
RECEIVED 6 February 2015
REVISED 17 June 2015

ACCEPTED 26 June 2015
PUBLISHED ONLINE FIRST 31 October 2015

Multilayered temporal modeling for the
clinical domain
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ABSTRACT
....................................................................................................................................................

Objective To develop an open-source temporal relation discovery system for the clinical domain. The system is capable of automatically inferring
temporal relations between events and time expressions using a multilayered modeling strategy. It can operate at different levels of granularity—
from rough temporality expressed as event relations to the document creation time (DCT) to temporal containment to fine-grained classic Allen-
style relations.
Materials and Methods We evaluated our systems on 2 clinical corpora. One is a subset of the Temporal Histories of Your Medical Events
(THYME) corpus, which was used in SemEval 2015 Task 6: Clinical TempEval. The other is the 2012 Informatics for Integrating Biology and the
Bedside (i2b2) challenge corpus. We designed multiple supervised machine learning models to compute the DCT relation and within-sentence
temporal relations. For the i2b2 data, we also developed models and rule-based methods to recognize cross-sentence temporal relations. We
used the official evaluation scripts of both challenges to make our results comparable with results of other participating systems. In addition, we
conducted a feature ablation study to find out the contribution of various features to the system’s performance.
Results Our system achieved state-of-the-art performance on the Clinical TempEval corpus and was on par with the best systems on the i2b2
2012 corpus. Particularly, on the Clinical TempEval corpus, our system established a new F1 score benchmark, statistically significant as com-
pared to the baseline and the best participating system.
Conclusion Presented here is the first open-source clinical temporal relation discovery system. It was built using a multilayered temporal modeling
strategy and achieved top performance in 2 major shared tasks.

....................................................................................................................................................

Keywords: natural language processing, electronic medical record, temporal relation discovery, document creation time, narrative container,
Allen’s temporal interval relations.

BACKGROUND AND SIGNIFICANCE
Temporality is crucial for a deeper understanding of the course of clinical
events in a patient’s electronic medical records.1,2 A large part of it is re-
corded in the electronic medical records free text. Automatic temporal
relation discovery has the potential to dramatically increase the
understanding of many medical phenomena such as disease progres-
sion, longitudinal effects of medications, and a patient’s clinical course.
Extraction and interpretation of temporal relations has many clinical
applications such as question answering,3,4 clinical outcomes predic-
tion,5 and the recognition of temporal patterns and timelines.6

Despite the research progress and established temporal corpora
and shared tasks in the general domain,7–11 active work in compre-
hensive temporal relation discovery from clinical free text has emerged
only in the last 5 to 6 years. Given that a clinical note is written by
physicians who have very limited time to express the details of the
patient-physician encounter, nonstandard expressions, abbreviations,
assumptions, and domain knowledge are used, which make the text
hard to understand outside of the medical community, let alone by
automated systems. The signals that are needed for extracting the
temporal information embedded in the clinical free text are thus both
domain-specific and complex.

After pilot clinical temporal annotations12,13 showed initial success,
the 2012 Informatics for Integrating Biology and the Bedside (i2b2)
Challenge established the first clinical corpus annotated with temporal
information. Eighteen teams participated in the challenge through the
development of their temporal relation discovery systems.14 However,
the 2012 i2b2 challenge focused on select pairwise relations between

clinical events and time expressions (described in the Methods section
below). In other work, Pustejovsky and Stubbs15 proposed the concept
of a narrative container that addresses temporal granularity and can
significantly reduce the complexity of annotation and temporal reason-
ing. The Temporal Histories of Your Medical Events (THYME) cor-
pus16,17 was then created and annotated with the incorporation of the
narrative container concept and was adopted by SemEval 2015 Task
6: Clinical TempEval shared task as the official corpus.18

In this paper, we present our multilayered temporal modeling ap-
proach and methods for its automatic tagging. “Multilayered,” in this
context, refers to the varied layers of granularity of temporal relations.
We tested our approach against 2 publicly available corpora: the
2012 i2b2 challenge and the SemEval 2015 Task 6 shared task. Our
work is a significant contribution over past reported results14,19 in that
it presents a multilayered model of temporality (from rough to fine-
grained temporal relations), thus capturing the nature of temporal
granularity.

