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Key points

� Progression of hypoxic pulmonary hypertension is thought to be due, in part, to suppression
of voltage-gated potassium channels (Kv) in pulmonary arterial smooth muscle by hypoxia,
although the precise molecular mechanisms have been unclear.

� AMP-activated protein kinase (AMPK) has been proposed to couple inhibition of
mitochondrial metabolism by hypoxia to acute hypoxic pulmonary vasoconstriction and
progression of pulmonary hypertension.

� Inhibition of complex I of the mitochondrial electron transport chain activated AMPK and
inhibited Kv1.5 channels in pulmonary arterial myocytes.

� AMPK activation by 5-aminoimidazole-4-carboxamide riboside, A769662 or C13 attenuated
Kv1.5 currents in pulmonary arterial myocytes, and this effect was non-additive with respect
to Kv1.5 inhibition by hypoxia and mitochondrial poisons.

� Recombinant AMPK phosphorylated recombinant human Kv1.5 channels in cell-free assays,
and inhibited K+ currents when introduced into HEK 293 cells stably expressing Kv1.5.

� These results suggest that AMPK is the primary mediator of reductions in Kv1.5 channels
following inhibition of mitochondrial oxidative phosphorylation during hypoxia and by
mitochondrial poisons.

Abstract Progression of hypoxic pulmonary hypertension is thought to be due, in part, to
suppression of voltage-gated potassium channels (Kv) in pulmonary arterial smooth muscle
cells that is mediated by the inhibition of mitochondrial oxidative phosphorylation. We sought
to determine the role in this process of the AMP-activated protein kinase (AMPK), which
is intimately coupled to mitochondrial function due to its activation by LKB1-dependent
phosphorylation in response to increases in the cellular AMP:ATP and/or ADP:ATP ratios.
Inhibition of complex I of the mitochondrial electron transport chain using phenformin activated
AMPK and inhibited Kv currents in pulmonary arterial myocytes, consistent with previously
reported effects of mitochondrial inhibitors. Myocyte Kv currents were also markedly inhibited
upon AMPK activation by A769662, 5-aminoimidazole-4-carboxamide riboside and C13 and
by intracellular dialysis from a patch-pipette of activated (thiophosphorylated) recombinant
AMPK heterotrimers (α2β2γ1 or α1β1γ1). Hypoxia and inhibitors of mitochondrial oxidative
phosphorylation reduced AMPK-sensitive K+ currents, which were also blocked by the selective
Kv1.5 channel inhibitor diphenyl phosphine oxide-1 but unaffected by the presence of the BKCa
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channel blocker paxilline. Moreover, recombinant human Kv1.5 channels were phosphorylated
by AMPK in cell-free assays, and K+ currents carried by Kv1.5 stably expressed in HEK 293 cells
were inhibited by intracellular dialysis of AMPK heterotrimers and by A769662, the effects of
which were blocked by compound C. We conclude that AMPK mediates Kv channel inhibition
by hypoxia in pulmonary arterial myocytes, at least in part, through phosphorylation of Kv1.5
and/or an associated protein.
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Introduction

Hypoxia without hypercapnia induces pulmonary vaso-
constriction, and thus assists ventilation–perfusion
matching in the lung (von Euler & Liljestrand, 1946).
However, hypoxia may trigger pulmonary hypertension
when it is widespread, for example during ascent to
altitude (Bartsch et al. 2005) or due to disorders such as
cystic fibrosis (Lahm et al. 2014). While current therapies
have been shown to prolong survival, pulmonary hyper-
tension remains a life-threatening disorder (Lahm et al.
2014) and the precise molecular mechanisms underlying
it remain unclear. Therefore, greater understanding is
critical to the development of effective therapies.

Initially, hypoxic pulmonary vasoconstriction (HPV)
is driven by calcium release via ryanodine receptors from
the sarcoplasmic reticulum of pulmonary arterial smooth
muscle cells (Dipp et al. 2001), but is also associated
with concomitant inhibition of voltage-gated potassium
channels (Kv) (Post et al. 1992; Yuan et al. 1993; Archer
et al. 2004). The role of Kv channel inhibition in acute
HPV remains open to debate (Wilson et al. 2002; Wang
et al. 2004; Evans et al. 2005; Lu et al. 2008), but it has
been proposed that loss of Kv function contributes to
smooth muscle proliferation and thus to the progression
of pulmonary hypertension (Sweeney & Yuan, 2000;
Moudgil et al. 2006) by promoting cell survival (Ekhterae
et al. 2001, 2003).

