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Abstract The niche constitutes a unique category of cells that support the microenvironment
for the maintenance and self-renewal of stem cells. Intestinal stem cells reside at the base of
the crypt, which contains adjacent epithelial cells, stromal cells and smooth muscle cells, and
soluble and cell-associated growth and differentiation factors. We summarize here recent advances
in our understanding of the crucial role of the niche in regulating stem cells. The stem cell
niche maintains a balance among quiescence, proliferation and regeneration of intestinal stem
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cells after injury. Mesenchymal cells, Paneth cells, immune cells, endothelial cells and neural
cells are important regulatory components that secrete niche ligands, growth factors and cyto-
kines. Intestinal homeostasis is regulated by niche signalling pathways, specifically Wnt, bone
morphogenetic protein, Notch and epidermal growth factor. These insights into the regulatory
stem cell niche during homeostasis and post-injury regeneration offer the potential to accelerate
development of therapies for intestine-related disorders.
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Abstract figure legend Constituents of the niche. The niche constitutes a unique category of cellular components
(mesenchymal cells, Paneth cells, immune cells, endothelial cells, macrophages and neural cells), secreted or growth
factors (R-spondin and EGF) and BMP inhibitors (Noggin and chordin), which along with the circadian rhythms and
metabolic control provide a microenvironment for the maintenance and self-renewal of intestinal stem cells.

Abbreviations BMP, bone morphogenetic protein; CBC, crypt base columnar; EGF, epidermal growth factor; ISC,
intestinal stem cell; Lgr5, leucine-rich repeat-containing G-protein coupled receptor 5; LRC, label retaining cell.

Introduction

The intestinal epithelium, with its rapid turnover, is an
excellent system for the study of adult stem cells. It is
composed of crypt and villus, and intestinal stem cells
(ISCs) are responsible for ongoing epithelial regeneration
throughout life. The ISC niche is a complex cellular
structure that plays a key role in stem cell maintenance,
proliferation and differentiation. The term ‘niche’, coined
by Schofield (1978), defines a group of cells playing a
crucial role in controlling stem cell fate and maintaining
stem cell number by regulating the balance between
self-renewal and differentiation, thus supporting tissue
regeneration (Li & Clevers, 2010). Stem cell homeostasis
is maintained by mesenchyme and crypt-based epithelial
cells. ISCs reside at the base of crypts, adjacent to Paneth
cells, and are surrounded by stromal cells. The niche
consists of different cellular components, namely myo-
fibroblasts, endothelial cells, neural cells, lymphocytes,
macrophages and smooth muscle cells (Fig. 1). In this
review, our focus is mainly on stromal cells, Paneth cells,
immune cells, endothelial cells and neural cells. The ISC
niche is likely to comprise several different cell types, each
of which contributes cell-associated ligands and chemo-
kines, soluble cytokines and growth factors that regulate
stem cell behaviour (Tan & Barker, 2014). To unravel the
mysteries of intestinal disease mechanisms and stem cell
regeneration, insights into niche components are of high
importance. It is known that Wnt, bone morphogenetic
protein (BMP), Notch and epidermal growth factor
(EGF) signalling pathways are the regulators of stem
cell activity, and further studies on these associations
with the niche would improve understanding of ISC
homeostasis.

Intestinal stem cells in the niche

Stem cells reside at the base of the crypt and are supported
by the microenvironment. Active stem cells are considered
to be crypt base columnar (CBC) cells and quiescent stem
cells mark the +4 position (Li & Clevers, 2010). CBC
cells respond quickly to regenerative niche signals, while
+4 label retaining cells (LRCs) remain quiescent during
normal homeostasis, but retain the ability to produce other
cells after injury (Scoville et al. 2008). Lgr5 (leucine-rich
repeat-containing G-protein coupled receptor 5) emerged
as a specific and robust marker for CBC cells (Barker et al.
2007). Ascl2, Olfm4, Rnf43, Znrf3, Smoc2, Troy, Prom1,
Sox9, and Msi1 were also identified as markers of stem
cell populations (Snippert et al. 2009; van der Flier et al.
2009; Hao et al. 2012; Munoz et al. 2012; Fafilek et al. 2013;
Schuijers et al. 2014, 2015; Roche et al. 2015). Recently Klf5
(Krüppel-like factor 5), an additional stem cell marker, was
reported in the maintenance of stem cells in the intestinal
crypt (Bell & Shroyer, 2015).