MATERIALS AND METHODS
Multilayered temporal model
Conventional temporal relation discovery includes the identification of
events, time expressions, and temporal relations. In the clinical do-
main, events usually describe diseases/disorders, signs/symptoms,
procedures, medications, and laboratory values, as well as general
events such as a discussion of potential medication side effects, plan-
ning of a procedure, etc. Some examples of time expressions are to-
morrow, postoperative, and Nov-11-2011. Typical temporal relations
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are those defined by the Allen set20—BEFORE, MEETS, OVERLAPS, STARTS,
DURING, FINISHES, IS_EQUAL_TO—and typical approaches attempt to assign
temporal relations between all pairs of events and time expressions.

The verbose discovery of temporal relations over every possible pair
is redundant, tedious, and inefficient because many temporal relations
could be easily inferred. Take for example the following scenarios:

• (Scenario 1) if concept A is before concept B and B is before
concept C, then A is before C;

• (Scenario 2) if a group of concepts, denoted by GA, is before an-
other group of concepts, GB, then every concept temporally con-
tained in GA is before every concept temporally contained in GB.

In order to efficiently identify the minimal linguistically derivable tem-
poral relation set and maintain the maximal inferentially derivable rela-
tions, we devise a multilayered temporal model which is informed by
the Allen set but is also a departure from it.

At the most coarse level, we link each clinical event to the docu-
ment creation time (DCT). We call this relation Document Time
Relation (DocTimeRel), with possible values such as BEFORE, AFTER,
OVERLAP, and BEFORE_OVERLAP. The difference between BEFORE_OVERLAP and
OVERLAP is that the former emphasizes an event that started before DCT
and is continuing through the present, often expressed in English in
the present perfect tense. For example, in “He has had a [fever],” fe-
ver has a DocTimeRel of BEFORE_OVERLAP; while in “He has a [fever],”
fever has a DocTimeRel of OVERLAP. By using DocTimeRel, events can
be grouped into coarse temporal buckets.

At the intermediate level, we model a special type of concept
named Narrative Container (NC).15 Narrative Containers are concepts
that are central to the discourse and temporally contain 1 or more
other concepts as, for example, within the following clinical text:

(Example 1) The patient had a fever during his recovery
of his initial surgery on December 17th to remove the
adenocarcinoma.

In this example, there are 2 NCs: (1) recovery, which contains fever;
and (2) December 17th, which includes the events of surgery and re-
move. The advantage of introducing the NC concept is that NC
matches the structural reality of narratives. Usually, clinicians cluster
their discussions of clinical events around a given time. Therefore, it is
often easy and natural to place events into containers and use a few
relations to link the containers. Many detailed relations could be de-
rived through posthoc inference, which simplifies both annotation and
downstream learning tasks.15,21 Note that concepts serving as NCs
are not explicitly annotated as containers per se—it is the event or
time expression that temporally contains other events or times that
functions as the conceptual NC. A NC is thus a central hub of multiple
CONTAINS relations.

At the most granular level of our multilayered temporal model, we
represent a subset of the classic Allen relations—BEFORE, OVERLAP,
BEGINS-ON, and ENDS-ON.

Corpora
In our current work, we used 2 publicly available data sets of clinical
notes: (1) the THYME corpus (sets 1–200), which was used in
SemEval 2015 Task 6: Clinical TempEval,16–18,22,23 and (2) the 2012
i2b2 challenge14 data set.

This subset of the THYME corpus contains 200 colon cancer pa-
tients with 3 notes per patient—1 oncology, 1 pathology, and 1 treat-
ment note per patient. Of all 600 (200� 3) notes, only 440 were

annotated. These 440 notes were used by the Clinical TempEval and
our work, with 293 for training and 147 for testing. The gold standard
annotations contain DocTimeRel for events and temporal relations of
type BEFORE, OVERLAP, BEGINS-ON, ENDS-ON, and CONTAINS (representing the
narrative container). In addition to clinical events and unlike the i2b2
corpus, the THYME corpus annotates general events as well (eg, dis-
cuss in We discussed alternative treatments).