Kv current suppression during hypoxia (Post et al. 1992;
Yuan et al. 1993; Firth et al. 2008) occurs as a consequence
of inhibition of mitochondrial oxidative phosphorylation
(Firth et al. 2008, 2009). However, the nature of the
signalling pathway that couples mitochondrial function
to Kv channels has been unclear. In this respect, little
attention has been paid to the role of the AMP-activated
protein kinase (AMPK), although we have previously
proposed that it couples inhibition of mitochondrial
metabolism by hypoxia to acute HPV (Evans et al. 2005;
Evans, 2006) and may also contribute to the progression

of pulmonary hypertension (Evans et al. 2005; Evans,
2006; Ibe et al. 2013; Goncharov et al. 2014). AMPK, an
energy sensor that acts to maintain cellular energy homeo-
stasis, exists as heterotrimers comprising catalytic α sub-
units and regulatory β and γ subunits (Hardie, 2014a,b,c).
AMPK is coupled to mitochondrial metabolism through
changes in the cellular AMP:ATP and ADP:ATP ratios.
Binding of AMP to the γ subunit causes a 10-fold increase
in AMPK activity by allosteric activation, but a further
activation of up to 100-fold can be generated by binding
of either AMP or ADP, which promotes phosphorylation
and inhibits dephosphorylation of Thr172 on the α

subunit; these effects are antagonised by ATP (Gowans
et al. 2013; Ross et al. 2016). Thr172 is primarily
phosphorylated by the tumour suppressor kinase LKB1
(liver kinase B1), which appears to be constitutively
active (Sakamoto et al. 2004), but which phosphorylates
AMPK more rapidly when AMP is bound to the γ

subunit. In an alternative Ca2+-dependent activation
mechanism, the calmodulin-dependent protein kinase
CaMKKβ can also phosphorylate Thr172 and hence
activate AMPK in an AMP-independent manner (Hardie,
2014a,b,c). The classical role of AMPK is to maintain
energy homeostasis under conditions of metabolic stress,
by activating catabolic processes that generate ATP and
inhibiting non-essential anabolic processes that consume
ATP. However, AMPK has also been shown to regulate
a wide variety of ion channels and membrane transport
proteins (Evans et al. 2009; Lang & Foller, 2014), including
Kv2.1 (Ikematsu et al. 2011), KCa3.1 (Ross et al. 2011), and
Kir 2.1 and Kv7.1 (Lang & Foller, 2014).

Of the various known Kv channel types, it has been
established that both Kv2.1 and Kv1.5 contribute to
voltage-gated potassium currents in pulmonary arterial
myocytes (Smirnov et al. 2002; Archer et al. 2004;
Firth et al. 2011; Olschewski et al. 2014). Their relative
contributions vary in a manner related to arterial
diameter, with the greatest level of Kv1.5 expression (and
contribution to Kv currents) occurring in myocytes from
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near-resistance-sized arteries (Archer et al. 1998, 2004;
Smirnov et al. 2002; Moral-Sanz et al. 2011), the response
of which to hypoxia is critical to acute increases in
pulmonary arterial perfusion pressure. Moreover, selective
down-regulation of Kv1.5 has been identified as a hallmark
of pulmonary hypertension (Yuan et al. 1998; Michelakis
et al. 2002; Bonnet et al. 2006; Remillard et al. 2007; Burg
et al. 2010; Morales-Cano et al. 2014). Consistent with
this view, overexpression of Kv1.5 enhances apoptosis
(Brevnova et al. 2004), while adenoviral expression of a
Kv1.5 transgene in vivo reduces pulmonary hypertension
and restores HPV (Pozeg et al. 2003).

We show here that AMPK selectively inhibits Kv1.5 in
pulmonary arterial myocytes, and also phosphorylates and
inhibits recombinant Kv1.5 channels expressed in HEK
293 cells.

Methods

Ethical approval

All experiments were performed under the United
Kingdom Animals (Scientific Procedures) Act 1986. The
animals used in this study were male Sprague Dawley rats
that underwent no experimental procedures as recognised
under UK Law. They were killed using a Schedule 1 method
for collection of tissues only, which does not require formal
ethical approval in the UK. Frozen canine tissue was left
over from a previous project where surgical procedures
and protocols were approved by the Cleveland Clinic
Foundation Institutional Animal Care and Use Committee
(Cleveland, OH, USA).

Smooth muscle cell isolation

Resistance pulmonary arteries (<200 μm inner diameter)
from male Sprague Dawley rats (250–350 g) were dissected
into a physiological bath solution of composition (in mM):
NaCl 135, KCl 5, MgCl2 1, CaCl2 1, glucose 10, Hepes
10 (pH 7.4). For cell isolation, endothelium denuded
arteries were transferred into a nominally calcium-free
bath solution containing (in mg ml−1): 1 papain, 0.8
dithiothreitol and 0.7 BSA. The tissue was incubated
in the latter solution for 10 min at 37°C and gently
triturated using a fire polished glass pipette to get dispersed
pulmonary arterial smooth muscle cells.

