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ABSTRACT
....................................................................................................................................................

Objective Hospital-acquired acute kidney injury (HA-AKI) is a potentially preventable cause of morbidity and mortality. Identifying high-risk patients
prior to the onset of kidney injury is a key step towards AKI prevention.
Materials and Methods A national retrospective cohort of 1,620,898 patient hospitalizations from 116 Veterans Affairs hospitals was assembled
from electronic health record (EHR) data collected from 2003 to 2012. HA-AKI was defined at stage 1þ, stage 2þ, and dialysis. EHR-based predic-
tors were identified through logistic regression, least absolute shrinkage and selection operator (lasso) regression, and random forests, and pair-
wise comparisons between each were made. Calibration and discrimination metrics were calculated using 50 bootstrap iterations. In the final
models, we report odds ratios, 95% confidence intervals, and importance rankings for predictor variables to evaluate their significance.
Results The area under the receiver operating characteristic curve (AUC) for the different model outcomes ranged from 0.746 to 0.758 in stage
1þ, 0.714 to 0.720 in stage 2þ, and 0.823 to 0.825 in dialysis. Logistic regression had the best AUC in stage 1þ and dialysis. Random forests
had the best AUC in stage 2þ but the least favorable calibration plots. Multiple risk factors were significant in our models, including some nonste-
roidal anti-inflammatory drugs, blood pressure medications, antibiotics, and intravenous fluids given during the first 48 h of admission.
Conclusions This study demonstrated that, although all the models tested had good discrimination, performance characteristics varied between
methods, and the random forests models did not calibrate as well as the lasso or logistic regression models. In addition, novel modifiable risk fac-
tors were explored and found to be significant.

....................................................................................................................................................
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BACKGROUND AND SIGNIFICANCE
Acute kidney injury (AKI) occurs in 1–5% of hospitalized patients and
5–20% of intensive care unit patients.1–3 AKI episodes are typically di-
vided into community-acquired and hospital-acquired categories4,5

Both of these categories have similar incidences but differ in etiology
and prognosis. Inpatient mortality rates for AKI range from 15%, in
general ward patients, to >50%, in intensive care unit patients who
require dialysis.3,4,6,7 Hospital-acquired AKI (HA-AKI) is associated
with significant morbidities, including myocardial infarction, chronic
kidney disease, and end-stage renal disease.8

Many risk factors for HA-AKI can be modified and prevented or re-
duced, if identified in a timely fashion. Examples of strategies that
could prevent or reduce HA-AKI risk factors include more timely resus-
citation, avoidance of nephrotoxic medications, intravenous (IV) con-
trast, or better assessment of the risks/benefits of potentially high-risk
therapies or procedures.1,9–21 The time right before hospitalization
provides a window of opportunity to conduct surveillance and prompt
intervention.

Statistical models can improve the patient’s quality of care by pre-
dicting adverse outcomes.22–25 Initially, risk prediction models for AKI
focused on adverse outcomes following AKI.17 Subsequent models
that use AKI as the outcome have been developed for select popula-
tions and outcomes, such as rhabdomyolysis, surgery, percutaneous
coronary intervention, burns, and lower respiratory track disease.26–33

Most risk models rely on logistic regression using known clinical

predictions; only one of these models uses a machine learning algo-
rithm (eg, random forests).30 Random forests have the ability to bring
interactions and relationships among large numbers of variables into
the model using an ensemble method. Previous published works
showed random forests to be superior to logistic regression.34–36 One
single-center study described a logistic regression model run on all in-
patient hospitalizations to predict AKI using the Risk, Injury, Failure,
Loss, and End-stage Kidney1 classification criteria.37 There are no
known models that have been developed to predict HA-AKI within a
large national cohort, and there is a lack of evidence contrasting the
performance of multiple risk modeling methods, such as regression,
and machine learning algorithms, such as random forests, in this clini-
cal domain.

We sought to compare traditional and novel risk modeling methods
(logistic regression, lasso regression, and random forests) within a large
national Veterans Affairs (VA) electronic health record (EHR)-derived
cohort, in order to develop a predictive model for HA-AKI using modifi-
able risk factors, which could alert clinicians about patients who are
more likely to develop AKI and could provide guidance on which clinical
therapies and interventions to pursue or avoid for such patients.

MATERIALS AND METHODS
Study Setting and Design
A national retrospective cohort of 6,390,410 patient hospitalizations
was collected, including all adult admissions in 116 VA hospitals from
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January 1, 2003 to December 31, 2012. The VA utilizes an EHR,
Computerized Patient Record System (CPRS) (which has been in place
since the 1990s38,39), that was able to provide reliable national data
for the domains required for this study from 2002 onward.40 This
study was approved by the Institutional Review Board and the
Research and Development committee of the Tennessee Valley
Healthcare System VA.

Data Collection
During the study period, all data were collected from the national
Corporate Data Warehouse, which aggregates national data from each
VA facility’s Veterans Health Information Systems and Technology
Architecture and CPRS instances.38,39,41 Detailed references for data
domains and data field availability can be obtained from http://vaww.-
vinci.med.va.gov/vincicentral/default.aspx. All VA laboratory data were
obtained for each patient and linked to their hospitalization record.
Diagnoses were obtained from the International Classification of
Diseases version 9 (ICD-9) Procedure and Current Procedural

Terminology codes. Medication information was obtained from pre-ad-
mission medication lists and medication administration structured
data. Radiologic studies, such as computerized tomography (CT)
scans, were recorded from orders placed in CPRS. We collected data
was from 365 days prior to the admission date-time stamp (�365
days) up to 9 days after the admission date-time stamp (þ9 days).
The admission date-time stamp is defined at time equals 0 (Figure 1).
Mortality data were collected using the VA Vital Status files, which in-
clude data from the National VA benefits program, individual VA facili-
ties, direct family reports, and National Death Index sources.

Cohort Exclusion Criteria
We excluded patient hospitalizations that had a length of stay <48 h,
because outcomes were ascertained after this window, and that had a
length of stay over 30 days, because these patients were systemati-
cally different from the standard length of stay population, and the in-
tent was for these models to be used to help tailor care during the
admission window. We also excluded patient admissions that did not

Figure 1: Breakdown of time periods and time windows. The pre-index time periods include the pre-admission window,
which starts at 365 days prior to the admission date-time stamp up until 24 h prior to the admission date-time stamp, and
the admission window, which starts 24 h prior to the admission date-time stamp up until 48 h after the admission date-
time stamp. The post-index time period is defined from being from 48 h after the admission date-time stamp until 9 days
after the admission date-time stamp. Predictive and outcome variables were divided among one of five time periods, desig-
nated A to E.
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have a pre-admission baseline creatinine value, that did not have a
creatinine value determined in the first 48 h after the admission date-
time stamp, and that did not have at least one creatinine value deter-
mined after the first 48 h of hospitalization. We also excluded patients
who had undergone dialysis, had had a renal transplant prior to ad-
mission, or who experienced community-acquired AKI during the ad-
mission window. We excluded hospice patients, defined as patients
who were receiving hospice services from �30 days to within þ48 h
of admission. Finally, we excluded VA centers with low admission vol-
umes, ie, less than 100 hospital admissions per year. A summary of
patient hospitalization exclusions are shown in Figure 2. The final
analysis cohort consisted of 1,620,898 patient admissions among
611,230 patients.

