind RP complexes concurrently
(15), we tested the effect of RbpA and CarD together on
open-complex stability. Since RbpA generates a lower fluo-
rescence enhancement compared to CarD, we reasoned that
if RbpA competed with CarD for binding to the initiation
complex, the addition of both factors would lead to an in-
termediate enhancement. However, in the presence of both
factors at saturating concentrations, the equilibrium fluo-
rescence fold change is actually greater than that for satu-
rating CarD alone (Figure 4A).

If RbpA and CarD bind concurrently to the rrnAP3
promoter-RNAP complex, one expects to measure positive
linkage or cooperativity between the two factors as both
stabilize the same conformation, namely open complex. To
test this model, we performed titrations of each factor in the
presence of the other factor at saturation and asked whether
we observed a shift in K relative to each factor alone. In-
deed, titrating RbpA in the presence of 1 wM CarD results
in a K (48 &= 10 nM) that is lower than that obtained from
a titration of RbpA alone (177 £ 23 nM), suggesting that
the presence of CarD increases the binding affinity of RbpA
to transcription initiation complexes (Figure 4B). Likewise,
a CarD titration in the presence of 2 uM RbpA results in a
Kegr (16 &2 nM) that is lower than a titration of CarD alone
(73 £ 4 nM), indicating that the presence of RbpA allows
CarD to interact with the complex at lower concentrations
(Figure 4C). This observation of heterotropic, positive link-
age between RbpA and CarD demonstrates that they act
cooperatively on transcription initiation complexes at the
Mtb rrnAP3 promoter.

To provide an overall quantification of the observed link-
age, we consider the thermodynamic cycle involving four
states: () RP, (i1)) RP-CarD, (iii) RP-RbpA and (iv) RP-
RbpA-CarD, where RP represents promoter-bound RNAP
and includes an ensemble of states (i.e. RP., RP, and all
intermediates) (Figure 4D). We globally fit the four experi-
mental binding curves (CarD titrations + 2 .M RbpA and
RbpA titrations £+ 1 wM CarD) to a model where each fac-
tor has an effective affinity (K¢r) and linkage is captured
by the cooperativity factor o (Supplementary Figure S5).
In the context of this model, the effective affinity of a fac-
tor in the presence on the other is given by Ker/a. A fit of
the data with this three-parameter model results in values
of Keff’carD =66+7 nM, Keff’Rpr =1754+20nM and o =
3.8 £ 0.4. All four K values are within error of the values
obtained from fits of the individual titrations alone. Thus, a
simple model of cooperativity captures the positive linkage
between RbpA and CarD at initiation complexes.

Given that RbpA and CarD cooperatively stabilize open
complex, we hypothesized that they would also stimulate
transcription above the level of either factor acting alone.
To test this hypothesis, we performed an aborted transcrip-
tion assay in which we measured the production of a three
nucleotide transcript from the r7n.4P3 using a dinucleotide
primer (GpU) and a radio-labeled UTP. RbpA and CarD
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acting individually at saturating concentrations stimulate
transcription of the 3-nt product over RNAP alone (Supple-
mentary Figure S6). The presence of both factors resultsin a
further increase in 3-nt production over either factor acting
alone. These results are consistent with a model in which
CarD and RbpA cooperatively stabilize a transcription-
competent open complex.

RbpA and CarD act together to accelerate the approach to
RP, equilibrium

To identify any cooperative kinetic effects stemming from
the presence of both RbpA and CarD on open complex
equilibration, we used a triple exponential to fit the raw data
traces and examined the manner in which the observed rates
(Figure 5B and C) and the fractional amplitudes (Supple-
mentary Figure S7) depended on transcription factor con-
centration with both factors present.

Compared to RbpA and CarD individually, we found
that kops2 and kops3 were faster when both factors were
present. While the presence of CarD did not affect the de-
pendence of the observed rates on RbpA concentration, the
presence of RbpA did affect the dependence of the observed
rates on CarD concentration. Titrations of CarD performed
in the presence of RbpA at saturation indicated that both
kobs2 (Figure 5B) and ko3 (Figure 5C) now increase in a
saturable and monotonic manner. This trend is quite differ-
ent than what is observed for CarD titrations performed in
the absence of RbpA, in which kqps 2 does not exhibit a dis-
cernible trend, and k,ps 3 exhibits non-monotonic behavior.

