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ABSTRACT
....................................................................................................................................................

Modern biomedical data collection is generating exponentially more data in a multitude of formats. This flood of complex data poses significant op-
portunities to discover and understand the critical interplay among such diverse domains as genomics, proteomics, metabolomics, and phenomics,
including imaging, biometrics, and clinical data. The Big Data for Discovery Science Center is taking an “-ome to home” approach to discover link-
ages between these disparate data sources by mining existing databases of proteomic and genomic data, brain images, and clinical assessments.
In support of this work, the authors developed new technological capabilities that make it easy for researchers to manage, aggregate, manipulate,
integrate, and model large amounts of distributed data. Guided by biological domain expertise, the Center’s computational resources and software
will reveal relationships and patterns, aiding researchers in identifying biomarkers for the most confounding conditions and diseases, such as
Parkinson’s and Alzheimer’s.
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INTRODUCTION
The overarching goal of the Big Data for Discovery Science (BDDS)
BD2K Center (www.bd2k.ini.usc.edu) is to enrich biomedical data by
linking or integrating domains—and, in so doing, better understand
how these data interact with each other. This integration of proteomic,
genomic, phenomic, and clinical data will empower scientists to un-
earth new hypotheses and discover new insights. To achieve this goal,
the BDDS Center is developing tools to accelerate the interactive inte-
gration and exploration of multi-omic and clinical “big data”, thus en-
abling scientists to extract and exploit knowledge that is currently
trapped under layers of complexity. These tools are organized around
3 primary thrusts, focused on the management, manipulation and
analyses, and modeling of big data, and will be delivered to the com-
munity via a new BDDS Portal.

While our Center will focus on areas of neuroscience, we expect
this “-ome to home” approach will be applicable to other biomedical
investigations outside the neurosciences. Ultimately, the BDDS system
will connect diverse types of biomedical data—from molecular to be-
havioral—enabling the systematic analysis and discovery of new pat-
terns and correlations that lead to actionable possibilities that can be
used to improve health.

MANAGING BIG DATA
There is a wide disparity between the enormous potential of big data
and their realization as practically usable resources for everyday use.1

Scientists currently spend much of their research time managing and
aggregating data rather than doing science, with self-reported values
of 90% being common.2 Furthermore, Nobel Laureate Oliver Smithies
noted that experimental information “isn’t science until you make it
available to others so that they can build on it.”3

The difficulties associated with integrating diverse data are exacer-
bated by the distributed nature of big data and the frequent use of
ad hoc and even simplistic data organization and management meth-
ods. For example, data are often stored in file systems with metadata
coded in file names or within file-specific formats.4,5 Thus, unified
searching or organization around metadata values is difficult, requiring
complex bespoke scripts and detailed knowledge of data layout on
multiple storage systems.

We will address these obstacles to discovery by creating unified
big-data digital asset management software6 that will systematically
enable researchers to discover organize, search, integrate, and link
data from diverse sources and types and from diverse locations, in-
cluding the cloud, data repositories,7 and other big data resources
(e.g., Storage Resource Manager (SRM)8, Intregrated rule oriented
data system (iRODS),9 Modern Era Retrospective-Analysis for
Research and Applications (MERRA)10).

What BDDS has done
We have validated one of our overall data management approaches by
deploying a global effort in a BDDS-supported project. This powerful
example, called Global Alzheimer’s Association Interactive Network
(GAAIN), provides access to a vast collection of Alzheimer’s disease
research data, sophisticated analytical tools, and computational re-
sources. GAAIN separates the management of the metadata from the
data itself, and represents an example of an asset-based approach to
complex data management. The main outcome is a successful feder-
ated data repository that extends search and analytic capabilities so
that researchers worldwide can find an ever-expanding collection of
data coupled to a library of sophisticated tools to analyze and relate
images, genetic information, and clinical and biological data. Figure 1
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shows the cohort discovery interface of GAAIN called the GAAIN
Scoreboard (www.gaain.org/explore).

What BDDS plans to do
Building on experiences integrating data from diverse sources, such
as the Image Data Archive (IDA),11 the Global Alzheimer’s Association
Interactive Network (GAAIN)12,13 (see Figure 1), and Facebase,14 we
will develop a system to deliver sophisticated and easy-to-use data
management applications to anyone. This system will enable repre-
sentation of configurable “entities” that store related metadata. It will
allow files, directories, and other data storage mechanisms to be re-
motely indexed alongside arbitrary metadata extracted and/or supplied
by users. Interactive tools will guide users through the process of in-
corporating new data, characterizing it with appropriate metadata; au-
tomatically extracting descriptive parameters, such as image quality or
anatomical feature size; and establishing linkages with related data.
Sophisticated search and navigation tools will allow users to identify
and aggregate data into hypothesis-specific datasets by filtering data
based on metadata, statistical characterizations, or other relevant
properties. We will integrate diverse existing neuroimaging and genet-
ics datasets into the platform to enable use of these tools for an initial
investigation into creating new risk models for Parkinson’s disease.