Study Definition of Hospital-Acquired Acute Kidney Injury
All outcomes were determined using creatinine laboratory value data
and dialysis procedure codes collected during the post-index time pe-
riod, defined as a 7-day period in the post-admission time window
(þ48 h to þ9 days) using the different stages of the Kidney Diseases
Improving Global Outcomes (KDIGO) classification criteria described in
Supplementary Appendix 1. AKI stage 1þ was defined as being in
stages 1, 2, or 3 of the KDIGO classification, AKI stage 2þ was de-
fined as being in stage 2 or 3 of the KDIGO classification, and dialysis
was defined as acute dialysis, without a prior occurrence of dialysis,
during the pre-admission window (–365 d to –24 h) or admission win-
dow (–24 h to þ48 h of admission).

We defined our baseline creatinine value as the mean outpatient
creatinine value from –365 days up to –7 days.42 Community-ac-
quired AKI was calculated using the baseline creatinine value and the
maximum creatinine value from between –24 h up until þ48 h. HA-
AKI was calculated for all patients without community-acquired AKI,
using the baseline creatinine value and the maximum creatinine value
from þ48 h up until þ9 days. Mortality was determined by all-cause
mortality in the 7 days following the admission window (þ48 h to þ9
days).

Candidate Risk Factors
All risk factor, inclusion, and exclusion criteria were collected in the
pre-index time period, which is any time prior to þ48 h of admission
(Figure 1). The pre-index time period includes an admission window
from –24 h up until þ48 h. The window of time prior to the admission
date-time stamp (the admission window) was used to include emer-
gency department and outpatient care resulting in direct hospital ad-
mission for the inpatient care stay as part of the admission window.
Variables recorded in the admission window indicate the most recent
state of the patient prior to our outcomes. AKI risk factors were based
on KDIGO guidelines and previous literature. If one of the variables
was not recorded prior to admission, we imputed the variable with
simple imputation of the median value for that variable.

Medications, vital signs (including blood pressure), temperature,
and body mass index (BMI) were recorded in both the pre-admission
and admission windows. All other predictor variables were recorded
once in either the pre-admission or admission window. Pre-admission
chronic diagnoses were included in the risk prediction models and
were defined using administrative condition and procedure codes (see
Supplementary Appendix 2) documented from –365 days to –24 h. To
account for severity of illness, we included variables used in the
Charlson comorbidity index, including disease diagnoses from diagno-
sis codes as well as stratification by age.43 Mean BMI was calculated
from height and weight measurements in the time period from –365
days up until –24 h, for the pre-admission BMI, and during the

admission window, for the admission BMI. We looked at an entire year
prior to our outcome variables for diagnoses and mean BMI in order to
make sure we captured as many patients as possible, assuming pa-
tients will see their physician at least once a year. In most cases, BMI
does not change rapidly, so we allowed for the inclusion of weight
data over a year’s time. The most recent pre-index laboratory test val-
ues were extracted within a time window of �120 h (�5 days) until
þ48 h after admission. We used the most recent pre-index laboratory
test to capture the most recent snapshot of the patient prior to our out-
comes. We included the patient’s glomerular filtration rate (GFR), a
measure of a patient’s kidney function, during both the pre-admission
window (pre-admission GFR: –5 days until –24 h) and the admission
window (admission GFR: –24 h until þ48 h) in the models. We also
calculated the change in GFR and the change in hemoglobin over the
admission time window. Pre-admission medication exposures were
defined as the patient having taken the medication at any time from
–90 days to –24 h prior to their hospital admission. All data were ob-
tained from outpatient pharmacy fill records, using fill dates and pill
counts, and allowing fill gaps of 90 days (because, in the VA, chronic
prescriptions will be written for a 90-day supply), which approximates
80% adherence.44 Admission medications were recorded from the
bar-coded medication administration records during the admission
window. CT scan information was obtained during the admission win-
dow. For contrasted studies, we were able to ascertain whether con-
trast was ordered, but we were unable to confirm delivery of contrast
with certainty in all cases. Mean temperatures were calculated from
temperature recordings from –90 days up until –24 h, for the pre-
admission temperature, and during the admission window, for the ad-
mission temperature. Minimum and maximum blood pressures were
determined during the admission window. We calculated a blood pres-
sure variable defined as hypotension if the minimum systolic blood
pressure was <90 and hypertension if the maximum systolic blood
pressure was >180.

Risk Prediction Models
Three modeling methods were used to compare HA-AKI predictive
performance: logistic regression, least absolute shrinkage and selec-
tion operator (lasso) regression, and random forests.45–47 We included
the same candidate risk factors as predictor variables in all three
methods (see Table 1 for a full list of risk factors). For logistic regres-
sion, we used the glm package in R48 to calculate odds ratios (ORs)
and 95% confidence intervals (95% CIs) for the predictor variables.
Lasso regression can be interpreted as a penalized logistic regression
model that enables a sharp penalty on the regression coefficients and

Figure 2: Summary of the patient cohort and exclu-
sion criteria.
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allows for variable selection.46 For this reason, we report ORs for each
predictor variable. To train and test the lasso regression, we used the
glmnet package in R.49 Random forests are ensemble learning meth-
ods that create a “forest” of decision trees at training time and output
the mode of the classification outputs by the individual decision
trees.47 To train the random forests, we used the SAS package
HPFOREST50 with 150 trees. We recorded the importance of the vari-
ables for a random forest, measured by the decrease in impurity at
the nodes that used those variables. We did not adjust for clustering
by hospital as a random effect, because we wanted our modeling
methods to be comparable, and clustering could not be done for ran-
dom forests.

To assess whether the models could accurately predict AKI with a
smaller number of variables, we used lasso regression with a restric-
tive lambda to create a parsimonious model with only six predictive
variables, which were determined by a heavily penalized lasso
regression.