The+4 LRCs were discovered by Potten through tritium
or Brdu LRC assays (Potten et al. 2002). One of the initial
studies showed that phosphatase and tensin homologue
(PTEN), especially p-PTEN, marks +4 stem cells (He
et al. 2004; He et al. 2007). The functional validation
of +4 stem cells was done by in vivo lineage tracing
using Bmi1-CreER induced mice (Sangiorgi & Capecchi,
2008). Consistent with this observation, Bmi1+ cells were
characterized as radioresistant and quiescent in contrast
to the Lgr5 stem cell population (Yan et al. 2012). mTert
expresses at the +4 position identical to LRCs (Breault
et al. 2008). Following injury, mTert+ cells give rise to all
intestinal cell lineages, which was demonstrated by lineage
tracing in vivo (Montgomery et al. 2011). A recent study

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society



J Physiol 594.17 Regulatory niche of intestinal stem cells 4829

showed that the mTert+ dormant stem cell population is
regulated by PTEN phosphorylation and nutritional status
(Richmond et al. 2015; Sailaja et al. 2015). Takeda et al.
demonstrated that Hopx is a +4 stem cell marker and that
these Hopx-expressing cells generate all intestinal epithelial
lineages (Takeda et al. 2011a). Lrig1 is a regulator of the
ErbB signalling pathway and is profoundly expressed by
ISCs. ISC self-renewal and proliferation are stimulated
by ErbB signalling and controlled by BMP inhibition
and Wnt activation (Sato et al. 2009; Wong et al.
2012). In a recent study, Dclk1-expressing small intestinal
epithelial tuft cells, a rare population, were reported to
show hallmarks of quiescence with self-renewal ability
(Chandrakesan et al. 2015).

Bmi1, mTert, Hopx and Lrig1 were later reported to
be expressed not only in +4 cells, but also in CBC
and other progenitor cells (Itzkovitz et al. 2012; Munoz
et al. 2012). Some studies reported that +4 cells also
express the endocrine marker and that enteroendocrine
cells maintain the quiescent stem cell niche (Radford

& Lobachevsky, 2006). So, there is considerable debate
in the field regarding +4 markers. Recently, similar
to the haematopoietic approach, combinatorial surface
markers were shown to be able to sort ISCs, and the
sorted ISCs could be functionally characterized using an
efficient in vitro organoid culture assay (Wang et al. 2013).
Characterization and identification of candidate markers
must be further validated by gene expression profiling
and lineage tracing methods. Broad understanding of
intrinsic mechanisms, microenvironmental interactions,
and communication with surrounding cells will yield
much information about regulatory niche signals during
homeostasis.

Differential responses of stem cell subsets in response
to injury implicate roles of the niche

The identity of the stem cell is maintained by intrinsic
cell and environmental (niche) factors. While substantial
efforts have led to progress in uncovering the mechanisms
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Figure 1. Diagram of the regulatory niche of intestinal stem cells
The stem cell compartment resides at the base of the crypt consisting of CBC and +4 stem cells. Rapidly dividing
transit-amplifying cells arise from these stem cells and differentiate into absorptive lineages (enterocytes) or
secretory lineages (enteroendocrine cells, goblet cells, tuft cells and Paneth cells). The niche consists of multiple
components and cell types, including extracellular matrix, fibroblasts, myofibroblasts, smooth muscle cells, neural
cells, endothelial cells, lymphocytes and macrophages along with secreted factors (Wnt3, EGF), and BMP inhibitors
(Noggin, Gremlin and chordin) that support the regulation of stem cell activity. Wnt, BMP, Notch, Hh and EGF
signalling pathways are the regulators of stem cell activity (left).
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regarding homeostatic ISC maintenance, the regenerative
process after ISC injury is still controversial. The deletion
of Lgr5 stem cells upon radiation-caused or diphtheria
toxin-induced ablation does not perturb epithelial homeo-
stasis, indicating the existence of a reserve ISC population
(Montgomery et al. 2011; Tian et al. 2011; Takeda et al.
2011b; Yan et al. 2012). However, following crypt injury,
Dll1+ secretory progenitor cells are able to reacquire stem
cell properties and generate all four secretory cell types,
arguing for cellular plasticity as another mechanism (van
Es et al. 2012b). However, the remaining question is what
mechanism supports a robust regeneration in response
to injury? Recently, keratin-19 (Krt19) was shown to be
expressed at the+4 position, continuing up to the isthmus.
These are radiation-resistant cells that robustly give rise to
all intestinal epithelial lineages, including Lgr5 CBCs, in
the colon and intestine. Krt19 also marks radioresistant
cancer-initiating cells and regenerates after injury to Lgr5
stem cells (Asfaha et al. 2015).