We are developing application programming interfaces, a graphical
user-focused knowledge discovery system, and interactive tools for
data fusion, model-based metadata data integration, and searching
across distributed data collections.15 Such techniques will enable

dynamic search and navigation, curation of meta-data and promote
semantic data understanding.

MANIPULATING AND ANALYZING BIG DATA
The transformation of big data into biomedical knowledge frequently
requires big data transfers and large-scale computations, in which
multi-component computational pipelines execute on many terabytes
of distributed data and many hundreds or thousands of processors.
More importantly, individual types of data need to be standardized and
viewed in the context of biological domain expertise. Integrating 2 or
more data types provides even richer possibilities for understanding
biology and disease leading to the identification of dynamical biological
networks. Understanding dynamical disease-perturbed networks can
also provide fundamental insights into disease mechanisms, early di-
agnostic biomarkers and early therapeutic targets. Discovery science
requires this type of useful data integration and it remains one of the
grand challenges of systems biology.

What BDDS has done
BDDS investigators have applied Globus services16 to a range of bio-
medical domains, deploying and operating services that have been
used to move and share imaging, genomic, and proteomic data. We
have prototyped integration with analysis services and biomedical digi-
tal asset management system17 services to explore the ability to pro-
vide higher-level abstractions via a distributed data cloud. We have
prototyped metadata extraction capabilities for common genomic and

Figure 1: The Scoreboard provides a summary view of the data matching search criteria in the Global Alzheimer’s
Association Interactive Network (GAAIN) federated system. The far-left column shows each of GAAIN’s Data Partners. The
top row shows the data attributes in GAAIN. A user can select any number of these data attributes to determine a collective
total number of subject data available from GAAIN Data Partners.
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imaging formats such as Variant Call Format (VCF), Binary Version of
Sequence Alignment File (BAM), Neuroimaging Technology Initiative
(NIfTI), and Digital Imaging the Communications in Medicine
(DICOM).18,19 These prototypes will form the basis of the distributed
biomedical data cloud development undertaken in this thrust.

We are also working on data-fusion and resource interoperability
methods that will enable the push-pull interactions required to drive
and draw knowledge, expertise, and resources between omics data
generated by genomics and proteomics researchers, tools developed
by biomedical engineers, and cloud services supported by multiple or-
ganizations. Figure 2 illustrates an example of the Trans-Proteomic
Pipeline20–22 implemented as platform-agnostic local, distributed, and
cloud-based infrastructures. This pipeline highlights the ability to pro-
cess distributed data via an optimized cloud-based analysis platform.

What BDDS plans to do
BDDS will address additional big data manipulation issues by creating
an adaptive and extensible distributed data access system to accom-
modate the fact that biomedical data is frequently large, heteroge-
neous, and distributed. We have and are developing platforms that
allow us to standardize both genomic and proteomic data. These sys-
tems will support remote access to data located in a wide variety of lo-
cations and storage systems—thus creating a ‘distributed biomedical
data cloud’ through which users will be able to seamlessly access
their data and raise the level of abstraction employed when interacting
with big data. Our extensible data access system will support meta-
data access as well as subsetting, feature extraction, and other opera-
tions on remote data. This system will also provide for rapid and
reliable transfer of data to other locations when required—for

example, for data integration or because a storage system does not
support local analysis. Our system builds upon the successful Globus
research data management services, which researchers worldwide
have used to transfer over 77PB of data in more than 3 billion files.

To meet user computational needs, BDDS will create an adaptive
and extensible workflow system to accommodate diverse data types,
different data formats, varied sources of processing, and simplicity in
operation. We have created a system that records each and every op-
eration and step to provide comprehensive provenance needed for
replication. The distinct processing steps needed to make data usable
in the same model necessitate a flexible and open architecture. Our
system builds upon the successful workflow architecture called the
Laboratory of Neuro Imaging (LONI) Pipeline.23 Its intuitive interface
and Extensible Markup Language (XML) descriptive language are well
suited to such applications. Adapting this system to accommodate big
data and the breadth of data domains is one focus of this thrust.

The BDDS Center will create and integrate biomedical data cloud
services, including analytical tools, and provide transparent distributed
data access. In subsequent years, the Center’s milestones will include
developing remote subsetting and visualization capabilities, integration
of HTTP access to distributed data, and remotely invoked BDDS meta-
data extraction methods. We will also develop approaches to synchro-
nize metadata in the BDDS portal and enhance our data
transformation capabilities.

MODELING BIG DATA
The first 2 BDDS thrusts focus on mechanisms that streamline and im-
prove the effectiveness of the biomedical researcher. The third thrust
is directed toward the creation of new modeling and analysis methods

Figure 2: Workflow representations of complex Trans-Proteomic Pipeline computational protocols implemented as plat-
form-agnostic local, distributed, and cloud-based infrastructures.
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for knowledge extraction, capable of linking across diverse biomedical
data types.