Statistical Analysis
These models were internally validated using bootstrapping, with the
process of training and testing models repeated 50 times. For each it-
eration, the training set was created by sampling with replacement
from the entire dataset.51,52 The size of the training set was the same
size of the entire dataset, but some hospitalizations were represented
multiple times and some were not represented at all. The test set con-
sisted of the remaining hospitalizations that were not chosen in the
bootstrapping with replacement training set. In each bootstrap itera-
tion, model discrimination was evaluated using the area under the re-
ceiver operating characteristic curve (AUC),53 integrated discrimination
improvement (IDI),54 and continuous net reclassification index (NRI).54

The Brier score55 was calculated for calibration assessment. For the
purpose of reporting the effects of the risk factors included in the
model, we computed a final model for each method. The final models
were created using the entire dataset for point estimates of ORs, vari-
able importance, and 95% CIs. CIs and P-values cannot be obtained
directly from lasso regression models, although some work has been
done to approximate these CIs, most often by means of the bootstrap.
Because our final models were built with the complete training set, we
presented only the point estimates for the lasso-penalized coefficients
and not the bootstrap CIs.56 We created observed to expected (O/E) ra-
tio plots to assess calibration for the final models with each outcome
with the val.prob.ci R code.57 Logistic regression is the only model
that allows for P-values and CIs; therefore, we used a Bonferroni cor-
rected significance threshold for 124 predictor variables for each of
our three outcomes, which yielded a P-value of 1.34� 10�4

(P¼ 0.05/372). While this is a conservative adjustment strategy, risk
factors that remain significant at this level are undisputedly associated
with the outcome. To consider severity of illness and AKI’s relationship
with mortality, we performed a sensitivity analysis calculating mortality
rates among ranges of Charlson comorbidity index scores and AKI
stages (see Supplementary Appendix 4).

RESULTS
A summary of patient demographic factors, outpatient and inpatient
medication rates, laboratory test ordering rates, radiology tests, intra-
venous fluids (IVF) administration, and outcomes is presented in
Table 1. Approximately 9% (9.02%) of patients experienced HA-AKI.
Of the hospitalization instances in the analysis, approximately 7.93%
were classified as stage 1þ, 0.97% were classified as stage 2þ, and
0.12% were classified as dialysis. Males represented 96.11% of the

population, with a median age of 65. White patients accounted for the
majority of hospital admissions (76.17%).

Logistic regression and lasso regression final models for stage
1þ, 2þ, and acute dialysis are presented in Table 2. Because lasso
regression is a penalized regression that utilizes variable selection,
certain predictor variables were removed from the model and there-
fore were not represented in the final model. Lasso regression
removed 12 predictor variables from the stage 1þ outcome, 17 pre-
dictor variables from the stage 2þ outcome, and 20 predictor vari-
ables from the dialysis outcome. Logistic regression predictor
variables that were significant with Bonferroni corrected P-values for
all three outcomes included the following admission medications: ben-
zodiazepines and vancomycin, the following labs: elevated sodium,
high blood urea nitrogen (BUN), and total bilirubin, as well as low chlo-
ride, calcium, bicarbonate, and mean admission GFR. These regres-
sion variables also had ORs> 1.00 in the lasso regression, but CIs
could not be calculated with this method. Half-normal saline (1/2 NS)
and lactated ringers (LR) were associated with lower AKI rates for
stage 1þ (OR: 0.92–0.98), but not for stage 2þ (OR: 0.93–1.05) or
dialysis (OR: 0.81–1.08).

The random forest’s variable importance for stage 1þ, stage 2þ,
and dialysis was presented from highest to lowest to indicate the most
important variables in the forest (Table 3). The following variables
had importance values from 1 to 10 for all three outcomes: mean pre-
admission GFR, delta admission GFR, and the BUN.

Discrimination performance of the AKI stage 1þ, AKI stage 2þ,
and dialysis models was evaluated by the AUC (Table 4). The highest
AUCs were logistic regression for stage 1þ, with a median AUC of
0.758 (95% CI: 0.758–0.758); random forest for stage 2þ, with a
median AUC of 0.720 (95% CI: 0.719–0.721); and logistic regression
for dialysis, with a median AUC of 0.825 (95% CI: 0.823–0.827).
Lasso regression and the random forests performed very similarly.
For the other discrimination measures (NRI and IDI), the lasso and
logistic regression methods outperformed the random forest method
in most stages (Table 4). Random forests were not as well cali-
brated for any of the outcomes compared with logistic and lasso
regression, as demonstrated in the O/E ratio plots (Figure 3). When
we performed a sensitivity analysis of a heavily penalized lasso
parsimonious model (see Supplementary Appendix 3), the AUC
decreased by 0.055 for stage 1þ, 0.082 for stage 2þ, and 0.025 for
dialysis.

DISCUSSION
In this study of the largest cohort of HA-AKI models ever developed,
random forests were unexpectedly inferior to lasso and logistic regres-
sion for most outcomes and very similar for stage 2þ for AUC and O/E
ratio plot measurements. Comparing lasso and logistic regression,
lasso was able to make a more parsimonious model, with marginal
decreases in AUC and retention of O/E ratio performance for all
outcomes.

Both logistic regression and lasso had slightly superior or very sim-
ilar AUC performances compared with random forests. This is contrary
to previous published works that showed random forests to be supe-
rior to logistic regression.34–36 However, studies have shown that ran-
dom forests have diminished performance in detecting both marginal
and interacting effects in high-dimensional data.58 Weighting methods
have been used to improve imbalance, which is likely to occur when
the outcome being measured is rare, as is the case in our dataset, for
all stages of AKI.59–61 However, weighted random forests still have
only a modest improvement in predictive ability when effect sizes are
small, which is true in our dataset, with most ORs �1.00.62 Logistic
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Table 1: Table of all variables used in the models

Discrete variables

Risk factor n (%) Risk factor N (%) N (%)

Demographics Medications Pre-admission Admission

Gender (Male) 1,557,832 (96.11) NSAIDs 321,074 (19.81) 144,007 (8.88)

Race ACEi 642,820 (39.66) 539,033 (33.26)

Am. In. – Alaskan 17,189 (1.06) Acyclovir NA 18,635 (1.15)

Asian-Pac. Island 21,176 (1.31) Aminoglycosides 21,147 (1.30) 28,558 (1.76)

Black 300,500 (18.54) Anhydrase Diuretic 3,513 (0.22) 3,256 (0.20)

Unknown 47,467 (2.93) Antiemetics 79,017 (4.87) 134,324 (8.29)

White 1,234,566 (76.17) AntiFungals 49,602 (3.06) 39,619 (2.44)

AntiTB 7,285 (0.45) 6,902 (0.43)

Diagnoses ARB 108,014 (6.66) 83,808 (5.17)

Alcoholism 331,939 (20.48) Benzodiazepines 231,698 (14.29) 337,596 (20.83)

ALD 66,426 (4.10) Beta Blockers 753,325 (46.48) 795,089 (49.05)

Anemia 445,133 (27.46) CCB 402,007 (24.80) 332,528 (20.52)

Cancer 418,399 (25.81) Cephalosporins 92,969 (5.74) 307,947 (19.00)

CDVD 501,793 (30.96) Cimetidine NA 2,579 (0.16)