These studies propose that different subpopulations
of stem cells reside in different niches, which provide
the required signals to maintain stem cells in different
cycling and metabolic states. Hence, the niche regulates
stem cells not only in homeostatic conditions, but also
in stressed conditions following injury (Scoville et al.
2008). Differential niche regulation may also have a role
in gastrointestinal tumours, allowing a cancer stem cell
population to be drug-resistant. Therefore, understanding
the different components of the ISC niche following injury
and the signals emanating from it is essential in the future.

Stromal microenvironment

The connective tissue cells that support the functioning
of parenchymal cells in an organ are called stromal cells.
These are also often referred to as non-haematopoietic,
non-epithelial and non-endothelial in origin (Owens,
2015). Stromal cells and subepithelial myofibroblasts exist
in the lamina propria, located beneath the intestinal crypts,
which supports ISCs during intestinal morphogenesis,
differentiation and proliferation (McLin et al. 2009;
Mifflin et al. 2011). Intestinal subepithelial myofibroblasts
exhibit qualities of smooth muscle cells and fibroblasts
(Pinchuk et al. 2010; Powell et al. 2011). Myofibroblasts
maintain and support stem cells and lead to expansion of
intestinal epithelium. The linkage among crypt stem cells,
Paneth cells and myofibroblasts requires investigation
to further delineate their molecular interactions (Powell
et al. 2011). Farin et al. revealed that stromal cells
support the formation of intestinal epithelium by the
Wnt signalling pathway (Farin et al. 2012). A recent
study showed that epithelial Wnt is non-essential, and
stromal cells endogenously express Rspo3, a secreted
Wnt agonist (an R-spondin family member), which
supports regeneration of intestinal epithelium (Kabiri

et al. 2014). Hedgehog (Hh) signalling, an important
component of epithelial–mesenchymal cross-talk, also
contributes to establishing epithelial stem cells in the niche
by inducing stromal BMP synthesis (Vries et al. 2010). Hh
signalling within the stroma results in decreased epithelial
proliferation and expansion of smooth muscle cells and
myofibroblasts. A similar phenotype was observed in mice
overexpressing Noggin (a BMP inhibitor) indicating the
importance of BMPs as downstream mediators of Hh
signalling (Vries et al. 2010; Zacharias et al. 2010). Snai1,
which also regulates the epithelial-to-mesenchymal trans-
ition, is reported to be necessary for maintenance of CBC
stem cells (Horvay et al. 2011).

Stromal cells are the mesenchymal elements that have
also been implicated as key players in regenerating
injured tissue following trauma. These mesenchymal cells
possess similar marker molecules, origins and coordinated
biological functions and provide a microenvironment for
ISC maintenance (He et al. 2004; Pinchuk et al. 2010). The
isolation and characterization of mesenchymal niche cells
are critical in determining their functional regulation of
the ISC niche. Furthermore, the mechanisms that regulate
these interactions between mesenchymal and crypt base
epithelial cells remain unclear. A better knowledge of
stromal cells in the niche is indispensable for under-
standing the mechanisms of homeostasis and disease.
During inflammation, tissue stromal cells experience
immunological changes (Pinchuk et al. 2010). Since the
effects of these stromal cells are poorly understood and
advances in the field are minimal, further studies on
stromal cell functions and the ISC niche may lead to
next-generation cell-based therapies for intestinal bowel
disorders.

Immune, endothelial and neural cells in the niche

In the small intestine, endothelial cells and neural cells
are present along with connective tissue fibroblasts. The
study by Bjerknes and Cheng introduced enteric neurons
and blood vessels as niche cells surrounding the intestinal
crypt (Bjerknes & Cheng, 2001; Mills & Gordon, 2001).
Neural cells play a key role in regulating epithelial
growth. Glucagon-like peptide 2 (GLP-2) produced
by eneteroendocrine cells signals to underlying enteric
neurons that express the GLP-2 receptor, which stimulates
the proliferation of enterocytes (Bjerknes & Cheng, 2001).
Endothelial cells were identified as key players of the
niche as there was no epithelial cell loss when end-
othelial apoptosis was blocked by using basic fibroblast
growth factor (bFGF) after radiation damage (Bjerknes &
Cheng, 2001; Paris et al. 2001). Immune cells contribute
to the protection of epithelial surfaces by releasing factors
and promoting tissue repair. Both epithelial cells and
dendritic cells interact to maintain immune balance in
small intestine (Rimoldi et al. 2005). Regulatory T cells,
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which have the capacity to modulate the immune
system, along with other mesenchymal cells, macrophages
and endothelial cells, also play an important role in
maintaining the regulatory niche (Paris et al. 2001; Akcora
et al. 2013). Regulatory T cells, a subset of CD4+ T cells,
are central players for maintaining intestinal homeostasis
(Korn et al. 2014). Colony stimulating factor (CSF1)
receptor, which is expressed on macrophages, fashions
the ISC niche (Akcora et al. 2013). Growth factors, cyto-
kines and ligands are secreted by intestinal immune cells
and stromal cells that regulate ISCs (Pinchuk et al. 2010).
Stromal cells respond to the immune cell-derived cyto-
kines interleukin (IL)-1α and IL-1β, with relevance to
intestinal inflammatory diseases (Okuno et al. 2002).
The crypt is also influenced by external signals, such as
IL-22 produced by innate lymphoid cells, that maintain
epithelial integrity and protect stem cells against damage
(Hanash et al. 2012). Hence, it is critically important to
investigate the role of endothelial, neural and immune cells
as niche cells in the intestine, as their functional properties
are least known.

