
RECEIVED 5 February 2015
REVISED 11 May 2015

ACCEPTED 15 May 2015
PUBLISHED ONLINE FIRST 29 July 2015

Review and evaluation of electronic health
records-driven phenotype algorithm
authoring tools for clinical and translational
research

Jie Xu1, Luke V Rasmussen2, Pamela L Shaw3, Guoqian Jiang4, Richard C Kiefer4, Huan Mo5,
Jennifer A Pacheco6, Peter Speltz5, Qian Zhu7, Joshua C Denny5, Jyotishman Pathak4, William K Thompson8, Enid Montague1

ABSTRACT
....................................................................................................................................................

Objective To review and evaluate available software tools for electronic health record–driven phenotype authoring in order to identify gaps and
needs for future development.
Materials and Methods Candidate phenotype authoring tools were identified through (1) literature search in four publication databases (PubMed,
Embase, Web of Science, and Scopus) and (2) a web search. A collection of tools was compiled and reviewed after the searches. A survey was de-
signed and distributed to the developers of the reviewed tools to discover their functionalities and features.
Results Twenty-four different phenotype authoring tools were identified and reviewed. Developers of 16 of these identified tools completed the
evaluation survey (67% response rate). The surveyed tools showed commonalities but also varied in their capabilities in algorithm representation,
logic functions, data support and software extensibility, search functions, user interface, and data outputs.
Discussion Positive trends identified in the evaluation included: algorithms can be represented in both computable and human readable formats;
and most tools offer a web interface for easy access. However, issues were also identified: many tools were lacking advanced logic functions for
authoring complex algorithms; the ability to construct queries that leveraged un-structured data was not widely implemented; and many tools had
limited support for plug-ins or external analytic software.
Conclusions Existing phenotype authoring tools could enable clinical researchers to work with electronic health record data more efficiently, but
gaps still exist in terms of the functionalities of such tools. The present work can serve as a reference point for the future development of similar
tools.
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INTRODUCTION
The widespread adoption of electronic health record (EHR) systems of-
fers considerable potential for secondary use of clinical data,1–3 espe-
cially for clinical research.4,5 For example, as individual genetic
variants often have weak correlations to complex diseases,6 large
sample sizes are needed for genome-wide association studies in order
to obtain significant results.7–9 The cost of assessing and identifying
patients with a given disease or characteristic (a process referred to
here as “phenotyping”) in a large number of patients is very high.4,10

However, the use of the data in EHR systems for such research could
be a cost-effective solution.4,11 As the EHR captures data in the deliv-
ery of care, researchers can use it to identify patient cohorts with con-
ditions or events that are relevant to the study.12 This can be achieved
by defining study specific inclusion and exclusion criteria based on the
EHR-based data fields—referred to as phenotype algorithms—and
subsequently executing those algorithms on top of EHR systems.13

However, several challenges exist when attempting to use EHRs
for scalable phenotyping. First, the use of EHR data requires complex
processing because EHR is a result of clinical practices and opera-
tions, so that it is in general multi-dimensional and temporal,14,15 and
contains different data types.16 The different types of data in EHRs,
such as diagnostic codes, laboratory results, and clinical notes, have
varied availability; they may come in the form of structured data,
semi-structured data, or un-structured data, and the same data may

be collected in different formats across organizations, or even between
different clinical specialties in the same organization.16 Second, EHRs
are typically optimized for data on single patients but not for the ag-
gregation across cohorts of patients, thus the specification of queries
can be challenging.11,17 Finally, EHRs usually contain a high volume of
data points, increasing their complexity.15,18 As a result of these chal-
lenges, it is necessary to have knowledge of how the data are struc-
tured and represented in order to accurately formulate queries that
define accurate phenotypes.19,20 Furthermore, additional experience is
needed to create a phenotype definition that is portable across multi-
ple institutions with different EHR systems.