Electrophysiological recordings

Pulmonary arterial myocytes or HEK 293 cells that stably
expressed Kv1.5 were transferred to a recording chamber
and perfused at 1 ml min−1 with bath solution. K+
currents were recorded by whole-cell patch clamp and
a pipette solution of the following composition (mM): KCl
140, MgCl2 1, EGTA 10, Hepes 10, Na2ATP 4, Na3GTP
0.1 (pH 7.2). Cells were superfused (3 ml min−1) at

37°C with bath solution steadily bubbled with either
room air (normoxia) or 95% N2/5% CO2 [hypo-
xia, 4.4 ± 0.3% O2 in the experimental chamber; as
measured with an optical oxygen meter (FireStingO2,
Pyro Science, Aachen, Germany)]. For some experiments
recombinant thiophosphorylated AMPK heterotrimers
(α2β2γ1, α1β1γ1 or D157A kinase dead mutant) were
added to the pipette solution. Kv currents were assessed
by voltage ramps (−100 to +40 mV), single voltage
steps (−80 to +40 mV) and by acquisition of full
I–V relationships for steady state activation (200 ms
steps from −80 to +40 mV in 10 mV increments) or
inactivation (2 s inactivation steps from −80 to +40 mV
in 10 mV increments, a 10 ms pre-pulse at −80 mV
followed by a single voltage step to +60 mV). Current
magnitude was normalised to cell capacitance as required.
Conductance values (G) were calculated from the equation
G = I/(V − EK), where the Nernst equilibrium potential
(EK) was calculated as −89 mV at 37°C. Normalised
conductance/voltage profiles for Kv currents were fitted to
a single Boltzmann function with the form G = Gmax/(1
+ exp[− (V − Vmid)/k]), where Gmax is the maximal
conductance, Vmid is the test potential for half-maximal
conductance (G0.5) and k represents the slope of the
activation curve. Patch pipettes had resistances of 4–6 M�.
Series resistance was compensated for (60–80%) after
achieving the whole-cell configuration. Signals were
sampled at 10 kHz and low-pass filtered at 2 kHz.
Voltage-clamp acquisition and analysis protocols were
performed using an Axopatch 200A amplifier/Digidata
1200 interface controlled by Clampex 10.0 software
(Molecular Devices, Sunnyvale, CA, USA). Off-line
analysis was performed using Clampfit 10.0 (Molecular
Devices). Data are expressed as current density (pA pF–1)
or I/Izero, where Izero is the current magnitude recorded at
the onset of a given experimental intervention.

Cell culture and transfection

HEK 293 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% (v/v) fetal
bovine serum and 1% (v/v) penicillin/streptomycin. Cells
were transfected following the manufacturer’s instructions
with 12 μg of pcDNA3.1 encoding an HA-tagged human
Kv1.5 (KCNA5) using Fugene 6 (Promega, Madison, WI,
USA) and lysed 48 h later.

RT-PCR

Total RNA was isolated from frozen canine tissues and
from frozen pelleted HEK 293 cells stably expressing
Kv1.5, using the RNeasy Mini Kit (Qiagen, Valencia, CA,
USA) as per the manufacturer’s instructions. Reverse
transcription PCRs (RT-PCRs) were carried out on
200 ng of total RNA using the One-Step RT-PCR Kit
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(ABM, Richmond, Canada) as recommended in the
manual. Then, 20 μl of the 50 μl reaction was run
on a 1% agarose gel and visualised using Safe-White
(ABM) and a GelDoc equipped with Quantity One
software (BioRad, Hercules, CA, USA). Kvβ primer
sequences were as previously published (Platoshyn
et al. 2004) and for the reference gene ReadyMade
GAPDH primers (Integrated DNA Technologies,
Coralville, IA, USA) were used with sequences as
follows: GAPDH-For, ACCACAGTCCATGCCATCAC;
GAPDH-Rev, TCCACCACCCTGTTGCTGTA. RT-PCR
was repeated with 250 ng of template and 35 cycles of
PCR after very faint bands were observed in the Kv1.5
stable cell line for Kvβ1 and Kvβ3. Canine ventricle was
also repeated for comparison.

Kv1.5 phosphorylation assays

Phosphorylation assays were performed as described
previously (Ross et al. 2011) using AMPK purified
from bacteria and phosphorylated with CAMKKβ

(10 units ml−1) in the presence of 200 μM AMP for 30 min
at 30°C.

Expression, purification and activation of bacterial
AMPK

These were performed as described previously (Ross et al.
2011).

Isoform-specific AMPK activities

Isoform-specific AMPK activity was determined by
immunoprecipitating tissue lysate with antibodies raised
against α1 or α2 subunits bound to protein G-Sepharose
beads and quantified using the AMARA peptide and
[γ-32P]ATP substrates (Cheung et al. 2000).

Statistics

Data are expressed as means ± SEM or means ± SD, as
indicated; n represents the number of cells tested from
at least four different animals. Statistical analysis was
performed using Student’s t test for paired observations
or one-way ANOVA followed by a Dunnett’s post hoc
test. Differences were considered statistically significant
at P < 0.05.

Results

Inhibition of mitochondrial oxidative
phosphorylation activates AMPK and reduces Kv1.5
current density in pulmonary arterial myocytes

Biguanide drugs such as phenformin inhibit complex
I of the mitochondrial respiratory chain (El-Mir et al.