The 2012 i2b2 challenge corpus14 consists of 310 discharge
summaries—190 summaries for training and 120 for testing. Within
each document, 2 types of temporal relations are annotated: (1) event-
section time, which link every event from the patient history section to the
admission date and every event from the hospital course section to the
discharge date; and (2) the other relation links events/times either from
the same sentence or from different sentences using BEFORE, AFTER, and
OVERLAP relations. One peculiarity of the i2b2 corpus is that many cross-
sentence OVERLAP relations are between events that are coreferential.24

Methods for coarse-level temporality (DocTimeRel)
In the general domain, the state-of-the-art results for DocTimeRel dis-
covery are around 0.8 F1.9,10,25 In our current study, we investigate a
DocTimeRel model for the clinical domain. The DocTimeRel labels in
the THYME corpus are BEFORE, AFTER, OVERLAP, and BEFORE_OVERLAP. The
DocTimeRel labels in the i2b2 data set are BEFORE, AFTER, OVERLAP.

We developed a supervised approach—multiclass support vector
machine (SVM)26—for DocTimeRel automatic tagging. The instance
for classification was every event, represented by a group of features
(described in a later section). Support vector machine models were
trained on the data with gold DocTimeRel labels. Model performance
was evaluated on the testing data.

Each THYME document was stamped with its creation time that
we used as the DCT. Each i2b2 document had 2 section times that
could be viewed as variants of the DCT: one was the admission date
and the other was the discharge date. The same DocTimeRel model—
similar features (for the i2b2 data, the Section ID feature was
replaced by event position feature, see online supplement) and the
same algorithm—was used to train 2 separate classifiers for recogniz-
ing temporal relations between events and the admission time and re-
lations between events and the discharge time.

Methods for both medium-grained level and fine-grained level
temporality
Due to the different properties of event-time and event-event rela-
tions,27 we trained 2 multiclass SVM classifiers for recognizing tempo-
ral relations within the same sentence: (1) a classifier for relations
between 2 events and (2) a classifier for relations between a time ex-
pression and a clinical event.

We generated all gold event-event and event-time pairs within the
same sentence as candidates for event-event and event-time classi-
fiers, respectively. As a result, a large number of negative training in-
stances was generated that would cause class imbalance issues for
classification. Some previous systems28 applied heuristics to focus on
the classification on “likely” candidates. We instead applied cost-sen-
sitive learning. In order to counterbalance the effect of the dominating
classes, the weight for each class wi was adjusted inversely propor-
tionally to class frequencies. As a result, the penalty factor C in SVM
training26 was adjusted to C�wi for each class i.29 For example, if
OVERLAP, BEFORE, NULL categories had instances of 100, 10, 1000, re-
spectively, the weights for these 3 classes would be 1, 10, 0.1. Thus,
the majority class of NULL would not have a dominating effect and the
minority classes would have balanced predictions. Even though there
were not many training instances of minority classes, like “BEGINS-
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ON” or “ENDS-ON,” the model could still predict testing instances as
minority classes.

A large number of implicit pairs were intentionally left unlabeled in
the gold standard because their relations could be inferred. However,
during training, the classifier cannot distinguish between implicit rela-
tions and nonrelations and this may harm learning. Therefore, we ex-
panded the gold relations by calculating the closure sets of all possible
relations in a clinical document. For instance, in the sentence—

(Example 2) In 2004 the patient was diagnosed with ascending
colon cancer.

—2004, diagnosed, and cancer are the gold time expression and
events. The gold standard will only mark CONTAINS (2004, diagnosed)
and CONTAINS (diagnosed, cancer), while 2004 and cancer are left un-
linked. Through closure, we get CONTAINS (2004, cancer), which is
added to the training set. For event-event relations, closure usually
generates 55% more instances. For event-time relations, closure usu-
ally generates 82% more instances.

The i2b2 corpus and the THYME corpus take different approaches
to finding the span of text for an event. The i2b2 corpus annotates the
full noun phrase describing an event, while the THYME corpus anno-
tates only the headword. So in Example 2, i2b2 annotators would an-
notate ascending colon cancer as the event, while THYME annotators
would annotate only cancer as the event.