Clinical researchers often rely on expert database analysts to per-
form queries in order to identify patient cohorts according to their
needs. This can be a time-consuming, error-prone, and inflexible pro-
cess.21,22 As discussed by Zhang et al.,23 the traditional model of phe-
notype extraction involves a data analyst who mediates between the
clinical researcher and the clinical database. The clinical researcher
has to communicate the phenotype algorithm—typically in human
readable pseudo-code—to the data analyst who then translates it into
a computable form. The clinical researcher and the data analyst may
need to go through multiple cycles of communication in order for the
request to be correctly translated. Miscommunication can lead to mis-
match errors between the data analyst’s computable algorithm and
the researcher’s desired algorithm. In addition, scarcity of data analyst
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resources may result in research bottlenecks as requests from clinical
researchers grow in complexity and volume.24 One of the solutions to
this problem is to design an intuitive phenotype algorithm authoring
tool so that clinical researchers can directly define the algorithm crite-
ria unambiguously, preferably using the same data elements that are
typically available within the EHR systems. Such an approach has the
potential to significantly reduce the level of iterations and repeated in-
teractions between researchers and data analysts.

The purpose of this study was to review available software tools
for authoring EHR-driven phenotype algorithms and evaluate their
functionalities using the current literature and feedback from the de-
velopers of these tools. By evaluating state-of-the-art tools, this study
aimed to identify the gaps in phenotyping workflow support and pro-
vide insights to improve the throughput of this process. Identifying and
rectifying these gaps will ultimately be necessary to facilitate wide-
scale adoption of phenotyping authoring and execution tools, thus
enabling clinical researchers to work more productively with data ana-
lysts, and also directly with EHR data.

METHOD
Phenotyping tools identification
The overall strategy involved two stages: (1) literature review to iden-
tify the existing tools and their features and (2) survey developers of
existing tools to confirm our assessment of tool capabilities.

Literature search strategy
Online database searches were performed between April and May
2014, for relevant articles. In order to discover as many relevant tools as
possible, a set of broad search terms was used. These search terms in-
cluded: “electronic medical records,” “electronic health records,”
“EHR,” “Medical Records Systems, Computerized,” “clinical research,”
“translational research,” “graphical,” “visual,” “interface,” “query,”
“platform,” and combinations of these terms. The term “phenotyping”
was not used because its vagueness may have limited the comprehen-
siveness of the search.25 Initial searches were conducted using data-
bases including PubMed, Embase, Web of Science, and Scopus. A
follow-up search was conducted using Google Scholar to identify rele-
vant papers in the reference lists. Google was also searched using the
same terms, limiting to the website domains of.edu or.org.

Results of each academic literature database search were re-
corded and saved to an EndNote library. Search results were reviewed
by one of the authors (PS) and the citation information of those results

meeting inclusion criteria was entered into a spreadsheet. For every
result entered into the spreadsheet, an additional Google search was
conducted for the specific tool in attempt to discover if a user interface
or project description of the tool were available. Figure 1 shows the lit-
erature search workflow.

Inclusion and exclusion criteria
The inclusion criteria included: (1) the tool provides a query function
for users to identify patient cohorts; (2) the tool does not require users
to use a programming language or a database-specific query language
(e.g., SQL) to author a query; (3) the tool works with EHRs or a data-
base that is fully or partially derived from EHRs; (4) the tool is an aca-
demic application rather than a commercially available software; and
(5) the publication or documentation associated with the tool was writ-
ten in English. The exclusion criteria included: (1) local extensions of
an application (such as SHRINE,26 Galaxy,27 and FURTHeR,28 since the
difference among the infrastructures of these extensions and the
Informatics for Integrating Biology and the Bedside platform is mini-
mal) and (2) generic tools that provide query building capabilities be-
yond the healthcare domain, such as SAS29 and KNIME.30

Tool evaluation survey
Survey items
The research team opted to survey the developers of the tools rather
than evaluate each tool individually because (1) it was not possible for
the research team to obtain access to all the identified tools and con-
duct thorough evaluations and (2) an evaluation based on publications
or documentations may not reflect the current state of the tools.

The survey was designed based on a previously conducted pheno-
typing tool review and evaluation studies.31,32 The survey had 30
questions in total, which were grouped into nine sections for informa-
tion regarding (1) algorithm representation, (2) Boolean operator func-
tions, (3) temporal operator functions, (4) other operation functions, (5)
data support and software extensibility, (6) search functions, (7) user
interface, (8) data output features, and (9) other features. Most of the
questions (28 out of 30) were “yes/no” questions with an open-ended
comment field. The other two questions were a multiple-choice ques-
tion and an open-ended question. A description or example was pro-
vided for each question, if applicable, to clarify the meaning of the
question. Table 1 shows the sections, questions, and the correspond-
ing description/examples provided in the survey.