2000; Owen et al. 2000; Evans et al. 2005) and elicit
consequent increases in the cellular AMP:ATP ratio
and AMPK activation (Hawley et al. 2010). Consistent
with this, pre-incubation of second- and third-order
pulmonary arteries with phenformin (4 h) increased
AMPK-α1-associated activity from (mean ± S.D.)
0.025 ± 0.001 to 0.403 ± 0.012 nmol min−1 mg−1 protein
and AMPK-α2-associated activity from 0.0096 ± 0.001 to
0.126 ± 0.006 nmol min−1 mg−1 protein (Fig. 1A, n = 3;
32 arteries, 8 rats). Furthermore, and in accordance with
previously reported effects of mitochondrial inhibitors
(Firth et al. 2008) and hypoxia (Platoshyn et al.
2001), pre-incubation of acutely isolated pulmonary
arterial myocytes with 1 mM phenformin (2–4 h) also
caused pronounced reductions in Kv current density,
from 126 ± 17 pA pF–1 in time-matched controls to
55 ± 6 pA pF–1 at +40 mV (Fig. 1Ca–b, n = 9–11,
P < 0.001). Consistent with the effects of phenformin
and previous investigations by others (Firth et al.
2008), acute application of antimycin A (1 μM), a
rapidly acting inhibitor of complex III, caused equivalent
reductions in Kv current density, from 131.3 ± 10.4 to
62.6 ± 11.1 pA pF–1 at +40 mV (Fig. 1Da–b, n = 6,
P < 0.001). Unless stated, in these and all subsequent
experiments on pulmonary arterial myocytes, potassium
currents were recorded in the presence of paxilline
(1 μM) to block the large conductance voltage- and
calcium-activated K+ (BKCa) channel.

Given that the contribution to native Kv currents of
Kv2.1 and Kv1.5 varies, in a manner related to both the
size and the regional location within the lung of the arteries
from which myocytes are derived (Smirnov et al. 2002),
we assessed the nature of the channels that underpin the
Kv current within the cells under study. Application of the
Kv1.5 blocker diphenyl phosphine oxide-1 (DPO-1, 1 μM,
Fig. 1B) in the absence of paxilline caused almost total
inhibition of the Kv currents (96 ± 1% at +40 mV; n = 6,
P < 0.0001), consistent with the view that Kv1.5 drives
the majority of voltage-gated K+ currents in myocytes
of the near-resistance-sized pulmonary arteries studied
here, which contribute most to the increase in pulmonary
vascular resistance during hypoxia (Kato & Staub, 1966;
Archer et al. 2004).

AMPK activation inhibits Kv1.5 currents in pulmonary
arterial myocytes

We next assessed the effect on Kv1.5 current amplitude
of extracellular application of three AMPK activators
with distinct mechanisms of action, i.e. A769662,
5-aminoimidazole-4-carboxamide riboside (AICAR) and
C13. Analysis of the time course for Kv1.5 inhibition at
steady-state activation (100 ms at +40 mV) showed the
time to onset of effect for A769662 (100 μM), AICAR
(1 mM) and C13 (30μM) to be around 2 min, with apparent
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maxima for inhibition achieved after 8–10 min (Fig. 2B).
After 10 min, Kv1.5 currents had declined (Fig. 2A) from
144 ± 12 to 101 ± 9 pA pF–1 in the presence of A769662
(n=14), from 186±23 to 136±17 pA pF–1 in the presence
of AICAR (n = 6) and from 164 ± 8 to 104 ± 10 pA pF–1

in the presence of C13 (n = 8). Note, however, that in 3
of 9 cells superfused with AICAR we observed no effect
(excluded from analysis).

Surprisingly, we also observed inhibition of Kv1.5
currents upon application of the non-selective AMPK

antagonist compound C (30 μM), from 164 ± 62 to
59 ± 24 pA pF–1 (n = 3; Fig. 2C); this confounding
effect precluded the use of this agent in further studies on
myocytes. Previous studies have shown that compound C
has little or no effect on resting pulmonary arterial tone,
but inhibits acute HPV in a concentration-dependent
manner (Robertson et al. 2008), which must therefore
be induced independently of the inhibition by hypoxia
of Kv1.5 inhibition (Dipp et al. 2001). It is worth noting
that in a screen of 70 protein kinases, at least 10 were
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Figure 1. Inhibition of mitochondrial oxidative phosphorylation activates AMPK and reduces Kv1.5
current density in pulmonary arterial myocytes
A, bar chart showing the effect of 10 mM phenformin on the activity of AMPK-α1 and AMPK-α2 containing
heterotrimers, as determined by immunoprecipitate kinase assay (n = 3; 32 arteries, 8 rats). B, representative
records (200 ms pulses from −80 to +40 mV in 10 mV increments, holding potential −80 mV) in pulmonary
arterial myocytes before (control) and after extracellular application of 1 μM DPO-1. C and D, representative records
(a) and associated I–V relationships (b; 200 ms depolarization pulses from −80 to +40 mV in 10 mV increments,
holding potential −80 mV) from myocytes pre-incubated with 1 mM phenformin versus time-matched controls
(C, green, n = 9–11), or before and after 5–8 min extracellular application of 1 μM antimycin A (D, n = 6).
∗P < 0.05, ∗∗P < 0.01 and ∗∗∗P < 0.001.
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inhibited by compound C more potently than AMPK
(Bain et al. 2007). Thus, it is not a specific inhibitor of
AMPK, a point reinforced by our findings that it markedly
attenuates Kv1.5 function. This should be considered when
interpreting outcomes of other cell-based assays that have
employed compound C, not least with respect to myocyte
proliferation and survival (Ibe et al. 2013).
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Results are expressed as mean ± SEM, n = 3–8.

