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ABSTRACT
....................................................................................................................................................

The Big Data to Knowledge (BD2K) Center for Causal Discovery is developing and disseminating an integrated set of open source tools that support
causal modeling and discovery of biomedical knowledge from large and complex biomedical datasets. The Center integrates teams of biomedical
and data scientists focused on the refinement of existing and the development of new constraint-based and Bayesian algorithms based on causal
Bayesian networks, the optimization of software for efficient operation in a supercomputing environment, and the testing of algorithms and
software developed using real data from 3 representative driving biomedical projects: cancer driver mutations, lung disease, and the functional
connectome of the human brain. Associated training activities provide both biomedical and data scientists with the knowledge and skills needed to
apply and extend these tools. Collaborative activities with the BD2K Consortium further advance causal discovery tools and integrate tools and
resources developed by other centers.
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INTRODUCTION
Much of science consists of discovering and modeling causal relation-
ships in nature. With rapid advancements in technology and network-
ing, biomedical scientists increasingly generate multiple complex data
types for a large number of samples, each of which has an enormous
number of measurements recorded. Although statistical and machine
learning methods can predict the value of a variable X from observed
predictors, the best predictors of X are often poor models of the
causes of X (hence the slogan “correlation is not causation”), which
motivated the development of algorithms specifically devoted to the
discovery of valid causal models.

Indeed, tremendous progress has been made in developing com-
putational methods for representing and discovering causal knowledge
from data.1–6 These causal discovery methods have found applications
in a wide range of fields, including econometrics, education, epidemi-
ology, climate research, medicine, and biology.2,7 Current capabilities
include 1) the representation of existing causal knowledge as a graph-
ical network model with precisely defined semantics, 2) the discovery
of causal networks of relationships from a combination of prior knowl-
edge and experimental and observational data, and 3) the use of
causal networks to suggest how changing one variable (e.g., a drug
binding to a signaling protein and blocking a pathway) is likely to influ-
ence the state of another variable (e.g., cell apoptosis). While much
progress has been made in the development of these computational
methods and their application in biomedical science8–35 and other
fields, they are not sufficiently efficient to analyze big datasets nor
easy for biomedical scientists to access or apply to their data.

To fill this gap, the Center for Causal Discovery (CCD) is building
on the extensive code base of causal modeling and discovery (CMD)
algorithms that we have developed and implemented over the past 25
years1,2,4,36–38 and integrating new or improved algorithms as they
are reported in the literature. Software products from the Center will
allow biomedical and data scientists to select and apply one or more

data-appropriate causal discovery algorithms to their biomedical data-
sets and compare the causal relationships that each algorithm
predicts.

ORGANIZATION
The CCD integrates the efforts of 5 main teams of experts:
Algorithm Development, Software and Systems Architecture, Driving
Biomedical Projects Training and Dissemination, and Consortium
Activities. Figure 1 summarizes the overall impact of the CCD in
relation to the types of problems we are solving through each com-
ponent of the center. As noted above, our ultimate goal is to
provide CMD tools with which end users can efficiently search for
and characterize causal relationships responsible for an observed phe-
notype or phenomenon using large and often merged omics, imaging,
and clinical datasets—and to tailor training to each end-user
constituency.

The CCD is a joint effort of approximately 40 investigators at the
University of Pittsburgh (Pitt), Carnegie Mellon University, the
Pittsburgh Supercomputing Center, and Yale University. We also have
consulting investigators at the California Institute of Technology, New
York University, Rutgers University, Stanford University, the University
of Crete, and the University of North Carolina. Drs Gregory Cooper, Ivet
Bahar, and Jeremy Berg serve as the Center Principal Investigators
who direct Center activities with guidance from the Executive
Committee and Internal and External Advisory Boards.

ALGORITHM DEVELOPMENT
Algorithm development and optimization is at the core of CCD efforts,
and we are focusing on the discovery of structural causal relationships
that can be represented by causal Bayesian networks (Table 1). We
are using 2 main classes of algorithms that model hidden variables
and sample selection and have the ability to discover them based on
observational data, data from experimental interventions, or both:
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constraint-based algorithms, which use tests of conditional indepen-
dence, and Bayesian algorithms, which allow the specification of
structure and parameter prior probabilities.