Figure 1: Flow diagram of the literature search.
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Survey administration
The protocol of this survey study was reviewed and approved by
Northwestern University’s Institutional Review Board. Potential devel-
opers of the phenotyping tools were identified through publications or
official websites associated with the tools. Emails were sent to these
individuals to ask if they were the developers of the tools and if they
were willing to participate in the study, or if they could recommend
someone else to fill out the survey if they were not the developer or
not available. The survey data were collected and managed using
REDCap electronic data capture tools.33

Survey result verification
After receiving the survey results from the developers of the phenotyp-
ing tools, the research team conducted additional verifications of the
survey answers using the following information associated with each
of the corresponding tool: journal publications, conference proceed-
ings, help documentations, written or video tutorials, and software tri-
als or demos.

RESULTS
List of phenotype algorithm authoring tools
A total number of 24 phenotype algorithm authoring tools were in-
cluded in this review and evaluation. Please refer to Table 2 for the list
of the tools and the brief descriptions for each tool.

Tool evaluation survey results
In total, we received the responses from the developers of 16 out of
24 tools, with one survey response collected for each tool. The re-
sponse rate accounted for 67%. The 16 tools included in the evalua-
tion included: Advanced Screening for Active Protocols, Biomedical
Translational Research Information System and its de-identified query
tool, DANBIO, Duke Enterprise Data Unified Content Explorer,
Electronic Medical Records and Genomics Network and its Record
Counter, Harvest, Informatics for Integrating Biology and the Bedside,
Integrative Platform for Translational Research and its query tool,
Measure Authoring Tool, Phenotype Builder, Multi-Modality Multi-
Resource Information Integration environment and Visual Aggregator
and Explorer, RetroGuide/HealthFlow, Synthetic Derivative and its
query tool, Stanford Translational Research Integrated Database
Environment and Anonymous Patient Cohort Discovery Tool, TrialViz,
and Utah Population Database Limited and its query tool. There was
no missing data presented in the “yes/no” questions. Please refer to
the online supplementary document (Appendix Table A1 and Table A2)
for the details of the evaluation for each tool against the survey items.
Please refer to Figure 2–5 for the results from the “yes/no” questions.
According to the responses, in the 16 tools that were evaluated, seven
(44%) only support defining criteria from the EHR systems that the tool
was designed to use with (“specific EHR” group in the figures); the
rest of them (56%) were designed to support any EHR systems (“any
EHR” group in the figures).

For the algorithm representation features, 11 out of 16 tools (69%)
were reported to be able to represent the algorithm in both noncom-
putable (defined as a format that is optimized for review by a human,
that a computer is not able to also understand) and computable for-
mats (those that can be interpreted and executed by a computer). The
rest of the tools were reported to be only able to represent the algo-
rithm to be either noncomputable or computable.

For the data support features, five of out the 16 tools (31%) were
reported to support both structured data and un-structured data.

In terms of the results returned from the execution of the algo-
rithm, 11 tools (69%) were able to report patient counts and seven

tools (44%) were able to report patient/encounter list; 9 tools (56%)
were able to report some sort of summary statistics of the patient co-
hort, and 4 tools (25%) were able to generate detailed report accord-
ing to user specification.

DISCUSSION
Algorithm representation
It was found that a high percentage (88% overall) of the surveyed tools
are able to represent the algorithm in a noncomputable format. The
survey results also indicated that for the tools that are able to repre-
sent algorithms in both formats, all of them can translate the algorithm
between these two formats automatically. Representing algorithms in
a human-readable format is very useful in phenotyping. Creating phe-
notype algorithm involves knowledge level authoring (e.g., inclusion/
exclusion criteria) and data level authoring (e.g., specific value ranges
of a data field).61 For clinical researchers, usually the knowledge level
is the first step of the authoring process, and it can be better repre-
sented in noncomputable formats such as flow charts or natural lan-
guage. In addition, the noncomputable representation is also more
likely to be used in communication between clinical researchers them-
selves, between clinical researchers and data analysts, or even be-
tween institutions where computable algorithms may be represented
differently due to the difference in software platforms. As such, the
use of noncomputable, human-readable algorithm representation can
potentially increase the portability of the algorithm among these enti-
ties. However, the lack of a standardized representation of the algo-
rithms still remains a challenge. Although quality standards such as
the National Quality Forum Quality Data Model62 and HL7 Health
Quality Measures Format63 can be used, they are not comprehensive
for complex phenotype algorithms.64 There is a need for developing a
standard mechanism for phenotype algorithm representation.