From a computational perspective, both approaches have their mer-
its. Including full phrases means the model can learn patterns for very
specific events, while including only headwords means the model can
better generalize across similar events. To gain the advantages of both
approaches, we propose a technique to expand gold events to enrich
the training set with more temporal relations. We look for all possible
Unified Medical Language System (UMLS30) entities whose spans over-
lap gold standard events. For example, in Example 2—“In 2004 the pa-
tient was diagnosed with ascending colon cancer”—there are 2
annotated events, “diagnosed” and “cancer.” Clinical Text Analysis and
Knowledge Extraction System (cTAKES), through UMLS dictionary
lookup, identifies 3 UMLS entities: “ascending colon cancer,” “colon
cancer,” and “cancer.” Their spans all overlap with the gold event “can-
cer.” In the THYME data, we find UMLS entities covering gold headword
events, while in the i2b2 data, we find UMLS entities covered by gold
phrasal events. Gold events that do not have associated UMLS entities,
such as “diagnosed” in example 2, are general domain events.
Otherwise, gold events with associated UMLS entities, such as “cancer”
in example 2, are clinical events.31 For each UMLS entity overlapping a
clinical event, and for any temporal relation that the event participates
in, we generate a new temporal relation that is identical to the original
relation but with the event replaced by the UMLS entity. For Example 2,
we get the following additional relations after event expansion:

CONTAINS (2004, cancer)
CONTAINS (2004, colon cancer)
CONTAINS (2004, ascending colon cancer)
CONTAINS (diagnosed, cancer)
CONTAINS (diagnosed, colon cancer)
CONTAINS (diagnosed, ascending colon cancer)

We only generated additional relations through the event-expansion
technique on the training data, not on the test data. This event-expan-
sion technique has been validated in the development sets, and we
will describe its effect and usability in greater detail in a separate
paper.

Classifier features and learning algorithm
Once the training pairs are generated, we represent each pair using a
pool of features with reference to the top performing i2b2 temporal
systems and general domain relation extraction literature.21,24,27,28,32

For different tasks (DocTimeRel, event-time, and event-event), we
start with all top performing feature groups as reported in the literature
and use ablation test to discard unnecessary groups. Based on abla-
tion experiments, we describe the most discriminative features for
each type of relation in Table 1. The description of the complete fea-
ture set used by each relation model is listed in our supplementary
material; those additional features are motivated by the litera-
ture21,24,27,28,32 and are easy to extract as all the necessary prepro-
cessing is conducted within cTAKES by the preceding modules. In
order to maintain a clean open-source system, we removed perplexing
features we have tried, such as constituency tree features and depen-
dency tree features.

All features are extracted using Apache cTAKES (The Apache
Software Foundation, Forest Hill, Maryland).33,34

We use the L2-regularized L2-loss dual SVM as implemented by
LIBLINEAR26 as the main learning algorithm. We use L2-based regu-
larization because we want all features to play a role in decision mak-
ing. L1 regularization and explicit feature selection mute features and
would decrease the performance in our experiments. The whole pro-
cessing flow (including DocTimeRel, event-time, and event-event
models) is illustrated in Figure 1.

I2b2-specific learners
The 2012 i2b2 challenge data set annotates a relatively large amount
of cross-sentence temporal relations. Therefore, we devised 3 addi-
tional cross-sentence learners. The first one is a cross-sentence
event-event learner that pairs up main events in consecutive sen-
tences. Main events are defined as the first and last event within a
sentence.28 The learner uses the same feature set as the within-sen-
tence event-event model and SVM as the algorithm. The second
learner is a cross-sentence event-time classifier that pairs up every
event and time expression in consecutive sentences. It uses the same
feature set as the within-sentence event-time model and SVM as the
algorithm. The third learner implements rules for directly linking core-
ferenced events as OVERLAP. Coreferenced pairs include the following:
(1) 2 time expressions sharing the exact same tokens, eg, 2 mentions
of “this morning” in adjacent sentence are considered coreferent; (2)
event pairs that share the same headwords; and (3) we also created
rules to link mentions of “admission” and “admission date,” mentions
of “admission” and “admitted,” and mentions of “discharge” and
“discharge date.”