Some additional key characteristics of causal discovery problems
are shown in Table 2. No current causal discovery algorithms can opti-
mally address all these issues, though algorithms exist for addressing
important subsets of the issues,6 and additional algorithms are being
developed in the CCD and elsewhere to more fully address them. We
are in the process of implementing and making available the best
CMD algorithms as well as developing new algorithms to address
pressing needs of causal discovery in biomedicine. Our Algorithm
Development team is working closely with the Software and Systems
Architecture groups to generate algorithms that are highly efficient
and parallelized so that they can analyze very large datasets in a prac-
tical amount of computing time.

SOFTWARE AND SYSTEMS DEVELOPMENT
Our goal is to make CMD algorithms accessible and useful to a wide
variety of biomedical researchers who might not otherwise take ad-
vantage of them. These algorithms will be freely available as open-
source application programming interfaces, which will facilitate their
use by other biomedical and data scientists. We aim to provide “one-
stop shopping” for scientists who wish to incorporate causal discovery

methods into their research. To do so, we are, in parallel with algo-
rithm development, creating a computational platform that supports
the continual accumulation, refinement, integration, documentation,
and dissemination of causal discovery algorithms.

We are also developing an interactive computer system that
facilitates the application of the CMD algorithms to biomedical data
(Figure 2). Such a system will have a graphical user interface that can
run on a desktop computer. Backend processing of causal analyses
can take place on the desktop machine for tasks that are not too com-
putationally demanding, while more demanding tasks are automati-
cally relayed to and performed on a high-performance computer
cluster. We are fortunate to engage data scientists at the Pittsburgh
Supercomputing Center for this work, and resources available
through this and other high-performance computer centers are avail-
able to investigators across the country seeking to apply CMD tools
to their big data through the Extreme Science and Engineering
Discovery Environment (XSEDE), https://www.xsede.org.

DRIVING BIOMEDICAL PROJECTS
To ensure our methods are broadly applicable, we selected 3 very dif-
ferent driving biomedical projects (DBPs) to drive the development of
our CMD tools and algorithms. Teams of bench scientists, who gener-
ate biomedical big data through their ongoing research, and data

Figure 1: Center for Causal Discovery (CCD) organization and workflow optimized for the development of causal modeling
and discovery (CMD) algorithms and tools designed to help address causal discovery in biomedicine from big data.
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scientists involved in algorithm and software development, meet bi-
weekly to ensure close collaboration on the iterative development and
improvement of our CMD methods and tools.

The Cancer Signaling Pathways DBP seeks to discover the geno-
mic drivers of tumors and the altered cell signaling pathways that re-
sult in cancer.39,40 The ability to discover and model these causal
relationships accurately is key to more fully realizing precision cancer
diagnosis, prognosis, and therapy. We are analyzing public data sour-
ces, including The Cancer Genome Atlas (TCGA) data41, which is mir-
rored locally in real time, and internal research and electronic health
record data on a variety of cancer types, with an initial focus on breast
cancer. The data include measurements of somatic mutations, copy
number alterations, mRNA expression, and protein activation, as well
as phenotype and clinical outcome. Computational predictions will be
tested and validated in cell line and xenograft models as part of a
broader program aimed at discovering new therapeutic targets.

The Chronic Lung Disease DBP aims to discover the cellular factors
that lead to susceptibility and progression of chronic obstructive pulmo-
nary disease and idiopathic pulmonary fibrosis.42 We are analyzing data
from the Lung Genomics Research Consortium and the Lung Tissue
Research Consortium to discover and model causal relationships be-
tween molecular variables, clinical variables (�80 per patient), and im-
age features to characterize disease mechanisms and predict disease
severity. The data include high-resolution images of lung tissue for
which single nucleotide polymorphisms (SNPs), DNA methylation, mRNA
expression, and microRNA expression are concurrently measured.

The Brain Functional Connectivity DBP seeks to discover the causal
influences among small spatial regions of the human brain using fMRI
data representing the activity of �2 mm3 regions (voxels) about

every 2 s. These regions define thousands of variables that we analyze
to generate a causal network of functional influence.43,44 Currently,
we are performing this analysis on functional magnetic resonance
imagining (fMRI) data from individuals with autism spectrum disorder
and neurotypical individuals. We seek to characterize causal-network
differences between these groups as well as differences among indi-
viduals with autism spectrum disorder (ASD). Our goal is to improve
sub-classification of ASD subjects using the causal patterns evidenced
in response to a variety of stimuli. Individuals within a sub-classifica-
tion may or may not be homogenous with regard to ultimate causes of
their condition, but we hope to reduce variance. We plan a similar in-
vestigation in individuals with schizophrenia. These efforts, like those
for the molecular mechanisms for cancer and lung disease, typically
involve problems in which the number of variables and possible rela-
tionships among them is much higher than the sample size. Such
analyses are possible because our search algorithms allow us to iden-
tify causal structure when the number of variables is orders of magni-
tude larger than the number of samples.2,45

While we anticipate that new biomedical discoveries will be made
in each of these problem areas using the methods developed by the
CCD, the broader impact will be the development of the methods and
tools themselves, which will be applicable to a wide spectrum of bio-
medical research.