CHF 331,600 (20.46) Cyclosporine NA NA 3,151 (0.19)

COPD 555,156 (34.25) Fluoroquinolones 166,135 (10.25) 119,340 (7.36)

CVA 283,175 (17.47) Glucocorticoids 209,578 (12.93) 229,212 (14.14)

DM 651,663 (40.20) Insulin 229,855 (14.18) 467,939 (28.87)

Dyslipidemia 935,340 (57.71) K-Sparing Diuretics 131,195 (8.09) 98,925 (6.10)

Hepatitis 164,641 (10.16) Lincomycin 33,769 (2.08) 35,151 (2.17)

HIV 21,542 (1.33) Lithium NA 13,433 (0.83)

HTN 1,221,391 (75.35) Loop Diuretics 408,328 (25.19) 424,737 (26.20)

MVR 48,259 (2.98) Macrolides 108,658 (6.70) 107,093 (6.61)

PVD 316,570 (19.53) MAOI 254 (0.02) 140 (0.01)

Dementia 95,795 (5.91) Nacetylcysteine NA 51,113 (3.15)

RA 50,017 (3.09) Nitrofurantoin 15,603 (0.96) 3,883 (0.24)

PUD 95,404 (5.89) Opioids 869,296 (53.63) 1,010,508 (62.34)

Hemiplegia 68,459 (4.22) Penicillins 155,254 (9.58) 249,273 (15.38)

Statins 770,802 (47.55) 691,968 (42.69)

Other Sulfa Antibiotics 85,280 (5.26) 28,324 (1.75)

CT Scan þContrast 117,750 (7.26) TCA 87,981 (5.43) 57,823 (3.57)

CT Scan –Contrast 245,623 (15.15) Tetracyclines 61,671 (3.80) 27,588 (1.70)

Hypertension 165,469 (10.21) Thiazides 259,583 (16.01) 152,820 (9.43)

Hypotension 133,712 (8.25) Trimethoprim NA 21,848 (1.35)

Outcomes Vancomycin NA 195,346 (12.05)

AKI: Stage 1þ 128,457 (7.93)

AKI: Stage 2þ 15,684 (0.97)

Dialysis 1,940 (0.12)

(continued)
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regression and lasso outperformed random forests nearly consistently
when compared with using NRI and IDI. Discrimination measure IDI
and improvement in AUC are both weighted measures of improvement
in sensitivity, with AUC giving more weight to larger sensitivities and
IDI giving the same weight to all values of sensitivity.53 Because of the
differences between these two discrimination measures, they may
rank models differently when the difference in those models’ perfor-
mances is not very large.53 We see in the O/E ratio graphs that logistic

regression and lasso regression are better calibrated for each of the
AKI outcomes than random forests, with random forests over-predict-
ing risk as the predicted probability increases. Lasso regression per-
formed nearly as well as logistic regression, with similar AUCs, O/E
plots, and ORs for the predictor variables. This demonstrates the effec-
tiveness of lasso regression in simplifying the model by removing less
important predictor variables while performing nearly as well as logis-
tic regression.

Table 1: Continued

Continuous variables

Risk factor Median (IQR) Missing (%) Risk factor Median (IQR) Missing (%)

Demographics Labs

Admission Age 65 (58–77) 0.00 Direct Bilirubin 0.2 (0.1–0.3) 75.65

Other GGT 47 (25–128) 94.44

Pre-Admit Mean BMI 27.6 (23.9–32.1) 4.02 Glucose 116 (97–151) 0.81

Admit Mean BMI 27.1 (23.2–31.7) 27.15 Hematocrit 35.7 (31.3–39.9) 0.53

Readmit Max. Temp. 98.6 (98–99.3) 14.00 Hemoglobin 12 (10.4–13.4) 1.18

Admit Max. Temp. 98.8 (98.3–99.7) 2.44 Delta Hemoglobin 0 (0–11.6) 1.20

NS IVF 0 (0–0.73) 0.00 Lipase 34 (21–88) 83.05

1/2 NS IVF 0 (0–0.24) 0.00 MCH 30.5 (29–32) 1.17

LR IVF 0 (0–0.06) 0.00 MCHC 33.7 (32.9–34.3) 0.71

Water IVF 0 (0–0.19) 0.00 MCV 90.6 (86.7–94.5) 0.70

Mean Pre-Admit GFR 69.8 (54.7–71.4) 0.00

Labs Pre-Admit GFR Count 4 (2–7) 0.00

Albumin 3.4 (2.9–3.9) 25.32 SD Pre-Admit GFR 8.3 (5–12.9) 29.92

Alkaline Phosphatase 82 (64–109) 25.56 Mean Admit GFR 78.2 (61.1–97.8) 1.20

ALT 23 (16–37) 26.09 SD Admit GFR 6.8 (3.3–11.6) 15.46

Ammonia 37.8 (24–61) 96.72 Admit GFR Count 3 (2–3) 1.20

AST 25 (19–38) 26.97 Delta Admit GFR 0 (0–11.6) 1.20

Bicarbonate 26 (24–29) 0.27 Platelets 205 (155–267) 0.92

BNP 284 (87–896) 79.35 Sodium 138 (135–140) 0.13

BUN 15 (11–21) 5.72 Total Bilirubin 0.7 (0.4–1) 25.66

Calcium 8.7 (8.3–9.1) 6.50 Troponin-I 0 (0–0.1) 63.12

Chloride 103 (100–106) 0.30 Troponin-T 0 (0–0) 94.74

CK 85 (48–168) 66.91 WBC 8.1 (6.1–10.7) 0.70

CK-MB 2.6 (1.5–4.6) 77.79

Discrete variables including demographics, chronic diagnoses, medication rates, radiology tests, and outcomes of the analysis cohort. The columns
represent the number of hospitalizations where each variable was present and the percentage of hospitalizations with each variable present.
Continuous variables include demographics, laboratory tests, vital signs, body mass index (BMI), temperatures, and intravenous fluids (IVF). The
columns represent the median, inter-quartile range (IQR), and the percentage of missing values.
NA, not available; CCB, calcium channel blocker; ARB, angiotensin II receptor blocker; ACEi, angiotensin converting enzyme inhibitor; TB, tubercu-
losis; MAOI, monoamine oxidase inhibitor; TCA, tricyclic antidepressants; CHF, congestive heart failure; DM, diabetes mellitus; HTN, hypertension;
PVD, peripheral vascular disease; ALD, advanced liver disease; CVA, cerebrovascular accident; CDVD, cardiovascular disease; COPD, chronic ob-
structive pulmonary disease; MVR, mitral valve regurgitation; RA, rheumatoid arthritis; PUD, peptic ulcer disease; BUN, blood urea nitrogen; CK,
creatinine kinase; CK-MB, creatinine kinase-MB isoenzyme; BNP, B-type natriuretic peptide; WBC, white blood cell count; MCV, mean corpuscular
volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; AST, aspartate aminotransferase; ALT, alanine
aminotransferase; GGT, gamma-glutamyl transpeptidase; NS, normal saline; LR, lactate ringers; GFR, glomerular filtration rate; SD, standard devia-
tion; NSAIDs, non-steroidal anti-inflammatory drugs; CT, computerized tomography; HIV, human immunodeficiency virus; AKI, acute kidney injury.