Boolean operators, temporal operators, and other operation
features
Intuitive query authoring tools with graphical interface can make clini-
cal researchers who are not expert data analysts able to perform data
queries themselves; however, those tools may not provide sufficient
capability in authoring complex queries that completely satisfies the
requirements of clinical research.19 In the evaluation, it was found that
some operational features had low implementation rate among the
surveyed tools: nested Boolean logic (50% overall, and 29% for spe-
cific EHR group), relate co-occur items (50% overall), nested temporal
operators (38% overall), and arithmetic operations (44% overall).

It may still be possible to author simple algorithms based on basic
Boolean operators and temporal operators. However, many algorithms
require complex operations. An analysis of the phenotype algorithms
on the electronic Medical Records and Genomics Network65 indicated
that most of the algorithms require complex Boolean and temporal
logic.66 For example, the algorithms for diabetic retinopathy, hypothy-
roidism, resistant hypertension, and type 2 diabetes all require nested
Boolean logic and complex temporal logic.66

The implementations of various temporal operation are not very
high (see Figure 3) among the surveyed tools. However, as noted by
Albers et al.,67 human phenotypes are inherently time-dependent and
dynamic (e.g., the probability of acquiring a disease and physical char-
acteristic can change over time); but this is somewhat neglected in
many phenotype algorithms. This situation may be caused by the in-
herent difficulty in authoring dynamic phenotype algorithms with tem-
poral components or lack of required tools to finish the task.
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Table 1: Phenotyping tools capabilities survey questions

Section Question Clarification/examples

Algorithm
representation

The algorithm can be represented in non-programming lan-
guage, such as natural languages, charts, or diagrams. (Non-
programming language)

The graphical editor can generate a visual flowchart, or
natural language representation of the algorithm.

The algorithm can be represented as computable language.
(Computable language)

The underlying definition is something that a computer
can understand and execute, to return results.

The translation between the non-computable and computable
language can be done automatically by the platform.
(Automatic representation translation)

The system represents algorithms as relational queries.
(Relational queries)

Boolean
operators

Algorithms can be written to exclude entities (patients, events,
etc.) that have or do not have certain properties. (Boolean
operations)

“Exclude patients with an ICD9 code of 250.01.”

The system can perform Boolean operations, including nega-
tion, on properties and combinations of other logic. (Nested
Boolean logic)

“Find all patients that are not deceased, and were seen in
the past two years.”

The system supports unlimited complexity of nested Boolean
logic. (Exclusion)

Nesting of Boolean operators can go down an infinite
number of levels.

Temporal
operators

Allow you to specify the reference date to use for temporal
operations. (Temporal operations)

Can relate something to the “first occurrence,” or the
“date documented,” etc.

Allow you to relate to a specific date. (Relate to a date) “Number of A&E admission due to fever on 25 December
2013.”

Allow you to relate to arbitrary time interval. (Relate to a time
interval)

“Number of A&E admission due to fever in the past 6
months.”

Allow you to relate items occurring at the same time. (Relate
co-occur items)

“Number of patients who had a diagnosis of diabetes and
were on insulin at the time of diagnosis.”

Allow you to relate items occurring before/after each other.
(Relate sequential items)

“Patients who had a FNA biopsy and later underwent
surgery”

Temporal relationships/operators can be nested at any level of
the definition. (Nested temporal operators)

“Diagnosis X at least 6 months before (Procedure Y OR
Procedure Z).”

Other operation
functions

Algorithms may include arithmetic operations, which may be
nested at any level of the definition. (Arithmetic operations)

“Has at least 6 fasting glucose lab results OR at least 10
random glucose lab results.”

Can specify what level of information/entity to relate against
(events, patients, etc.) (Specify entity to relate to)

“Find all patients with age >30, with at least one event
that occurred in the past month”—relates age to patient,
and occurrence date to event.