Importantly, upon equilibration of pulmonary arterial
myocytes with AICAR, A769662 and C13, reductions in
current density were evident throughout the I–V range
over which Kv1.5 currents were activated (Fig. 3A, B). This
was confirmed by the fact that A769662 was without effect
on residual currents observed following pre-incubation of
cells with DPO-1 even in the absence of paxilline (Fig. 3C),
current density measuring 10 ± 2 pA pF–1 in the presence
of DPO-1 alone and 11 ± 3 pA pF–1 in the presence of
DPO-1 and A769662 (n = 6).

Intracellular application of active AMPK heterotrimers
inhibits Kv1.5 in pulmonary arterial myocytes

Although A769662, AICAR and C13 activate AMPK by
different mechanisms and are therefore unlikely to have
the same off-target effects, we also analysed the effect
on endogenous Kv1.5 channel function of bacterially
expressed human AMPK heterotrimers (α2β2γ1 or
α1β1γ1 complexes). These had been thiophosphorylated
at Thr172 using CaMKKβ to yield active, recombinant
AMPK that is also resistant to phosphatases (Ross et al.
2011). Intracellular dialysis of either of the active α2β2γ1
or α1β1γ1 heterotrimers (Fig. 4A) evoked Kv1.5 current
inhibitions that were similar in magnitude (−33 ± 5%
for α2β2γ1 and −36 ± 7% for α1β1γ1 at +40 mV;
n = 5–7) to the reductions induced by pharmacological
activation of AMPK. Importantly, current inhibition was
not observed upon intracellular dialysis of an inactive
AMPK heterotrimer [Fig. 4B; α2β2γ1 complex with
D157A mutation in α2 (Ross et al. 2011)]. Based on the
use both of pharmacological activation of endogenous
AMPK and of exogenous recombinant AMPK, we can
conclude that AMPK mediates, either directly or indirectly,
inhibition of Kv1.5 currents in pulmonary arterial
myocytes.

Hypoxia and mitochondrial inhibitors attenuate Kv1.5
currents and occlude further current inhibition by
AMPK activation

AMPK is intimately coupled to mitochondrial metabolism
through changes in the AMP:ATP and ADP:ATP ratios
(Gowans et al. 2013), which is evident from the fact that
AMPK activity was increased by hypoxia (Evans et al.
2005) and by the mitochondrial inhibitor phenformin
(Fig. 1A). To assess whether AMPK acted as a down-
stream mediator of Kv1.5 inhibition during hypoxia and
inhibition of mitochondrial oxidative phosphorylation,
we therefore carried out studies to determine if Kv1.5
inhibition by these stimuli was additive with respect to
that induced by AMPK activators.

Superfusion of pulmonary arterial myocytes with a
hypoxic solution (�4% O2, > 10 min) markedly inhibited
Kv1.5 currents, with a maximal reduction achieved after
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�10 min (Fig. 5A, B, 150 ± 9 pA pF–1 during normoxia
vs. 63 ± 6 pA pF–1, n = 14–19, after 10–40 min of
hypoxia; P < 0.001). Most importantly, continued hypo-
xia markedly attenuated the degree of Kv1.5 inhibition
upon application of 100 μM A769662, which reduced
current density from 53 ± 4 pA pF–1 during hypoxia
alone to 45 ± 5 pA pF–1 (n = 6, P < 0.05; Figs 5B,
C and 6A). As described previously, pre-incubation of
acutely isolated myocytes with 1 mM phenformin (2 h)
also caused pronounced reductions in Kv current density,
from 126 ± 17 to 55 ± 6 pA pF–1 at +40 mV (Fig. 1Ca–b,
n = 9–11, P < 0.001). Moreover, and consistent with the
effects of hypoxia, pre-incubation of cells with phenformin
markedly attenuated the degree to which Kv1.5 currents
were inhibited upon application of A769662, which
reduced current density from 57 ± 12 pA pF–1 in the pre-
sence of phenformin alone to 49 ± 10 pA pF–1 (Figs 5Cb
and 6A; n = 4, P = 0.09). In this respect antimycin A was
equally effective, A769662 reducing Kv1.5 current density
from 44 ± 4 pA pF–1 in the presence of antimycin A alone
to 33 ± 4 pA pF–1 (Figs 5Cc and 6A; n = 3, P < 0.05).
Therefore, Kv1.5 inhibition by pharmacological AMPK
activation is non-additive with respect to the action of
either hypoxia or respiratory poisons. We can therefore
conclude that in myocytes from near-resistance-sized
pulmonary arteries, AMPK probably acts as the primary
downstream mediator of Kv1.5 channel inhibition not
only during hypoxia, but also in response to the inhibition
of mitochondrial oxidative phosphorylation.