RESEARCH
AND

APPLICATIONS
Cronin RM, et al. J Am Med Inform Assoc 2015;22:1054–1071. doi:10.1093/jamia/ocv051, Research and Applications

1059



Table 2: Final models of logistic regression and lasso regression.

Risk factor Logistic regression Lasso regression

Stage 1þ Stage 2þ Dialysis Stage 1þ Stage 2þ Dialysis

OR (95% CI) OR (95% CI) OR (95% CI) OR OR OR

(Intercept) 23.03 (7.88–67.35) 0.32 (0.02–4.19) 11.12 (0.01–9540) 74.58 0.31 689

Demographics

Admit Age 1.00 (1.00–1.00) 1.01 (1.00–1.01) 0.97 (0.96–0.97) 1.00 1.01 0.97

Gender (Male) 1.27 (1.23–1.32) 0.94 (0.86–1.03) 2.00 (1.42–2.81) 1.25 0.96 1.87

Race (White) 0.97 (0.93–1.00) 0.89 (0.81–0.97) 0.82 (0.63–1.08) 0.96 0.90 0.83

Race (Black) 1.78 (1.71–1.85) 1.35 (1.23–1.49) 1.10 (0.83–1.45) 1.74 1.34 1.08

Race (Asian-Pac. Islander) 1.02 (0.96–1.09) 0.99 (0.84–1.16) 1.06 (0.69–1.62) 1.01 – 1.03

Race (Am. In. - Alaskan) 1.00 (0.93–1.07) 0.97 (0.81–1.15) 0.88 (0.52–1.47) – – 0.93

Medications

Pre-admission

NSAIDs 0.98 (0.96–1.00) 0.99 (0.94–1.03) 0.95 (0.81–1.11) 0.99 1.00 0.96

Aminoglycosides 1.00 (0.94–1.06) 1.15 (1.00–1.32) 1.03 (0.66–1.59) – 1.13 –

Cephalosporins 0.98 (0.95–1.00) 0.97 (0.9–1.03) 0.95 (0.78–1.14) 0.98 0.98 0.96

CCB 1.06 (1.04–1.08) 1.04 (0.99–1.1) 1.13 (0.99–1.28) 1.06 1.04 1.13

Penicillins 0.98 (0.96–1.00) 0.94 (0.89–0.99) 0.90 (0.77–1.05) 0.99 0.94 0.91

b-Blockers 0.97 (0.95–0.98) 1.01 (0.96–1.05) 0.99 (0.87–1.13) 0.97 1.00 –

ARB 1.08 (1.04–1.11) 1.20 (1.09–1.33) 1.01 (0.83–1.24) 1.07 1.19 –

ACEi 1.06 (1.04–1.07) 1.15 (1.1–1.2) 0.92 (0.82–1.03) 1.05 1.14 0.93

AntiTB 0.91 (0.82-1.01) 0.78 (0.59–1.03) 0.80 (0.37–1.74) 0.95 0.82 0.92

AntiFungals 0.99 (0.95–1.03) 1.04 (0.95–1.14) 0.88 (0.65–1.19) – 1.02 0.93

Glucocorticoids 1.01 (0.99–1.03) 0.99 (0.94–1.05) 0.85 (0.73–1.00) – – 0.87

Lincomycin 1.01 (0.96–1.05) 0.95 (0.86–1.06) 1.23 (0.95–1.6) – 0.97 1.19

Macrolides 1.01 (0.99–1.04) 1.02 (0.95–1.09) 1.01 (0.83–1.23) 1.00 – –

MAOI 0.34 (0.13–0.87) 1.28 (0.22–7.4) 0.00 (0-8.10Eþ 105) 0.69 – –

Nitrofurantoin 0.95 (0.89–1.02) 0.82 (0.69–0.98) 0.47 (0.23–0.95) 0.96 0.86 0.52

Sulfa Antibiotics 0.87 (0.84–0.89) 0.91 (0.84–0.98) 0.82 (0.66–1.02) 0.87 0.92 0.84

Tetracyclines 0.98 (0.95–1.01) 1.02 (0.93–1.1) 0.90 (0.7–1.16) 0.99 – 0.92

Thiazides 0.91 (0.89–0.93) 0.93 (0.88–0.98) 0.86 (0.75–0.98) 0.92 0.95 0.88

Loop Diuretics 0.96 (0.94–0.98) 1.02 (0.97–1.07) 1.07 (0.94–1.22) 0.97 1.01 1.05

Anhydrase Diuretic 0.85 (0.74–0.97) 0.85 (0.57–1.26) 0.42 (0.1–1.8) 0.90 0.96 0.50

K-Sparing Diuretics 0.96 (0.93–0.98) 1.12 (1.04–1.2) 0.88 (0.73–1.05) 0.97 1.11 0.90

Benzodiazepines 0.91 (0.89–0.93) 0.92 (0.87–0.96) 0.81 (0.69–0.94) 0.92 0.93 0.83

TCA 0.97 (0.94–1.01) 1.05(0.95–1.15) 0.93 (0.69–1.24) 1.00 1.04 0.94

Statins 1.00 (0.99–1.02) 1.06 (1.00–1.11) 1.11 (0.97–1.27) – 1.03 1.05

Insulin 1.11 (1.08–1.13) 1.00 (0.95–1.06) 1.05 (0.92–1.2) 1.10 1.00 1.05

Fluoroquinolones 0.99 (0.97–1.01) 1.00 (0.95–1.06) 1.03 (0.89–1.19) 0.99 – 1.01

Antiemetics 1.00 (0.97–1.04) 1.04 (0.97–1.12) 0.94 (0.74–1.19) – 1.03 0.99

Opioids 0.93 (0.92–0.94) 0.98 (0.94–1.01) 0.96 (0.86–1.06) 0.93 0.98 0.96
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Table 2: Continued

Risk factor Logistic regression Lasso regression

Stage 1þ Stage 2þ Dialysis Stage 1þ Stage 2þ Dialysis

OR (95% CI) OR (95% CI) OR (95% CI) OR OR OR

Admission

NSAIDs 1.08 (1.06–1.11) 1.10 (1.04–1.17) 1.00 (0.8–1.26) 1.07 1.08 –

Aminoglycosides 1.42 (1.36–1.48) 1.30 (1.17–1.43) 1.51 (1.11–2.06) 1.40 1.28 1.48