Evaluation
The F1 score was used as the primary evaluation metric (the standard
in the domain). Precision is calculated as the percentage of system
links that can be verified in the transitive closure of the gold standard
links (ie, closure is only computed on the gold standard links). Recall
is calculated as the percentage of gold standard links that can be
found in the transitive closure of the system links (ie, closure is only
computed on the system links).35 The final F1 score was calculated on
the transitive-closure-processed precision and recall as both i2b2
challenge 2012 and Clinical TempEval took such closure-enhanced
setup.14 This modified F1 calculation is useful for evaluating temporal
relations as they are difficult to exhaustively annotate, and this metric
reduces the penalty for system annotation of annotator-missed rela-
tions. We used the official i2b2 2012 and Clinical TempEval evaluation
scripts for evaluating our system so that our results would be directly
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Table 1: Core features per type of relation

Feature Description DocTimeRel Event-Event
Relations

Event-Time
Relations

Tokens The first and the last word of each concept, all words covered by a concept
as a bag, bag-of-words around each concept for a window of [�3, 3], bag-
of-words between 2 concepts, and the number of words between 2 concepts
(for the THYME corpus, the headword event is expanded to the immediately
enclosing NP and the NP becomes the anchor for the token features)

3 3 3

Part-of-speech tags The Penn Treebank POS tags of each concept as a bag 3

Event attributes All event-related attributes such as polarity, modality, and type. Note that
DocTimeRel is also an event attribute, and is used for reasoning on the
within-sentence relations.

3 3 3

UMLS feature UMLS semantic types of each concept as features 3 3

Dependency path The dependency path between 2 concepts and the number of dependency
nodes in-between

3

Overlapped head If 2 concepts share the same headword 3

Temporal attributes The class type of a time expression, eg, “Date,” “Time,” “Duration,” etc. 3

Special words Any special words from the time lexicon developed by the NRCC24 that the
concepts or the context in-between contain

3

Nearest flag If the event-time pair in question is the closest among all pairs in the same
sentence

3

Conjunction feature If there is any conjunction word between the arguments 3

Nearby verb’s
part-of-speech tag

The Penn Treebank POS tags of the verbs within the same sentence 3

Section ID The header of the section containing the target concept 3

Closest verb The tokens and Penn Treebank POS tags of the closest verb to the target con-
cept within the same sentence

3

TimeX feature The tokens and attributes of the closest time expression in the same
sentence

3

Abbreviations: DocTimeRel, document time relation; NP, Noun Phrase; THYME, temporal histories of your medical events; POS, part-of-speech;
UMLS, unified medical language system; NRCC, National Research Council Canada; ID, Identifier.

Figure 1: The cTAKES-Temporal System architecture (predictions of the “coarse” level model, DocTimeRel, are used as features for the
fine-grained models).
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comparable to the outcomes of the i2b2 2012 challenge and Clinical
TempEval. Please note that the Clinical TempEval evaluation script
takes cross-sentence relations into consideration, while our system
annotates only within-sentence relations on THYME data. Clinical
TempEval included only DocTimeRel and CONTAINS.

RESULTS
Table 2 presents the performance of our temporal system on both the
2012 i2b2 challenge test set and Clinical TempEval test set. Please
note that we did not participate in either of the shared tasks and thus
enjoyed several advantages that the task participants did not have—
we had access to the data and were not under significant time pressure
to develop our system. For the i2b2 challenge (top 3 rows), our system
was compared to the top 2 performing systems in that challenge,
Vanderbilt University and the National Research Council Canada.24,28

Our overall system had the best recall, a better balance between recall
and precision, and was on par with the best systems of the i2b2 chal-
lenge. For Clinical TempEval (bottom 3 rows), our system was com-
pared to the best participating system (“BluLab”) and the baseline
system that links a time expression to the closest event.18,23 Our sys-
tem had the best F1 score. Using a similar document-by-document
comparison,24 F1 scores of our system were significantly higher than
both the baseline and “BluLab” (Wilcoxon signed rank test36; P< .05 ).

We also wrote our own evaluation script that calculates the same
closure-enhanced recall, precision, and F1 score but removes cross-
sentence relations from the gold standard and splits apart the evalua-
tion of event-event and event-time relations so that we may have a
better sense of our system performance given only within-sentence
relations. Table 3 shows our DocTimeRel, event-event, and event-time
results on THYME test sets using our evaluation script.

We further split the training set of the THYME data (75/25), thereby
creating a development set. We trained on the training split and tested
on the development set for ablation tests. Each time a feature group
was removed from the whole feature sets to test its contribution.
Table 4 is the ablation study results on the development set (for a de-
tailed feature description, see supplementary material). We did a

feature-ablation study for only the CONTAINS even-event cases as the
low system performance on other types could distort the results.