TRAINING AND DESSEMINATION
The Training component of the CCD is dedicated to training re-
searchers in both biomedical science and data science. For biomedical
scientists, we teach the conceptual underpinnings of CMD methods,
the application of those methods to biomedical problems (including an
understanding of what kinds of problems the methods should or
should not be applied to), and the use of software developed by the
Center. We are teaching data scientists how to understand and incor-
porate CMD methods into computational workflows and how to de-
velop new algorithms, software, and systems for CMD.

We will provide training resources in the form of downloadable
materials that can be used for asynchronous learning or as part of es-
tablished courses; online courses (both credit and noncredit),

Table 1: Several key causal relationships in a causal
Bayesian network.

Graphical representation Causal relationship

Direct cause

An endogenous latent variable (H)

A latent confounding variable (H)

Selection

X, Y, and Z denote measured variables. H denotes a hidden (latent)
variable. The variable S surrounded by double circles denotes selec-
tion in which the values of X and Y influence whether a sample ap-
pears in the dataset.

Table 2: Some key characteristics of causal discovery
problems.

Topic Characteristics

Prior knowledge none; deterministic; probabilistic

Variable types discrete; continuous; both

Temporal dynamics none

stationary time series; non-stationary time series

discrete time; continuous time

Distributions parametric; non-parametric

linear; non-linear

additive noise; non-additive noise

Feedback cycles absent; present

Latent confounders absent; present

Selection bias absent; present

Datasets single; multiple datasets on same variables;
multiple datasets on overlapping variables
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workshop videos, and discussion groups; and in-person workshops,
short courses, graduate courses, internships, and hackathons. Our
CMD training will rely heavily on the TETRAD program (http://www.
phil.cmu.edu/tetrad/) developed by CCD investigators from Carnegie
Mellon University. These activities are intended for undergraduate and
graduate students, postdoctoral fellows, young investigators, and es-
tablished investigators from academia and industry, both within and
beyond the Big Data to Knowledge (BD2K) Centers of Excellence.

We will also maintain at our website (http://ccd.pitt.edu) online in-
terfaces and tutorials for CCD software as well as libraries of algo-
rithms, software tools, and datasets to allow one-stop shopping for
any scientist interested in causal discovery.

CONSORTIUM COLLABORATION
Our Consortium component has two main goals: to encourage and fa-
cilitate the use of CCD tools by other scientists, both inside and outside
the BD2K Consortium, and to design and implement intra-Consortium
projects with other BD2K Centers.

Our Technical Catalyst will make brief site visits on a rotating basis
to other BD2K Centers to learn how our Center can better serve their
needs and how their products can be integrated into our workflow; we
will prepare Technical Reports summarizing each site visit and oppor-
tunities for synergy. Our Scientific Catalyst program engages leading
biomedical and data scientists who have agreed to promote the use of
CCD tools in their respective scientific communities and to solicit feed-
back on how the CCD can better meet their needs.

In addition, we currently are pursuing two intra-Consortium proj-
ects. The first is in partnership with the Patient-centered Information
Commons: Standardized Unification of Research Elements (PIC-SURE)
at Harvard to access and analyze datasets containing genetic, environ-
mental, imaging, behavioral, and clinical data on a large number of in-
dividual patients. Together, we will apply CMD methods to explore
new hypotheses about the relationships between risk factors, dis-
eases, and outcomes. In a second project, we are working with the
Stanford Center for Expanded Data Annotation and Retrieval (CEDAR)
to use their metadata methods to support our CMD analyses and to
use our knowledge about CMD in developing metadata descriptions in
(CEDAR).

SUMMARY
The CCD seeks to discover, optimize, apply, and disseminate methods
and tools for CMD with large and complex data to generate new bio-
medical knowledge and to encourage and train both data and biomed-
ical scientists in their use. We will serve as a central resource for
anyone seeking causal discovery algorithms, software tools, training,
and collaboration.
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