Cephalosporins 0.90 (0.89–0.92) 0.97 (0.93–1.01) 0.95 (0.83–1.08) 0.90 0.98 0.97

CCB 1.09 (1.07–1.11) 1.12 (1.06–1.18) 1.18 (1.04–1.35) 1.09 1.11 1.17

Penicillins 1.10 (1.08–1.12) 1.23 (1.18–1.29) 1.09 (0.95–1.24) 1.09 1.24 1.10

b–Blockers 1.13 (1.11–1.15) 1.05 (1.00–1.1) 1.09 (0.96–1.23) 1.12 1.04 1.06

ARB 1.14 (1.09–1.18) 1.05 (0.94–1.17) 0.83 (0.65–1.06) 1.13 1.04 0.86

ACEi 1.24 (1.22–1.26) 1.30 (1.24–1.36) 0.73 (0.64–0.83) 1.24 1.29 0.73

AntiTB 1.11 (1.00–1.23) 1.00 (0.78–1.3) 1.09 (0.52–2.27) 1.06 – –

AntiFungals 1.20 (1.15–1.25) 1.07 (0.97–1.18) 1.27 (0.96–1.68) 1.18 1.07 1.22

Glucocorticoids 0.76 (0.74–0.77) 0.68 (0.64–0.72) 0.87 (0.74–1.02) 0.77 0.69 0.89

Lincomycin 1.03 (0.99–1.08) 0.97 (0.88–1.08) 0.87 (0.62–1.22) 1.02 1.00 0.92

Macrolides 0.90 (0.87–0.92) 0.96 (0.9–1.03) 1.07 (0.88–1.31) 0.90 0.98 1.03

MAOI 2.58 (1.00–6.65) 0.75 (0.06–8.93) 0.00 (0-1.93Eþ 132) 1.24 – –

Nitrofurantoin 0.88 (0.77–1.01) 1.08 (0.77–1.5) 0.39 (0.05–2.84) 0.91 – 0.59

Sulfa Antibiotics 2.24 (2.08–2.4) 1.58 (1.31–1.89) 0.57 (0.26–1.25) 2.15 1.42 0.84

Tetracyclines 0.79 (0.75–0.83) 0.76 (0.66–0.88) 0.98 (0.67–1.42) 0.80 0.79 –

Thiazides 1.56 (1.53–1.6) 1.39 (1.31–1.48) 1.12 (0.94–1.32) 1.55 1.36 1.07

Loop Diuretics 1.65 (1.62–1.68) 1.31 (1.25–1.37) 0.98 (0.86–1.11) 1.65 1.31 –

Anhydrase Diuretic 1.46 (1.29–1.65) 1.17 (0.81–1.67) 0.85 (0.25–2.81) 1.39 1.04 0.96

K-Sparing Diuretics 1.25 (1.22–1.29) 1.00 (0.92–1.08) 0.87 (0.7–1.08) 1.24 1.00 0.89

Benzodiazepines 1.17 (1.15–1.19) 1.23 (1.18–1.28) 1.31 (1.15–1.49) 1.16 1.21 1.27

TCA 1.12 (1.07–1.17) 1.04 (0.93–1.17) 0.89 (0.62–1.28) 1.08 1.03 0.91

Statins 1.01 (0.99–1.02) 0.91 (0.87–0.96) 0.92 (0.81–1.05) 1.01 0.93 0.95

Insulin 1.05 (1.03–1.07) 1.01 (0.96–1.06) 1.05 (0.91–1.21) 1.05 1.00 1.04

Fluoroquinolones 1.09 (1.06–1.11) 1.07 (1.02–1.14) 0.79 (0.66–0.94) 1.08 1.07 0.82

Antiemetics 1.15 (1.12–1.18) 1.23 (1.16–1.31) 1.11 (0.93–1.33) 1.14 1.22 1.07

Opioids 1.16 (1.15–1.18) 1.29 (1.24–1.34) 0.99 (0.89–1.1) 1.15 1.27 1.00

Cyclosporine 1.26 (1.13–1.41) 0.84 (0.59–1.21) 0.93 (0.5–1.71) 1.23 0.91 0.98

Trimethoprim 0.96 (0.89–1.04) 0.89 (0.72–1.09) 1.52 (0.66–3.49) – – –

Cimetidine 1.37 (1.2–1.56) 1.10 (0.74–1.64) 0.73 (0.18–2.96) 1.33 1.01 0.90

Nacetylcysteine 1.21 (1.18–1.25) 1.17 (1.07–1.27) 1.06 (0.87–1.3) 1.21 1.15 1.04

Acyclovir 1.04 (0.98–1.1) 1.59 (1.41–1.79) 1.07 (0.72–1.6) 1.03 1.55 –

Vancomycin 1.37 (1.34–1.39) 1.84 (1.76–1.92) 1.46 (1.28–1.68) 1.36 1.83 1.46

Lithium 1.11 (1.03–1.19) 1.18 (0.96–1.46) 0.84 (0.35–2.03) 1.07 1.11 1.00
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Table 2: Continued