AMPK activators induce a leftward shift in the I–V
relationship for Kv1.5 current activation that is
occluded by hypoxia and mitochondrial inhibitors

AMPK activation not only reduced Kv1.5 current density
in pulmonary arterial myocytes throughout the I–V range
over which Kv1.5 currents were activated, but also induced
a significant 12–14 mV hyperpolarizing shift in the
activation curve (Fig. 6B, C) analysed as G/Gmax and
fitted to a single Boltzmann function. Vmid measured:
−17.9 ± 1.2 and −30.5 ± 4.5 mV in the absence
and presence of AICAR, respectively; −17.4 ± 1.6 and
−30.2 ± 3.5 mV in the absence and presence of A769662;
−20.9 ± 2.6 and −39.7 ± 4.6 mV in the absence and
presence of C13 (n = 5–7, P < 0.01). To allow for direct
comparison of the maximal effect of each of these agents,
we also expressed the leftward shift as the net change in
Vmid (Fig. 6B); �Vmid was −12.6 ± 4.8, −12.7 ± 2.4
and −18.7 ± 2.3 mV, respectively, for AICAR, A769662
and C13. As previously observed for current inhibition,
the leftward shift in the I–V range for Kv1.5 activation
that was induced by AMPK activation was non-additive
with respect to the effect of hypoxia and prior inhibition
of mitochondrial oxidative phosphorylation, �Vmid for
A769662 measuring −4.5 ± 0.9 mV in the presence of
hypoxia and−3.7±0.6 mV in the presence of antimycin A.

To explore further the functional significance of
a leftward shift in the I–V relationship we assessed
the voltage-dependence of both Kv1.5 activation and
inactivation in the absence and presence A769662, and
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thus determined the effect of AMPK activation on the
window current, i.e. the proportion of current at a given
potential that is never inactivated. Figure 7 clearly shows
that AMPK activation by A769662 induced a leftward shift
in Kv1.5 activation and inactivation curves and thus of
the window current, lowering the threshold for activation
while reducing the available non-inactivating current.

AMPK phosphorylates Kv1.5 and reduces K+ currents
carried by recombinant Kv1.5 channels stably
expressed in HEK 293 cells

To determine whether AMPK modulates Kv1.5 channel
function directly, we examined the effects of AMPK
activation on human Kv1.5 channels stably expressed
in HEK 293 cells. Application of A769662 (100 μM)
reduced K+ currents carried by recombinant human
Kv1.5 (Fig. 8Aa) in a manner that was blocked by the
non-selective AMPK inhibitor compound C (40 μM,
Fig. 8B). Moreover, intracellular dialysis of active AMPK
α2β2γ1 or α1β1γ1 heterotrimers also reduced Kv1.5
currents, which remained unaffected in the presence
of an inactive (D157A mutant) α2β2γ1 heterotrimer
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Figure 4. Intracellular application of active AMPK
heterotrimers inhibits Kv1.5 in pulmonary arterial myocytes
A, voltage ramp and step protocol recorded at 0 and 10 min after
intracellular dialysis of the indicated recombinant,
thiophosphorylated active AMPK heterotrimers (α2β2γ 1 or
α1β1γ 1). B, time course for reduction in Kv current following
intracellular dialysis of either active α2β2γ 1 (thiophosphorylated,
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α2β2γ 1 (D157A mutant) AMPK heterotrimer. Results are expressed
as mean ± SEM, n = 5–7.

(Fig. 8Ab–C). Like pulmonary arterial myocytes, therefore,
currents carried by human Kv1.5 expressed in HEK 293
cells were similarly inhibited both by AMPK activators
and by intracellular dialysis of recombinant active AMPK
heterotrimers (Fig. 8D).

We also examined whether AMPK directly
phosphorylates Kv1.5, using as substrate the human
protein immunoprecipitated from these HEK 293 cells.
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We first treated the immunoprecipitate with recombinant
protein phosphatase (PP1γ) to remove endogenous
phosphate groups, then phosphorylated with purified
rat liver AMPK (a mixture of α1β1γ1 and α2β1γ1
isoforms) and [γ-32P]ATP in the presence and absence of
200 μM AMP. The stoichiometry of phosphorylation was
estimated by cutting out and counting the 32P-labelled
band and estimating the protein content by comparison
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with serum albumin standards run on the same gel.
We obtained estimates of 0.57 and 0.13 moles of
phosphate per mole of protein in the presence and
absence of AMP (data not shown). We repeated the
experiment using recombinant human α1β1γ1 and
α2β2γ1 complexes expressed in bacteria, and obtained
stoichiometries of 0.7 and 1.6 moles of phosphate per
mole of protein respectively (Fig. 8E, we did this only in
the presence of AMP because, for reasons that remain
unclear, the bacterially expressed complexes are much less
AMP-dependent). While we have not yet determined the
number and identity of the sites phosphorylated on Kv1.5,
these results indicate that different AMPK complexes can
catalyse a substantial AMP-activated phosphorylation of
Kv1.5 in cell-free assays.