Paneth cells as a regulatory niche

Paneth cells are the cells identified by Joseph Paneth as
columnar epithelial cells of the secretory lineage with
cytoplasm filled with large granules and located at the
base of the crypt (Clevers, 2013). CBC cells are inter-
digitated between Paneth cells, and the function of Paneth
cells involves production of growth factors such as Wnt,
Notch and EGF as niche signals to CBC stem cells. Yilmaz
et al. proposed that Paneth cells, a vital member of
the ISC niche, augment stem cell function in response

to fasting. Refeeding starved mice regulates mTORC1
in Paneth cells. These results establish that mTORC1
regulates self-renewal of the ISC niche and emphasize its
significance in supporting the functionality of stem cells
(Yilmaz et al. 2012).

In intestinal crypts, Paneth cells constitute the niche
for stem cells. The communication between CBC cells
and Paneth cells is seen in in vitro intestinal organoid
culture. Recent research revealed that co-culturing ISCs
with Paneth cells or exogenous Wnt3a improves growth
efficiency of Lgr5 stem cells (Sato et al. 2011). As colon is
devoid of Paneth cells, CD24+ cells and C-Kit+ colonic
goblet cells located adjacent to the Lgr5+ stem cells
at the base of crypt have been proposed to be niche
components (Rothenberg et al. 2012). There is controversy
about the role of Paneth cells as a niche since ablation
of Paneth cells did not affect number and function of
Lgr5+ ISCs (Durand et al. 2012; Kim et al. 2012). Inter-
estingly, another report showed that deletion of Wnt3 had
no effect on stem cell function in adult mice, although
Wnt is necessary for organoid cultures (Farin et al. 2012).
However, Paneth cells play a role in facilitating ISC
recovery post-intestinal injury (Parry et al. 2013). Taken
together, Paneth cells provide several niche factors in vivo,
and there is also redundancy when compared with stromal
cells.

Regulatory signalling pathways in the niche

Several regulatory signalling pathways are known for their
importance in the niche. The Wnt pathway is considered
to be the crucial pathway for maintaining self-renewal
and proliferation of ISCs. Wnt signals are exhibited more
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(Lgr5+ cells)

Niche factors
(Wnt, Noggin, 
EGF and R-spondin)

Matrigel
Budding

Stem cells
(Lgr5+ cells)
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Figure 2. Ex vivo organoid culture
Stem cells (Lgr5+) plated into laminin-rich matrigel supplemented with a cocktail of niche factors including Noggin,
R-spondin 1 and EGF generate self-renewing epithelial organoids resembling the stem cell niche in vivo.
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along the base of the crypt and less towards the villus
(Vries et al. 2010). Knock-out of Tcf, Dkk1 (a secreted
Wnt antagonist), Ctnnb1 and c-Myc (a Wnt target gene)
greatly affects the intestine’s proliferative compartments,
indicating the importance of Wnt signals in forming
stem cell compartments (Kuhnert et al. 2004; Muncan
et al. 2006; Fevr et al. 2007; van Es et al. 2012a) . The
WNT agonist roof plate-specific spondin 1 (R-spondin)
and knock-out of the APC gene readily drive hyperplasia
in intestine and colon (Kim et al. 2005). Simultaneous
deletion of Rnf43 (ring finger protein 43) and Znrf3 (zinc
and ring finger 3), which are Wnt target genes, is key
to modulation of the Wnt signal and drives hyperplasia
in intestine (Hao et al. 2012). Wnt ligands are secreted
by pericryptal stromal cells and epithelial cells, including
Paneth cells that produce Wnt3 (Sato et al. 2011). Even
without Wnt3, Wnt2b can support the growth of enteroids
(Farin et al. 2012), and Lgr receptors mediate R-spondin
signals in enhancing the Wnt signalling pathway (de Lau
et al. 2011). Although numerous studies show that Wnt is
critical for stem cell function, other studies question the
need for secreted Wnt and its source in vivo (San Roman
et al. 2014). Very recent findings reveal Fzd7 is highly
expressed in Lgr5 stem cells and mediates Wnt signalling
(Flanagan et al. 2015).