DISCUSSION
The temporal relation discovery system we present in this paper is
part of the open-source Apache cTAKES33,34-temporal module, version
3.2.1 (the newest models are in the release of 3.2.2). The Apache
cTAKES-temporal module is an end-to-end temporal solution that in-
cludes event and time expression detection, both with around 0.85
accuracy. We believe that our released system is the first open-
source, end-to-end temporal system in the clinical domain with a
state-of-the-art performance.

We designed a multilayered temporal relation discovery scheme
from the most coarse level (DocTimeRel) to the intermediate level (nar-
rative containers as marked by CONTAINS relations) to the most granular
relations. Table 3 shows that our models have good performance on
both coarse and intermediate level relations (DocTimeRel F1¼ 0.834;
event-time CONTAINS F1¼ 0.748; event-event CONTAINS F1¼ 0.501),
outperforming the state-of-the-art and establishing a new benchmark.
These 2 coarse and intermediate models provide rough event tempo-
rality, thus achieving a “macro” success in temporal relation discov-
ery. Even with the most granular microlevel relations, our system is
still on par with the best i2b2 2012 challenge participants (Table 2).
We believe the relative low relation discovery rate for micro relations is
due to insufficient training instances (notice in Table 3 some catego-
ries such as BEGINS-ON and ENDS-ON have only tens of instances). With
more training examples becoming available in the future, we expect to
see improved performance on these relations.

One may wonder if we can develop the models on a combined
i2b2 and THYME corpora to improve the discovery rate for micro rela-
tions. We would like to point out that this is not possible because of
the following: (1) i2b2 and the THYME corpus have different labels.
The i2b2 labels are “BEFORE,” “AFTER,” and “OVERLAP,” while in
THYME we have additional “BEGINS-ON,” “ENDS-ON,” and especially
“CONTAINS” relations but no “AFTER” relations. Joint training would
be hard due to the conflicts between the 2 labeling systems. (2) For

Table 2: Comparison of system results for the temporal relation track of the 2012 i2b2 challenge and Clinical TempEval

F1 Score Precision Recall Method Summary Challenges

Overall evaluation for
all components

cTAKES-Temporal System 0.695 0.697 0.693 SVMþ rules for coreferent pairs 2012 i2b2

Vanderbilt University 0.693 0.714 0.673 Heuristic candidate generationþ
CRFþ SVM

National Research
Council Canada

0.692 0.750 0.643 MaxEntþ SVMþ rule based

DocTimeRel
F1 score

Overall scores for both
event-time and event-event

THYME System 0.807 0.321 0.526 0.231 SVM 2015 Clinical TempEval
(CONTAINS only)

Best participating System 0.791 0.181 0.140 0.254 Will be described in an upcoming
publication by the BluTeam

Baseline NA 0.260 0.554 0.170 TIMEX to closest Event

Abbreviations: cTAKES, clinical text analysis and knowledge extraction system; SVM, support vector machine; CRF, Conditional Random Fields;
MaxEnt, Maximum Entropy classifier; DocTimeRel, document time relation; THYME, temporal histories of your medical events; NA, not available.
The best scores are marked bold.
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the i2b2 data, an event is marked by a phrase; while for the THYME
data, an event is marked by its headword. The different annotation
strategies would affect how we extract contextual features as well as
how we would apply event-expansion techniques.

Despite the heterogeneity of the 2 corpora, we did try to develop a
generic approach that could work with both corpora without much
customization. We applied the same classifiers for within sentence
event-time and event-event classifications, similar classifiers for
DocTimeRel and event-section time. The only difference was that for
the i2b2 data, there were 2 additional classifiers for cross-sentence
relations. The feature sets used for the 2 systems were almost the
same with the exception of some changes to accommodate the differ-
ences between the 2 corpora.

In the meantime, we noted that coarse temporality could be suffi-
cient to do meaningful inference, which could be then applied to bio-
medical use cases. In a methotrexate-induced liver toxicity study, we
successfully identified rheumatoid arthritis patients who took metho-
trexate within the 3 months before their liver function abnormality37

with the help of DocTimeRel information. Through an extrinsic evalua-
tion of clinical question-answering problems, it was also interesting to
note that a large amount of time-sensitive clinical questions could be
answered by coarse temporal relations like DocTimeRel (a separate
in-progress publication). Conceptually, if we could put clinical con-
cepts into coarse temporal bins correctly, the system-discovered tem-
porality would not be too far from the reality even if the finer-grained
local relations were incorrect. These inconsistencies could potentially
be managed by an intelligent global inference scheme, taking into ac-
count classifier accuracy and confidence at different granularities to
obtain the highest probability patient timeline.