Discussion

The present investigation describes, for the first
time, evidence that AMPK couples Kv1.5 channel
function (defined by the Kv1.5 blocker DPO-1) to
the inhibition by hypoxia of mitochondrial metabolism
in pulmonary arterial myocytes. Consistent with this
proposal, inhibition by phenformin or hypoxia of the
mitochondrial electron transport chain (El-Mir et al. 2000;
Owen et al. 2000) increases NAD(P)H autofluorescence
(Evans et al. 2005), activates AMPK and inhibits Kv

currents in pulmonary arterial myocytes. That AMPK
activation may specifically regulate Kv1.5 in response
to metabolic stresses such as hypoxia gained further
support from our findings that AMPK activators that
are structurally distinct and have different mechanisms of
action, namely A769662, AICAR and C13, all markedly
inhibited Kv currents in pulmonary arterial myocytes.
A769662, which primarily causes allosteric activation
(Goransson et al. 2007; Scott et al. 2014), binds in a
site located between the α and β subunits of AMPK
(Xiao et al. 2013). AICAR (Corton et al. 1995) and C13
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(Gomez-Galeno et al. 2010) act similarly in the sense
that they are both taken up into cells and converted
to molecules (ZMP and C2, respectively) that bind to
the γ subunit, mimicking the effects of AMP. However,
C2 is a much more potent activator of AMPK than
ZMP and, unlike the latter, does not affect other
AMP-sensitive enzymes such as glycogen phosphorylase
or fructose-1,6-bisphosphatase (Hunter et al. 2014).
Moreover, A769662 is selective for complexes containing
the β1 subunit (Scott et al. 2008), while C2 is selective
for complexes containing the α1 subunit (Hunter et al.
2014). These data suggest that Kv1.5 current inhibition in
pulmonary arterial myocytes may be delivered in whole or
in part by AMP-dependent activation of heterotrimers

containing α1 and β1. Furthermore, inhibition of
Kv1.5 by hypoxia or by pre-incubation with inhibitors
of mitochondrial oxidative phosphorylation prevented
further current reduction by AMPK activators, suggesting
that AMPK may act as the primary regulator of Kv1.5
downstream of inhibition of mitochondrial oxidative
phosphorylation during hypoxia. This conclusion is also
supported by previous findings that hypoxia activates
AMPK (Evans et al. 2005) and achieves maximal AMPK
phosphorylation within �10 min (Ibe et al. 2013).
Crucially, given the possible off-target effects of any
pharmacological agents, intracellular dialysis of active and
phosphatase-resistant (thiophosphorylated) recombinant
AMPK heterotrimers selectively inhibited Kv currents in
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pulmonary arterial myocytes, while a kinase-dead AMPK
mutant was without effect. Although our results with C13
and A769662 suggest that an endogenousα1β1-containing
complex may regulate Kv1.5 in pulmonary arterial myo-
cytes, our results with intracellular dialysis of α1β1γ1 and
α2β2γ1 heterotrimers suggest that both are capable of
regulating Kv1.5.

It is also interesting to note that AMPK activation not
only induced a leftward shift in half maximal activation
of Kv currents, as previously reported for effects of
mitochondrial inhibitors (Firth et al. 2008), but also
a leftward shift in half maximal inactivation and thus
reduced the available non-inactivating current, i.e. the
window current. The overall effect would be to lower the
threshold for Kv1.5 activation and thus increase the
threshold for membrane depolarization, while reducing
the opposition to membrane depolarization once initiated.
These outcomes argue against a role for Kv1.5 inhibition
in the initiation, through membrane depolarisation, of
acute HPV. This view is supported by the fact that
compound C inhibits Kv1.5, but has little or no effect
on resting pulmonary arterial tone despite the fact that it
inhibits acute HPV in a concentration-dependent manner
(Robertson et al. 2008). When considered together, our
study therefore provides further support for the view that
acute HPV is induced in a manner independent of Kv1.5
inhibition (Dipp et al. 2001; Prieto-Lloret et al. 2015).
That aside, our findings suggest that care must be taken
when assessing studies that have employed compound
C to examine the role of AMPK in pulmonary vascular
function, given that the marked attenuation of Kv1.5 by
compound C presents an important confounding variable
with respect to investigations on myocyte proliferation
and the progression of pulmonary hypertension (Ibe et al.
2013). Moreover in a screen of 70 protein kinases, at least
10 were inhibited by compound C more potently than
AMPK (Bain et al. 2007). Compound C cannot, therefore,
be considered to be a selective inhibitor of AMPK, a point
reinforced by our findings.

Our conclusions from studies on native Kv currents
in pulmonary arterial myocytes were confirmed by
further investigations on the regulation of hKv1.5
stably expressed in HEK 293 cells. Native rat liver

AMPK and two combinations (α1β1γ1 and α2β2γ1)
of bacterially expressed human AMPK isoforms were
found to incorporate near-stoichiometric amounts of
phosphate into immunoprecipitated hKv1.5 channels,
and with rat liver AMPK this was stimulated by AMP,
making it very unlikely that the phosphorylation was
catalysed by a contaminating kinase. AMPK activators
and recombinant heterotrimers also inhibited currents
carried by recombinant Kv1.5 channels in intact HEK 293
cells. This suggests that AMPK may directly regulate the
channel protein even though Kvβ1, Kvβ2 and Kvβ3 may be
expressed to varying degrees in HEK 293 cells that stably
express Kv1.5 (Fig. 9), as has been reported previously
(Platoshyn et al. 2004).