Data support and
software extensibility

Supports any type of structured data element, in any terminol-
ogy (even ad hoc). (Structured data element)

Lists of diagnoses can be in ICD-9 or ICD-10; age may be
represented as ad-hoc categories of age (i.e., 0-9, 10-19);
biobank status may be an institutional value based on type
of sample(s) available (i.e., blood, saliva, tissue).

Allows defining criteria for text/unstructured data sources as
part of the algorithm definition. (Unstructured data sources)

Apply regular expressions. Find a list of CUIs within a par-
ticular section of a clinical note.

Supports data from any EHR system. (Any EHR) Some platforms are designed to work with specific EHR
systems, while others can be used with different EHR
systems.

Support plug-ins or external software algorithms, such as ma-
chine learning, statistical computations, or natural language
processing. (Extensibility)

Allows you to specify that the algorithm should call out to
an external system to perform some additional analysis.

(continued)
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Data support and software extensibility
Many of the surveyed tools (75% overall) support defining queries that
utilize structured data while less than half of them (44% overall) pro-
vide such support for un-structured data. Structured data may be an
accurate way of storing and extracting data;68 for example, the posi-
tive predictive value of using billing codes to identify acute myocardial
infarction was reported to be higher than 90%.69 However, using only
structured data may negatively influence the accuracy of cohort defini-
tion in some cases.34,70 For example, a study comparing using struc-
tured International Classification Of Diseases - 9 (ICD-9) code and
natural language processing (NLP) processed un-structured data for
clinical trials pre-screening concluded that using a combination of
both types of data would yield the best results.71 In an another study,
the researchers found that NLP-based techniques showed higher sen-
sitivity and positive predictive value than ICD9 code-based techniques
in identifying individuals in need of testing for celiac disease.72

A solution to the lack of the processing capability for un-structured
data is to allow defining a phenotype algorithm that (when executed)
may invoke external software, such as a NLP plug-in, to be able to be
used in the system. Unfortunately, most of the tools that did not sup-
port un-structured data also did not support the use of plug-ins.
Another problem associated with not supporting plug-ins is that novel
approaches in phenotyping may not be used without modifying the
core system. While a review article indicated that there were machine
learning and statistical analysis approaches being using as phenotype
algorithms in research,25 these functions are rarely supported by ex-
isting phenotyping tools.

It was found that only about half of the evaluated tools could be
used with different EHR systems to facilitate portability of phenotyping
algorithms between institutions. This is a significant design challenge

as not all of the EHR databases provide mappings to standardized
terminology systems, such as ICD-9/10, RxNorm, or LOINC, as recom-
mended.73 In designing a phenotyping tool that supports portability,
the algorithm should be able to employ standardized terminologies
and at the same time accommodate non-standardized when possible.

User interface and other features
Almost all the evaluated tools (94% overall) provide a web interface
for convenient access. Also most tools offer basic search functions for
codes in medical terminologies. However, only about half of the tools
(50%) provided advanced search functions (e.g., wildcard matching),
and this may reduce the usability for certain search scenarios.

In terms of data return from queries, there were variations among
the tools. Some tools only provide a simple patient count, while others
provide a detailed patient list, an encounter list, and detailed reports de-
pending on the specifications of the user. This may relate to the different
scenarios for which the tools were designed. For example, a query tool
may be designed for assessing the size of the patient cohort given the al-
gorithm before starting a clinical trial, and due to patient privacy issues,
no further information will be shown other than a simple patient count;
another system may be designed for a de-identified database and able
to provide all the data fields for the user to conduct complex data analy-
sis. For these different cases, the designers may need to study the spe-
cific user needs in order to design the best form of data output.

Limitations
The main limitation of this study was that the evaluation survey was
only filled out by developers of 67% of the tools. It is therefore possible
that the results are biased towards the tools for which we were able
to obtain developers’ feedback.

Table 1: Continued

Section Question Clarification/examples

Search functions Support searching by codes. (Codes) “Number of patients who are diagnosed Cerebral
Hemorrhage coded 430, 442.81, 421.”

Support searching by keywords. (Keywords) “Number of patients who are diagnosed with ‘Cerebral
Hemorrhage’.”

Support advanced search. (Advanced search) “Code ranges/find all codes 442.*-443.0, wildcards/find
terms like ‘cereb* hemm*’.”