The event-event relation discovery was more difficult than event-
time relation discovery (0.371 vs 0.678 in F score, Table 3). Of an

81.6% chance, there was 1 time expression within a sentence. It was
thus easier to reason many-to-one links between event-time than to
reason the many-to-many links between event-event. We also experi-
mented with limiting our event-event temporal relation discovery to
medical events only, removing all general events from consideration.
The result with that setup on the THYME corpus was a 0.531 F score,
which was more comparable with the event-time result.

Table 4 shows the contribution of the most important features
(Table 1, the core features) for each relation that can work well for
both data sets. For each learner, the most discriminative features are
usually 6 or 7 core features (Table 1). They are basic features describ-
ing the context of the target concepts (eg, token features), the attrib-
utes of the concepts, and syntactico-semantic relationships (such as
dependencies) between a pair of concepts.

Table 4 shows that the most contributing feature for all 3 types of
relation classifiers is the token feature. This is very different from the
general domain, where more generalizable linguistic features such as
the part-of-speech tags are more commonly beneficial.9–11 This phe-
nomenon could be explained by the nature of clinical narratives which
do not conform to the formal grammar and standard structures of the
general-domain texts.38 Such characteristics require clinical natural
language processing systems focused on that type of text.6,12

Therefore, token features are more useful in this sense, with the cost
of less generalizability. In the future, we plan to explore methods for
making the clinical-domain lexical features more generalizable.
Using word embeddings39 trained on the clinical domain is one possi-
ble approach.

We also ran a feature ablation test on the event-time model of the
i2b2 data. Results are shown in Supplementary Table 2. We observed
a similar feature contribution pattern, except for the temporal attribute
features. One possible reason is there is a new TIMEX3 type

Table 3: Within-sentence event-time and event-event models results on SemEval 2015 THYME test set

Precision Recall F1 Score No. of Gold Instances Relation Type Model

0.834 0.834 0.834 19234 OVERALL DocTimeRel (all features)

0.816 0.773 0.794 1986 AFTER

0.850 0.830 0.840 7231 BEFORE

0.740 0.469 0.574 1007 BEFORE/OVERLAP

0.832 0.891 0.861 9010 OVERLAP

0.677 0.679 0.678 2213 OVERALL Event-Time (all features)

0.39 0.299 0.338 67 BEFORE

0.563 0.138 0.222 65 BEGINS-ON

0.715 0.784 0.748 1803 CONTAINS

0.625 0.278 0.385 54 ENDS-ON

0.400 0.205 0.271 224 OVERLAP

0.470 0.306 0.371 4632 OVERALL Event-Event (all features)

0.375 0.241 0.293 758 BEFORE

0.333 0.074 0.121 202 BEGINS-ON

0.493 0.510 0.501 2378 CONTAINS

0.300 0.092 0.141 65 ENDS-ON

1 0.002 0.004 1229 OVERLAP

Abbreviation: DocTimeRel, document time relation.
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“PREPOSEXP" in the THYME data that covers terms like “preopera-
tive," “postoperative," and “intraoperative.”31 This special type was
not annotated in the i2b2 data and could be very informative in rea-
soning about event-time relationships.

Our error analysis shows that the major errors that are general to
event-event, event-time, and DocTimeRel relations are the following:
(1) Annotation errors or inconsistent annotations. Annotation errors
would be when the same event or relation was labeled multiple times
with different labels. Inconsistent annotations would be when the
same or similar relation was labeled differently on different occasions.
They would both end up with very similar feature vectors with different
labels, which would confuse the models. (2) Conflicting, misleading,
or missed cues. There could be competing/misleading evidence. For
example, the preposition “in” usually suggests “OVERLAP,” while a
nearby verb “will” is suggesting “AFTER.” In “History of severe
COPD," “History” suggests “BEFORE,” while COPD is chronic and sug-
gests “OVERLAP.” Important cues could also be out of scope or undis-
covered. In “history of multiple cardiac [stents],” “history” would be a
cue for “BEFORE;” however, it is out of the 3-window context of the
event “stents.”