Risk factor Logistic regression Lasso regression

Stage 1þ Stage 2þ Dialysis Stage 1þ Stage 2þ Dialysis

OR (95% CI) OR (95% CI) OR (95% CI) OR OR OR

Diagnoses

CHF 1.00 (0.98–1.01) 0.92 (0.88–0.97) 0.90 (0.8–1.02) – 0.94 0.92

DM 1.04 (1.02–1.05) 1.05 (1.01–1.1) 1.13 (0.99–1.29) 1.04 1.05 1.12

HTN 1.06 (1.04–1.07) 1.06 (1.01–1.11) 1.04 (0.88–1.22) 1.05 1.05 1.00

PVD 1.05 (1.03–1.06) 1.01 (0.97–1.05) 1.19 (1.07–1.32) 1.05 – 1.17

ALD 1.07 (1.03–1.1) 1.16 (1.06–1.25) 1.09 (0.86–1.39) 1.05 1.15 1.10

Cancer 1.06 (1.04–1.07) 1.21 (1.17–1.26) 1.00 (0.9–1.12) 1.05 1.21 –

CVA 1.03 (1.01–1.05) 1.05 (1.00–1.1) 1.01 (0.89–1.15) 1.02 1.03 –

Alcoholism 0.95 (0.94–0.97) 0.94 (0.9–0.99) 0.91 (0.78–1.05) 0.96 0.95 0.94

HIV 1.26 (1.19–1.33) 1.27 (1.11–1.44) 0.87 (0.57–1.33) 1.23 1.23 0.94

Hepatitis 0.98 (0.96–1.01) 0.96 (0.9–1.01) 1.22 (1.04–1.43) 0.99 0.98 1.22

Anemia 0.94 (0.93–0.96) 0.93 (0.89–0.96) 1.29 (1.16–1.43) 0.95 0.93 1.28

CDVD 0.99 (0.97–1.00) 0.96 (0.92–1.00) 0.95 (0.85–1.07) 0.99 0.97 0.97

COPD 0.97 (0.96–0.99) 0.98 (0.95–1.02) 0.96 (0.87–1.07) 0.98 0.99 0.97

Dyslipidemia 0.93 (0.91–0.94) 0.92 (0.89–0.96) 0.91 (0.81–1.02) 0.93 0.93 0.93

MVR 0.95 (0.92–0.98) 0.96 (0.87–1.05) 1.13 (0.93–1.38) 0.95 0.97 1.10

Dementia 0.96 (0.93–0.98) 1.01 (0.94–1.09) 0.65 (0.51–0.82) 0.97 1.00 0.67

RA 1.07 (1.04–1.11) 1.14 (1.04–1.24) 1.18 (0.92–1.5) 1.06 1.11 1.13

PUD 0.98 (0.95–1.00) 0.94 (0.88–1.00) 0.80 (0.65–0.97) 0.98 0.95 0.82

Hemiplegia 0.98 (0.95–1.02) 0.90 (0.83–0.97) 1.05 (0.83–1.33) 1.00 0.92 1.02

Labs

Sodium 1.02 (1.02–1.02) 1.03 (1.03–1.04) 1.03 (1.02–1.05) 1.02 1.03 1.02

Chloride 0.97 (0.96–0.97) 0.94 (0.93–0.94) 0.92 (0.91–0.93) 0.97 0.94 0.93

Bicarbonate 0.96 (0.96–0.96) 0.94 (0.93–0.94) 0.94 (0.93–0.96) 0.96 0.94 0.95

Calcium 0.96 (0.95–0.96) 0.95 (0.92–0.97) 0.83 (0.78–0.87) 0.96 0.94 0.82

BUN 1.01 (1.01–1.01) 1.02 (1.02–1.02) 1.02 (1.02–1.02) 1.01 1.02 1.02

Glucose 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) – 1.00 1.00

Troponin-I 1.00 (1.00–1.00) 1.00 (1.00–1.01) 1.00 (1.00–1.01) 1.00 1.00 1.00

Troponin-T 1.05 (1.03–1.08) 1.04 (0.99–1.09) 0.73 (0.43–1.23) 1.05 1.03 0.83

CK-MB 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 1.00 1.00

CK 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) – – –

BNP 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) – – –

Hemoglobin 0.97 (0.97–0.98) 0.97 (0.95–0.99) 1.01 (0.97–1.05) 0.97 0.98 –

Delta Hemoglobin 1.03 (1.03–1.04) 1.04 (1.03–1.05) 1.02 (0.99–1.06) 1.03 1.03 1.03

Hematocrit 1.00 (0.99–1.00) 1.00 (1.00–1.01) 0.96 (0.95–0.98) 1.00 – 0.97

WBC 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) – – –

Platelets 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) – – 1.00

MCV 1.02 (1.01–1.03) 1.01 (0.99–1.03) 1.07 (1.03–1.12) 1.00 1.00 1.01

MCHC 1.01 (0.99–1.04) 0.96 (0.91–1.01) 1.03 (0.91–1.17) 0.97 0.96 0.89

MCH 0.95 (0.93–0.97) 1.00 (0.94–1.05) 0.85 (0.74–0.96) – – –
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Table 2: Continued

Risk factor Logistic regression Lasso regression

Stage 1þ Stage 2þ Dialysis Stage 1þ Stage 2þ Dialysis

OR (95% CI) OR (95% CI) OR (95% CI) OR OR OR

Albumin 1.00 (1.00–1.00) 0.77 (0.75–0.79) 0.76 (0.7–0.82) – 0.82 0.84

AST 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 1.00 –

ALT 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 1.00 –

Direct Bilirubin 0.99 (0.98–1.00) 0.99 (0.97–1.00) 0.97 (0.92–1.03) 1.00 0.99 0.99

Total Bilirubin 1.08 (1.07–1.09) 1.11 (1.09–1.12) 1.08 (1.04–1.12) 1.08 1.11 1.08

Alkaline Phosphatase 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) – – –

GGT 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) – – –

Ammonia 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 1.00 1.00

Lipase 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) – – –

Mean Pre-Admit GFR 1.04 (1.04–1.04) 1.02 (1.02–1.02) 0.98 (0.97–0.98) 1.04 1.02 0.97

Pre-Admit GFR Count 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (0.99–1.00) 1.00 1.00 1.00

SD Pre-Admit GFR 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.01 (1.00–1.01) 1.00 – 1.01

Mean Admit GFR 0.96 (0.95–0.96) 0.99 (0.99–0.99) 0.97 (0.97–0.98) 0.96 0.99 0.97

SD Admit GFR 1.01 (1.01–1.01) 1.01 (1.01–1.01) 1.03 (1.02–1.03) 1.01 1.01 1.02

Admit GFR Count 1.06 (1.05-1.06) 0.99 (0.98–1.01) 1.09 (1.04–1.13) 1.06 0.99 1.08

Delta Admit GFR 0.98 (0.98–0.98) 0.99 (0.99–0.99) 0.99 (0.99–1.00) 0.98 0.99 0.99

Other

CT Scan�Contrast 0.97 (0.94–0.99) 1.05 (0.99–1.12) 1.00 (0.85–1.17) 0.97 1.05 –

CT Scanþ Contrast 0.97 (0.94–1.00) 1.04 (0.96–1.12) 1.68 (1.31–2.14) 0.97 1.03 1.62

NS IVF 0.92 (0.92–0.93) 0.99 (0.97–1.00) 0.99 (0.95–1.03) 0.93 0.99 1.00

1/2 NS IVF 0.98 (0.97–0.98) 1.03 (1.00–1.05) 0.97 (0.9–1.05) 0.98 1.02 0.99

LR IVF 0.96 (0.94–0.97) 0.97 (0.93–1.01) 0.93 (0.81–1.08) 0.96 0.98 0.96

Water IVF 1.12 (1.11–1.14) 1.18 (1.14–1.21) 1.04 (0.95–1.14) 1.12 1.17 1.04

Hypertension 1.35 (1.33–1.37) 1.36 (1.29–1.43) 1.23 (1.09–1.4) 1.35 1.35 1.22

Hypotension 1.03 (1.01–1.05) 1.16 (1.1–1.22) 1.10 (0.94–1.29) 1.02 1.15 1.09

Pre-Admit Max. Temp. 0.99 (0.99–1.00) 0.98 (0.97–0.99) 1.04 (1.00–1.08) 0.99 0.99 1.04

Pre-Admit Mean BMI 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) – – –

Admit Max. Temp. 0.97 (0.96–0.97) 1.03 (1.01–1.04) 0.99 (0.95–1.03) 0.97 1.02 1.00