User interface How is the system accessed and used? (Web-based/ desktop-
based/ native mobile application)

Supports drag-and-drop to build the algorithm. (Drag-and-
drop operation)

Includes documentation. (Documentation) Help guides, tutorials, etc.

Data output
features

Can export an algorithm definition in a human-readable for-
mat. (Human-readable format)

Create/save a PDF or HTML document containing the crite-
ria for the algorithm.

Can export an algorithm definition in a computable format.
(Computable format)

Allow exporting the definition of an algorithm so that it can
be imported into another system (or another instance of
the same system).

What is returned from the search/query? (Return from the
query)

For example, patient counts, lists of patients, any clinical
data (events, labs).

Other features Is your system open source? (Open source)

Please list any other features that your platform offers that
have not already been discussed.
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Table 2: The list of the phenotyping tools identified from the literature and web search and their brief descriptions

Phenotyping tool Description

Advanced Screening for Active
Protocols (ASAP)34

ASAP is a tool designed for identifying and pre-screening patients for clinical trial eligibility based on the Ohio
State University Medical Center’s Information Warehouse (IW) that contains data from electronic health record
(EHR) systems and billing and administrative systems.

Biomedical Translational Research
Information System and its
de-identified query tool35–37

Biomedical Translational Research Information System is a clinical research data repository developed at the US
National Institutes of Health to consolidate data from multiple databases, including EHR systems, and provide
query functions for data retrieval in the dataset.

DANBIO38 DANBIO is Denmark’s nation-wide research database and EHR system for rheumatoid arthritis, ankylosing
spondylitis, and psoriatic arthritis patients. The user can perform queries in the system to derive subset of data
for research.

DBMap39 DBMap is a data visualization and knowledge discovery framework implemented in the University of California,
San Francisco’s Brain Research Registry. Its user interface allows the users to query the database and returns
the results visualized as a color-coded map.

Duke Enterprise Data Unified
Content Explorer (DEDUCE)21,40

DEDUCE is a query platform developed to support data exploration, cohort identification, and data extraction
from Duke University’s enterprise data warehouse, which stores clinical data from a number of hospitals and
clinics of the university’s health care system.

Electronic Health Records for
Clinical Research (EHR4CR)41,42

EHR4CR is a European platform aims to improve clinical research with EHRs by supporting clinical protocol
feasibility, patient identification and recruitment, clinical trial execution, and adverse event reporting. For patient
cohort identification, a formal query language is developed to enable queries to be executed to heterogeneous
EHRs.

electronic Primary Care Research
Network (ePCRN) Research
Workbench43–45

ePCRN is an electronic infrastructure that offers a database of clinical information and a research portal to
support the conduction of randomized control trials. Its Research Workbench enables users to create queries on
the EHR data to identify eligible patient cohorts for research.

Electronic Medical Records and
Genomics (eMERGE) Network and
its Record Counter (eRC)46

eRC is a research tool designed for research planning purpose and feasibility assessment for the genotyped
patients in the eMERGE subject pool. This tool supports functions for users to construct queries base on
diagnosis codes.

Eureka! Clinical Analytics47 Eureka! Clinical Analytics is part of the Analytic IW software system developed at Emory University that enables
users to upload a data source, specify patient cohort definitions as temporal patterns, and derive the cohort
matches into an instance of i2b2.

Feasibility Assessment and
Recruitment System for Improving
Trial Efficiency (FARSITE)48

FARSITE aims to support clinical trial feasibility assessment and recruitment in the UK. Its query interface
provides assessments of the size of patient cohorts returned from the user specified search criteria to assist
the evaluation of clinical trial feasibility.

Harvest15 Harvest is a software toolkit designed for building web-based application to perform custom query of a dataset
for data discovery and reporting purpose. This toolkit is developed by the Children’s Hospital of Philadelphia
Research Institute and optimized for biomedical research use.

Informatics for Integrating Biology
and the Bedside (i2b2)11,26

The i2b2 platform is based on Research Patient Data Registry, which is developed in Partners HealthCare. The
software allows users to perform queries on an EHR system and identify patient cohorts that fit the research
criteria. A project data mart can be created for the selected patient cohorts for further processing and analysis.