To facilitate a general kinetic comparison of RbpA and
CarD acting individually and together, we calculated an
amplitude-averaged rate as a means to quantify an over-
all, apparent rate of open-complex equilibration (Materials
and Methods). This analysis supports the conclusion that
open-complex equilibration is faster in the presence of both
factors (Figure 6). Specifically, the averaged rate (k_ops=)
observed with saturating concentrations of both factors is
at least 3 times faster than in the presence of either fac-
tor alone. Interestingly, the presence of both factors leads
to traces with similar kinetics and equilibrium fluorescence
to those obtained using the RNAP holoenzyme from E. coli
(Figure 7).

DISCUSSION

We have presented a study of RbpA and CarD acting indi-
vidually and together to stabilize mycobacterial transcrip-
tion open complexes. Like CarD, we found that RbpA sta-
bilizes RP, at the Mtb rrnAP3 promoter, albeit via a differ-
ent kinetic mechanism. Using a stopped-flow fluorescence
assay that reports on open-complex formation in real time,
we observed that, compared to CarD, RbpA generates a
lower equilibrium fluorescence at saturating concentrations
and has a weaker apparent affinity for initiation complexes.
In addition, RpbA exhibits two observed rates (kops2 and
kobs3) With appreciable fractional amplitudes in contrast
to the one dominant observed rate (kobs3) detected in the
presence of CarD. The magnitudes of both of these rates
show monotonic and saturable acceleration with increasing
RDbpA concentration. These results all suggest that the ki-
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netic mechanism by which RbpA stabilizes mycobacterial
open complexes is distinct from that of CarD.

A two-step reversible model (R+P <> RP, <> RP,) can
capture the kinetics of open complex formation under cer-
tain conditions. However, this model is almost certainly
an over-simplification of the real mechanism. For exam-
ple, we have shown that kinetic traces of open complex for-
mation by MboRNAP alone exhibit three observed rates
which cannot be accounted for in the context of the two-
step reversible model. Furthermore, the kinetic mechanism
of open-complex formation by E. coli RNAP includes mul-
tiple closed and open intermediates (1,28—-30) and transcrip-
tion with mycobacterial RNAP has previously been ana-
lyzed with E. coli derived models (31). Therefore, the ki-
netic mechanism of mycobacterial open complex formation
likely involves intermediates between the initial closed com-
plex and the final transcription-competent open complex.
We hypothesize that the distinct kinetic signatures of RbpA
and CarD are due, in part, to their differential affinities with
these intermediates. Furthermore, intermediate open com-
plexes may have different fluorescence properties leading

to the differential enhancements observed between RbpA
and CarD. Another possible way to expand the two-step
reversible model to account for the complexity of the ob-
served kinetics is to add the interaction of these factors with
free polymerase in the absence of DNA. RbpA is known to
bind sigma factor, core RNAP and holoenzyme (14,15,22)
and CarD binds to RNAP (10,18,19). In light of these pos-
sibilities, analysis using kinetic models that include multi-
ple intermediates and DNA-independent assembly states
remains an ongoing research direction (Supplementary Fig-
ure S4B).

In addition to studying each factor individually, we per-
formed experiments using both RbpA and CarD together.
Stopped-flow titrations indicated that the presence of one
factor increases the apparent affinity of the other factor to
the RNAP-promoter complex, demonstrating positive link-
age between the two factors. The observation of positive
linkage demonstrates that not only can CarD and RbpA
bind the initiation complex simultaneously, but also that
they do so cooperatively. Cooperativity between transcrip-
tion factors has been observed for transcription initiation
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(32-34), elongation (35) and termination (36). This coop-
erativity can lead to activation or repression and affords
complexity and tunability to gene regulation (37). Further-
more, cooperativity amongst transcription factors can oc-
cur between the same factors (homotropic) or different fac-
tors (heterotropic) (32-34). In M1b specifically, cooperative
binding of DevR factors to their DNA sites plays a role
in the activation of a regulon required for the induction of
dormancy in response to hypoxic conditions (38,39). How-
ever, to our knowledge the cooperative association of RbpA
and CarD is the first example of heterotropic cooperativity
between transcription factors that directly bind initiation
complexes to stabilize open complex.