Mesenchymal derived BMPs belong to the transforming
growth factor β (TGFβ) family. In contrast to Wnt
signalling, BMP signals are exhibited high at the villus
and less towards the base of the crypt, inhibiting stem
cell renewal and supporting epithelial differentiation (He
et al. 2004). Mesenchymal cells express BMP4, including
cells that are adjacent to ISCs. In the submucosal region,
the BMP inhibitor Noggin was expressed predominantly
adjacent to the crypt bottom and was occasionally detected
only in ISCs, thus supporting CBC cell proliferation via
inhibiting BMP (He et al. 2004). In addition, gremlin 1,
gremlin 2 and chordin are also highly expressed in the
submucosa to suppress BMP signalling (He et al. 2004;
Pinchuk et al. 2010).

Notch is another regulator of the niche that is required
for ISC maintenance, and furthermore, it requires cell–cell
interactions, suggesting the stem cell is regulated by
adjacent epithelial cells and not stromal cells to deliver
the Notch signal (Pellegrinet et al. 2011; VanDussen et al.
2012; Tian et al. 2015). Knock-out of RBPjκ, simultaneous
inactivation of Dll1 and Dll4 (membrane bound notch
ligands), or double deletion of Notch1 and -2 impairs
secretory lineage and cellular proliferation (van Es et al.
2005; Riccio et al. 2008; Pellegrinet et al. 2011). Further
understanding of how the various signalling pathways are
integrated to regulate ISC function is a major challenge
in the field. A recent study presented data suggesting
Notch and Wnt pathway interactions regulate ISCs (Tian
et al. 2015). EGF-like growth factors also regulate stem
cell activities through different signalling pathways such

as phosphoinositide 3-kinase (PI3K), protein kinase B
(Akt), Ras, Raf, mitogen-activated protein kinase kinase
(MEK), mitogen-activated protein kinase (MAPK) and
protein kinase C (PKC) (Normanno et al. 2006). Hence,
there is a need to further understand how the various
niche factors are integrated to maintain homeostasis as
well as to respond to challenges that modulate the ISC
compartment.

Understanding signals emanating from the niche
provided researchers with the critical insight to add
different growth factors such as EGF, R-spondin-1 and
Noggin to in vitro organoid culture (Fig. 2) (Sato
et al. 2009). Interestingly, enteroids derived from mouse
crypts display spontaneous oscillations of gene expression
(Moore et al. 2014), suggesting the presence of a
clock mechanism inherent to the intestinal epithelium.
Of practical consequence is the observation that these
rhythms appear to influence the responses to growth
factors. The organoids grown in culture with niche
factors self-renew and produce all types of epithelial cells,
resembling the intestinal epithelium and mimicking the
stem cell niche in vivo, and hence can be used instead
of cell lines (van de Wetering et al. 2015). Organoid
culture may also represent a cheap and robust alternative
to xenograft-based drug studies. Hence, these organoids
are useful in cancer genetics to allow design of personalized
therapy.

Summary and perspectives

The signals emanating from the niche in epithelial
cells and stromal cells regulate intestinal homeostasis.
Wnt signals are indispensable for ISC self-renewal and
the differentiation of Paneth cells, BMP signals for
balancing ISC maintenance and activation, and Notch
signals for specifying the absorptive and secretory lineage
crucial to establishing the niche during homeostatic and
injury conditions. The ISC niche maintains stem cell
number. Although there has been much progress over
the last few years in identifying which important cellular
components regulate the ISC niche, many unresolved
issues remain. The identity of ‘+4 stem cells’ and how
they respond to multiple niche signals during homeo-
stasis, and particularly in response to injury, remain
largely unknown. The origin of stromal cells and their
functional identity are largely unclear. Identification of
proper markers to define immune cells, endothelial cells
and neural cells in regulating ISCs will help us under-
stand niche interactions in homeostatic and stressed or
injury conditions. There are certain enduring questions in
understanding the signalling mechanisms which regulate
the niche. Uncovering the role of Wnt, Hh, BMP, Notch
and EGF signalling in stromal cells will help illuminate
these questions. Further research on the function of
stromal cells in response to the immune system with
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a variety of cytokines will enlighten the field and
may lead to new therapies in treating gastrointestinal
disorders. In the future, artificial ex vivo niches may
provide intriguing opportunities for regeneration-based
treatment.
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