An error that is specific to the DocTimeRel model is that events ap-
pearing in the section headings oftentimes “OVERLAP” with the DCT.
We do not have a feature to capture this header information, which
leads to errors.

Errors that are specific to the event-time and event-event models
are long-distance relations. The THYME annotation, especially the
event-time relation annotation, focuses on short-distance relations.
(On the development set, 81.4% of the gold event-time relations and
64.4% event-event relations have at most 6 words between their 2 ar-
guments.) Without closure, the models would therefore be focused on
short-distance relations (87.9% of system event-time predictions and
65.5% of event-event predictions on the development set are within 6
words between 2 arguments). For long-distance relations, the chance
of picking up misleading or conflicting temporal evidence increases,
which imposes challenges for building reliable models. Our hope
for solving long-distance relations is through closure if both the
short-distance event-time and event-event relations are correctly
recognized. However, the performance on event-event relations,
especially non-CONTAINS relations, is low. Some long-distance
relations may not be established because of event-event errors. In the

Table 4: Ablation test for major features on SemEval 2015 THYME development seta

Precision Recall F Score DF Score Model

All 0.633 0.657 0.645 Event-Time

Remove Tokens 0.608 0.577 0.592 �0.053

Remove Dependency Path 0.615 0.627 0.621 �0.024

Remove Temporal Attributes 0.622 0.643 0.632 �0.012

Remove Event Attributes 0.658 0.612 0.634 �0.011

Remove Nearest Flag 0.621 0.654 0.637 �0.008

Remove Conjunction feature 0.632 0.649 0.640 �0.004

Remove Special Words 0.626 0.658 0.642 �0.003

All 0.830 0.830 0.830 DocTimeRel

Remove Tokens 0.771 0.771 0.771 �0.059

Remove Section ID 0.802 0.802 0.802 �0.028

Remove TimeX feature 0.825 0.825 0.825 �0.005

Remove Event Attributes 0.825 0.825 0.825 �0.005

Remove Closest Verb 0.826 0.826 0.826 �0.004

Remove Nearby Verbs’ POS tags 0.828 0.828 0.828 �0.002

Remove UMLS features 0.828 0.828 0.828 �0.002

All 0.658 0.576 0.614 Event-Event CONTAINS

Remove Tokens 0.501 0.469 0.484 �0.130

Remove Event Attributes 0.647 0.562 0.602 �0.013

Remove UMLS features 0.65 0.572 0.609 �0.006

Remove Part-of-speech tags 0.668 0.561 0.610 �0.004

Remove Dependency Path 0.649 0.58 0.613 �0.002

Remove Overlapped head 0.662 0.572 0.614 �0.001

Abbreviations: DocTimeRel, document time relation; ID, Identifier; UMLS, unified medical language system.
aEach result indicates the removal of a feature from the All Feature set. Features are sorted by the F score, with the most important feature at
the top.
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future, we will work on improving the accuracy of non-CONTAINS
event-event relations, such as by incorporating more training in-
stances in related categories.

A logical question is how these state-of-the-art results can be im-
proved. In the future, we are planning to explore joint inference for all
types of relations and compare it to our state-of-the-art pipeline solu-
tion. Even though we did make use of DocTimeRel info to help reason-
ing about event-time and event-event relations, and used event-time
relations to help reasoning about event-event relations, we still classi-
fied each candidate pair separately. While computationally efficient,
this approach can be globally optimized by taking all relational
constraints (including coreference) into consideration.40–42 We have
tested tree features and kernels43–47 in the past21,43 and will further
investigate them. Our basic intention for exploring tree features is to
identify useful patterns in syntactic structures that may be strong
signals for temporality, especially for long-distance argument pairs.
Long-distance candidates could have more misleading temporal sur-
face evidence. Syntactic tree structures offer the potential to “filter”
surface noise and help identify new patterns for inference.

CONCLUSION
In this study, we describe an open-source clinical temporal relation
discovery system. Empowered by a multilayered modeling strategy,
our system can take advantage of automatic inference, greatly reduce
the complexity of temporal reasoning, and improve accuracy, espe-
cially at the macro level. Enhanced by class-wise weighting and
event-expansion techniques, our system was on par with the best
2012 i2b2 challenge systems and achieved state-of-the-art perfor-
mance on the 2015 Clinical TempEval corpus. Furthermore, some of
its best performing components have proven useful in real biomedical
informatics applications.
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