Analytic methods for big data form a clear bottleneck in many ap-
plications, both due to lack of scalability in the underlying algorithms
and the complexity of the data to be analyzed. We will work to acceler-
ate and optimize the entire end-to-end analysis process, from the de-
velopment phase through to large-scale application. One explicit
challenge is the realization that biological networks operate at all
levels—genetic, molecular, cellular, organ, and even social networks.
How do we capture these networks and then integrate them into a
seamless whole that explains complex biological processes?

Big data modeling challenges already arise in the first stages of
the analytic process, when a researcher is developing a new analysis.
It is considered good practice to use “black box” testing that confirms
expected transformations of exemplary inputs (“unit tests”). This prac-
tice can become impractical when dealing with big data, particularly
as code units are executed in large numbers, on different systems,
and requiring growing resource levels (disk space, memory, network
connectivity). Thus, new methods are required to develop and evaluate
modeling and analytical pipelines when applied to big data.

What BDDS has done
A tool to improve the quality control (QC) of big data is under develop-
ment. Data analysis pipelines, for instance, often undergo develop-
ment concurrently with the research that depends on them, and
validating these pipelines is essential to ensure the integrity of re-
search results. The Pipeline QC web-service (http://QC.loni.usc.edu)
provides an illustrative example of modeling by providing a semi-auto
mated QC system for multidimensional neuroimaging data. This ser-
vice enables collaborators to initiate the automated QC processing
pipeline protocols on the web, review the results (quantitative, qualita-
tive, and graphical outputs), and assess the caliber of the structural,

functional and diffusion volumes. As large-scale brain imaging studies
involve multiple sites collecting, processing, and interpreting heteroge-
neous data, our QC system allows different (authorized) users to up-
load imaging data, run a standardized QC pipeline workflows, inspect
the reported data characteristics, and annotate the properties of the
metadata and imaging data (see Figure 3).

What BDDS plans to do
To enable the formation of new, data-driven linkages between and
among genomics, proteomics, phenomics, and clinical data and
across spatial, temporal, and other scales, BDDS plans on coupling
workflow technologies to modern computation resources. BDDS will
develop methods for the joint processing of multi-modal data. We will
adapt the LONI Pipeline to perform the proteomics, genomics, and im-
age processing, as we describe in the following, along with experi-
mental design logic.

The processing of proteomics data will be based on the widely
used Trans-Proteomics Pipeline set of tools20–22 which include the
PeptideProphet24 and ProteinProphet25 algorithms. The LONI Pipeline
implementation will enable users to build complex workflows that per-
form analysis from raw instrument files through search engine pro-
cessing, post-search validation, protein inference, and abundance
quantification. The results may then be integrated with genomics and
imaging data processed in the same LONI Pipeline environment.

The genomic data analysis will be based on our current analysis
pipeline, incorporating further modules as they are developed. This
pipeline includes components for detecting deletions and copy number
variants by comparison to pre-computed Reference Coverage
Profiles26; characterization of structural variation junctions; confidence
filtering of observed variants based on error profiles pre-computed
from thousands of whole genomes; annotation of observed variants for
functional impact and for frequency in the populations27; computation

Figure 3: LONI Quality Control (QC) system for high-throughput semi-supervised curation of multidimensional neuroimaging
data.
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of polygenic risk scores and comparison to the corresponding multige-
nome distributions. We have extensive experience developing systems
for interactive, visual analysis of large-scale genomic sequences (the
GESTALT Workbench,28 http://db.systemsbiology.net/gestalt/), integra-
tive genomic resources (Kaviar,27), multi-genome analysis algorithms
that improve the quality of interpretation of individual genomes26 and
algorithms for interpretation of genomes in the context of family pedi-
grees and rare variant association29.

We will create a user-focused, knowledge discovery, graphical
system for presenting data search results and interpreting data. One
inherent challenge with big data is enabling researchers with deep ex-
pertise in one domain to grasp quickly the nuances important in an-
other domain in which they are not expert. For instance, a geneticist
reviewing proteomic data must be able to understand salient attributes
revealed by an analysis of that data. BDDS will aid this crucial step by
developing novel methods for extracting, understanding, and imple-
menting actionable knowledge. In particular, BDDS will develop novel
methods for data visualization and other tools to meet the data explo-
ration, linkage, and modeling challenges faced by researchers.

BDDS is developing a post-hoc testing framework that can be ap-
plied to the entire analytical pipeline or to any subcomponent thereof.
The framework automatically 1) learns the structure of the analysis
outputs, 2) models distributions, and 3) identifies outliers. These out-
liers are then evaluated as either possible analytical failures, or as
possible novel findings of interest.

BDDS will create new “pipelets” for each domain and connect to
new data sources. In subsequent years, the Center will create full
provenance capabilities to accommodate new data, develop modeling
software to graphically change parameters and variables and test and
validate capabilities on new disease models.

The ultimate objective for BDDS is to be able to convert data into
knowledge. This requires the data management, integration, analysis,
and modeling discussed above, posing fascinating challenges for the
future.
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