When speculating about the mechanism of cooperativity
between RbpA and CarD, we consider two general possibil-
ities that are not mutually exclusive: (i) a ‘direct’ mechanism
in which RbpA and CarD physically interact, so that the
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presence of one factor provides an additional binding sur-
face for the other; and (ii) an ‘allosteric’ mechanism where
the binding of one factor results in conformational changes
in the initiation complex that lead to higher affinity bind-
ing of the second factor (i.e. conformational selection). Al-
though a ‘direct’ interaction between RbpA and CarD is
not predicted by structural modeling, we do not exclude the
possibility that direct interactions between the two factors
contribute to the observed positive linkage. In particular,
the location of RbpA’s core domain in the initiation com-
plex is unknown and predicted to be in close proximity to
the C-terminal domain of CarD. The allosteric mechanism,
however, must contribute to the observed positive linkage
through conformational selection of RP,. RbpA and CarD
each must have a higher affinity to RP, than to RP; as they
both stabilize RP,. Thus, the binding of one factor shifts
the population of initiation complexes to the higher affinity
open-complex conformation(s), resulting in a lower K for
the other factor. Whether the allosteric mechanism of con-
formational selection accounts for all or just some of the
positive linkage remains an active area of investigation.
When studying the effect of both factors acting together
on the kinetics of open-complex equilibration, we noticed
a substantial acceleration in kopbs 2 and kops 3, demonstrating
that the overall approach to equilibrium is faster compared
to either factor acting alone (Figures 5 and 6). Based on this
observation, we hypothesize that the interactions of both
factors with the initiation complex accelerate distinct for-
ward rates on the pathway to open-complex formation. The
pathway to open complex determined with the E. coli sys-
tem involves many structural intermediates including DNA
bending and wrapping, DNA unwinding and loading of the
template strand, assembly of the clamp/jaw domains and
closing of the clamp/jaw domains around the downstream
DNA (1,30). More specifically, the bending of downstream
duplex into the polymerase cleft has been linked with the
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nucleation of DNA melting (30). The basic linker of RbpA
interacts with the extended —10 motif (15) and tryptophan
85 in CarD’s DNA-binding domain interacts with the up-
stream edge of the transcription bubble at the junction be-
tween the double-stranded —12 base-pair and the single-
stranded —11 position (11,18), precisely where nucleation of
promoter melting occurs (Figure 1B). Taken together, these
structural considerations suggest the possibility that RbpA
and CarD cooperate to facilitate promoter bending and nu-
cleation of promoter-melting. This combined mechanism of
RbpA and CarD may be similar to the induced-fit mech-
anism of bending and opening used to describe the effect
of the transcription factor Mtfl on mitochondrial open-
complex kinetics (40). Importantly, this model is also com-
patible with the proposed conformational-selection mech-
anism in which CarD acts to prevent bubble collapse after
the promoter DNA has been opened (11,12,18).

We also show that RbpA and CarD jointly lead to
transcriptional dynamics for MboRNAP similar to E. coli
RNAP (Figure 7). This result leads us to speculate that
RbpA and CarD play the role of general transcription fac-
tors for Mtb, at least at housekeeping o*-dependent pro-
moters. In light of the cooperativity between the two factors,
the preference of RbpA (14,22) for 0* and o® holoenzymes
and the presumed sigma-independence of CarD raise inter-
esting questions regarding the regulatory logic behind each
of these essential factors. For example, the cooperativity
may provide a mechanism for the preferential recruitment
of CarD to RbpA-dependent promoters. Alternatively, the
association of CarD with other sigma factors may lead to
RbpA binding at non-¢* or ¢® promoters. In addition, our
data predict that the overall effect on open complex equilib-
rium at initiation complexes containing both factors will be
greater than those containing either factor alone. This effect
could lead to the different regulatory outcomes depending
on which factors are present at specific promoters.

In summary, we describe the kinetics and concentra-
tion dependencies of RbpA and CarD acting individually

and cooperatively on open-complex formation at the Mtb
rrmAP3 promoter. We expect the work presented here to
provide a quantitative framework that can be used to de-
velop mechanistic models of RbpA and CarD. We hypoth-
esize that the concurrent binding and positive linkage be-
tween these essential transcription factors play important
roles in mycobacterial gene regulation in that they result
in (i) the more efficient recruitment of transcription fac-
tors to initiation complexes and (ii) the rapid formation of
a more stable open complex. Further studies are needed to
describe the detailed kinetics of both factors on all phases of
transcription initiation to understand their overall effect on
transcriptional flux at promoters throughout the mycobac-
terial genome.
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