Integrative Platform for
Translational Research (IPTrans)
and its query tool49

IPTrans is the user interface level of Chado, which is a modular ontology-oriented database model and it
supports the management of clinical and socio-demographic data, project management, and microarray assays
and biomaterials management. It enables users to author a set of clinical or socio-demographic characteristics
criteria to identify patient cohorts.

Measure Authoring Tool (MAT)50 The MAT is designed to author electronic Clinical Quality Measures using the Quality Data Model (QDM), which
is aligned with Meaningful Use standards. It is possible to author phenotype algorithms that are compliant with
QDM.

Multi-Modality, Multi-Resource
Information Integration environ-
ment (Physio-MIMI) and Visual
Aggregator and Explorer (VISAGE)23

VISAGE is a query interface and a component of Physio-MIMI. It provides query building, managing and exploring
functionalities to assist users with hypothesis generation and patient cohort identification activities.

Phenotype Builder51 Phenotype Builder is prototype software tool designed for the users to author phenotype algorithms by
manipulating data elements in a graphical user interface.

(continued)
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CONCLUSION
This review and evaluation of existing EHR-driven phenotype algorithm
authoring tools provided an overview of the current state of the avail-
able tools. Overall, these phenotyping tools can provide interfaces that
are relatively accessible for the clinical researchers who may not have
high expertise in database and query coding. Most of the evaluated
tools can enable users to author simple algorithms. However, impor-
tant gaps also exist: many of the evaluated tools do not support the
complex logic specifications, un-structured data processing, and

external analytic software. These problems are obstacles for the users
to author more complex algorithms. Future development of phenotyp-
ing tools should focus on improving capabilities in these areas.
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Table 2: Continued

Phenotyping tool Description

RetroGuide/HealthFlow19,52,53 RetroGuide is an EHR query authoring system that utilizes a flowchart analytical paradigm for clinical researchers
to perform queries. HealthFlow is a package that integrates RetroGuide with FlowGuide, which is a prospective
version that communicates with EHR in real time.

SemanticDB and Semantic
Research Assistant (SRA)54

SemanticDB is a clinical research platform developed in Cleveland Clinic and it consists of three main compo-
nents: a clinical data repository, a query interface, and a data analysis and reporting interface. The SRA is the
query interface that allows the users to use natural language to construct queries for patient cohort
identification.

Stanford Translational Research
Integrated Database Environment
(STRIDE) and Anonymous Patient
Cohort Discovery Tool55

STRIDE is an informatics platform that consists of a clinical data warehouse, a data management application
development framework, and a biospecimen data management system, developed in Stanford University. The
users can use the query tool called the Anonymous Patient Cohort Discovery Tool to identify potential research
patient cohorts.

Synthetic Derivative (SD) and its
query tool9

SD is a de-identified clinical information database derived from Vanderbilt University Medical Center’s EHR
system and has a link to the corresponding DNA biobank (BioVU). Its query interface allows users to create
queries to identify patient cohorts.

Translational Research Platform for
colorectal cancer (crcTRP)56

crcTRP is a software platform designed to support colorectal cancer research. It provides a solution to collect
data in multiple sources, including EHRs and integrate clinical and omics data, and a web portal for data query
and data visualization.

TrialViz57 TrialViz is a query system that works with Clinical Practice Research Datalink database in the UK. This tool
enables the users to author queries for selecting patient cohorts, examine the quality of the extracted data, and
visualize the results of the queries.

University of Virginia’s (UVa)
Clinical Data Repository (CDR)58,59

CDR is a data warehouse that contains data derived from multiple UVa clinical and administrative patient
information systems and Virginia Department of Health. It provides a web interface for the users to conduct
queries for patient cohort identification.

Utah Population Database Limited
(UPDBL) and its query tool60

UPDBL is a research platform at the University of Utah that includes data from multiple sources such as EHRs,
vital records, driver license records, voter registration, etc. Its query tool allows users to build and run queries
and view aggregated results.

Figure 2: Percentages of phenotype authoring tools that support the corresponding algorithm representation features.
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Figure 4: Percentages of phenotype authoring tools that support the corresponding search functions, user interface, and
other features.

Figure 3: Percentages of phenotype authoring tools that support the corresponding Boolean operators, temporal operators,
and other operation features.

Figure 5: Percentages of phenotype authoring tools that support the corresponding data support and software extensibility
and data output features.REVIEW
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