Our results support a model in which inhibition of
mitochondrial oxidative phosphorylation by hypoxia in
pulmonary arterial myocytes triggers AMPK-dependent
inhibition of Kv1.5 channels, in line with the observation
that co-expression of Kv1.5 and AMPK reduced Kv

current and Kv1.5 channel abundance in the cell
membrane of oocytes (Mia et al. 2012). Our finding that
AMPK phosphorylates and inhibits Kv1.5 is also entirely
consistent with previous evidence that AMPK mediates
acute HPV (Evans et al. 2005; Robertson et al. 2008), and
the proposal that AMPK may also contribute to smooth
muscle proliferation and the development of pulmonary
arterial hypertension (Ibe et al. 2013; Goncharov et al.
2014). This is evident from the fact that down-regulation
of Kv1.5 expression and activity is a hallmark not only
of HPV but also of pulmonary hypertension (Yuan et al.
1998; Michelakis et al. 2002; Bonnet et al. 2006; Remillard
et al. 2007; Burg et al. 2010; Morales-Cano et al. 2014). This
down-regulation may lead to increased survival of smooth
muscle cells due to attenuation of K+ channel-dependent
apoptosis (Krick et al. 2001; Brevnova et al. 2004; Moudgil
et al. 2006), and facilitate the phenotypic switch from
a contractile to a proliferative state (Cidad et al. 2012,
2015). Further support for this view may be taken
from the finding that over-expression of Kv1.5 enhances
apoptosis (Brevnova et al. 2004), while adenoviral trans-
gene expression of Kv1.5 in vivo reduces pulmonary hyper-
tension and restores HPV (Pozeg et al. 2003). Therefore, it
is possible that dysfunction of the mitochondrial–AMPK
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Figure 9. Transcripts for all three Kvβ genes are
expressed in the HEKKv1.5 cell line
Gel showing RT-PCR amplicons for Kvβ1, Kvβ2, Kvβ3
and the reference gene (RG), GAPDH, from canine
brain (CB), canine ventricle (CV) and the HEKKv1.5

stable line used in this study. The 500 base pair band
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DNA Ladder, New England Biolabs, Ipswich, MA,
USA).
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signalling pathway may predispose individuals to hypo-
xia and other forms of pulmonary arterial hypertension
(Bonnet et al. 2006). In this respect, it is interesting
to note that single nucleotide polymorphisms (SNPs)
in the gene encoding Kv1.5 predispose to pulmonary
hypertension and reduce Kv1.5 channel availability in
pulmonary arterial myocytes (Remillard et al. 2007),
raising the intriguing possibility that this may be due, at
least in part, to alterations in AMPK-dependent regulation
of Kv1.5.

AMPK phosphorylates target proteins containing
a �(X,β)XXS/TXXX� (�, hydrophobic; β, basic)
recognition motif (Hardie et al. 2016). The protein
sequence for Kv1.5 presents 15 serines and 4 threonines
susceptible to phosphorylation by serine–threonine
kinases (Blom et al. 1999). However, none of these
represents good matches to the consensus recognition
sites for AMPK (http://scansite3.mit.edu), despite the fact
that our studies on 32P phosphorylation indicate that the
immunoprecipitated channel protein might be a direct
substrate for AMPK. This raises two distinct possibilities,
(1) AMPK recognises non-canonical sites within the
Kv1.5 sequence, as has been shown for other proteins
(Jones et al. 2005; Chang et al. 2009; Egan et al. 2011);
or (2) AMPK phosphorylates one or more associated
protein(s), such as the regulatory β subunits. The fact that
AMPK phosphorylates and regulates Kv1.5 suggests that
its effects are mediated, at least in part, independently
of such interactions. Nevertheless, we cannot rule out
the possibility that outcomes may be modulated by
the β subunits, given that rat pulmonary arterial myo-
cytes express Kvβ1, Kvβ2 and Kvβ3 (Platoshyn et al.
2006) and phosphorylation of either Kv1.5 or regulatory
Kvβ subunits may modulate not only channel gating and
inactivation kinetics (Holmes et al. 1996; Williams et al.
2002) but also the sensitivity of Kv1.5 to regulation by
Kvβ subunits (Kwak et al. 1999; David et al. 2012; Macias
et al. 2014). It is equally plausible that AMPK-dependent
phosphorylation of Kv1.5 in pulmonary arterial myocytes
may alter Kvα−Kvβ interactions, sensitivity to metabolic
stress, channel trafficking (Martens et al. 1999; Tipparaju
et al. 2012) and/or degradation via ubiquitin ligases (Mia
et al. 2012; Andersen et al. 2015). Further studies will be
aimed at identifying the AMPK phosphorylation sites on
Kv1.5 and on associated β subunits.

In conclusion, we propose that AMPK couples the
inhibition of mitochondrial oxidative phosphorylation
to Kv1.5 channel inhibition in pulmonary arterial
myocytes, which may contribute to the regulation
by AMPK of smooth muscle proliferation and thus
to the development of pulmonary hypertension. In
addition, AMPK-dependent modulation of Kv1.5 channel
availability may also contribute to proliferative potential
associated with other diseases, such as cancer (Bonnet et al.
2007; Comes et al. 2013; Vallejo-Gracia et al. 2013).
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