Admit Mean BMI 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) – – –

The final models of logistic regression and lasso regression are reported using odds ratios (OR) and 95% confidence intervals (95% CI) of risk fac-
tors, for logistic regression, and ORs of risk factors, for lasso regression. In the lasso regression, if a variable was dropped from the regression,
the content of the cell is “–.” ORs for intravenous fluids (IVF) are increased risk per liter of fluid given. Bolded ORs for the logistic regression are
significant to the Bonferroni correction of 1.34� 10�4.
–, dropped variable from Lasso; CCB, calcium channel blocker; ARB angiotensin II receptor blocker; ACEi, angiotensin converting enzyme inhibitor;
TB, tuberculosis; MAOI, monoamine oxidase inhibitor; TCA, tricyclic antidepressants; CHF, congestive heart failure; DM, diabetes mellitus; HTN, hy-
pertension; PVD, peripheral vascular disease; ALD, advanced liver disease; CVA, cerebrovascular accident; CDVD, cardiovascular disease; COPD,
chronic obstructive pulmonary disease; MVR, mitral valve regurgitation; RA, rheumatoid arthritis; PUD, peptic ulcer disease; BUN, blood urea nitro-
gen; CK, creatinine kinase; CK-MB, creatinine kinase-MB isoenzyme; BNP, B-type natriuretic peptide; WBC, white blood cell count; MCV, mean cor-
puscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; AST, aspartate aminotransferase;
ALT, alanine aminotransferase; GGT, gamma-glutamyl transpeptidase; NS, normal saline; LR, lactate ringers; GFR, glomerular filtration rate; SD,
standard deviation; NSAIDs, nonsteroidal anti-inflammatory drugs, HIV, human immunodeficiency virus; CT, computerized tomography; BMI, body
mass index.
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Table 3: Results of the variable importance of the final random forest model.

Random forest

Risk factor Stage 1þ Stage 2þ Dialysis Risk factor Stage 1þ Stage 2þ Dialysis

Rank Rank Rank Rank Rank Rank

Demographics Diagnoses

Admit Age 20 36 10 CHF 7 79 48

Gender (Male) 109 93 117 DM 15 62 63

Race 39 46 24 HTN 43 65 69

Medications PVD 73 84 39

Pre-admission ALD 79 50 78

NSAIDs 91 94 114 Cancer 76 55 100

Aminoglycosides 119 106 102 CVA 99 108 85

Cephalosporins 106 116 96 Alcoholism 82 87 71

CCB 50 82 58 HIV 104 97 123

Penicillins 100 110 103 Hepatitis 90 78 57

b–Blockers 44 89 91 Anemia 87 81 33

ARB 75 92 74 CDVD 77 101 72

ACEi 35 56 77 COPD 72 77 83

AntiTB 126 126 120 Dyslipidemia 84 80 55

AntiFungals 117 114 112 MVR 108 120 62

Glucocorticoids 80 103 108 Dementia 105 117 115

Lincomycin 113 107 86 RA 115 99 89

Macrolides 102 112 105 PUD 116 119 97

MAOI 131 130 131 Hemiplegia 112 118 94

Nitrofurantoin 123 128 126

Sulfa Antibiotics 98 111 90 Labs

Tetracyclines 118 109 101 Sodium 48 12 13

Thiazides 60 75 65 Chloride 22 7 4

Loop Diuretics 8 51 37 Bicarbonate 27 20 6

Anhydrase Diuretic 128 124 129 Calcium 49 18 14

K-Sparing Diuretics 57 61 79 BUN 4 6 3

Benzodiazepines 95 98 76 Glucose 30 33 47

TCA 101 96 98 Troponin-I 25 21 21

Statins 86 100 84 Troponin-T 41 26 46

Insulin 23 83 44 CK-MB 26 19 27

Antiemetics 114 86 109 CK 53 17 17

Opioids 71 90 61 BNP 11 16 11

Fluoroquinolones 97 85 60 Hemoglobin 42 34 15

Delta Hemoglobin 46 38 28

Admission Hematocrit 47 44 26

NSAIDs 93 91 118 WBC 33 9 32

Aminoglycosides 78 70 82 Platelets 56 43 40

Cephalosporins 66 66 87 MCV 59 41 29

(continued)
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Table 3: Continued

Random forest

Risk factor Stage 1þ Stage 2þ Dialysis Risk factor Stage 1þ Stage 2þ Dialysis

Rank Rank Rank Rank Rank Rank

CCB 38 67 53 MCHC 52 42 25

Penicillins 45 13 59 MCH 58 40 43

b–Blockers 13 71 68 Albumin 32 8 20

ARB 62 95 88 AST 34 5 12

ACEi 10 39 66 ALT 64 23 18

AntiTB 121 121 116 Total Bilirubin 12 1 8

AntiFungals 94 76 95 Alkaline Phosphatase 28 10 9

Glucocorticoids 36 63 99 GGT 65 27 19

Lincomycin 110 113 121 Ammonia 55 14 36

Macrolides 81 104 93 Lipase 74 30 45

MAOI 130 131 130 Mean Pre-Admit GFR 5 2 1

Nitrofurantoin 129 125 127 Pre-Admit GFR Count 29 24 34

Sulfa Antibiotics 18 60 119 SD Pre-Admit GFR 40 15 16

Tetracyclines 120 123 92 Mean Admit GFR 1 22 2

Thiazides 9 49 51 SD Admit GFR 6 32 7

Loop Diuretics 3 25 23 Admit GFR Count 24 31 22

Anhydrase Diuretic 122 122 125 Delta Admit GFR 2 3 5

K-Sparing Diuretics 21 53 113

Benzodiazepines 83 57 81 Other

TCA 103 105 111 CT Scan� Contrast 92 73 64

Statins 70 102 73 CT Scanþ Contrast 107 69 106

Insulin 16 68 75 NS IVF 14 37 41

Fluoroquinolones 85 74 104 1/2 NS IVF 68 45 54

Antiemetics 88 59 67 LR IVF 89 52 56

Opioids 69 58 70 Water IVF 31 11 35

Cyclosporine 127 129 110 Hypertension 17 48 52

Trimethoprim 37 72 122 Hypotension 96 64 50

Cimetidine 125 127 128 Pre-Admit Max. Temp. 63 47 30

Nacetylcysteine 67 88 80 Pre-Admit Mean BMI 54 29 49

Acyclovir 111 54 107 Admit Max. Temp. 61 28 31

Vancomycin 19 4 38 Admit Mean BMI 51 35 42

Lithium 124 115 124

Risk factors are ranked based on their variable importance for each stage separately, with 1 representing the variable with the highest variable im-
portance and 131 representing the variable with the lowest importance.
CCB, calcium channel blocker; ARB, angiotensin II receptor blocker; ACEi, angiotensin converting enzyme inhibitor; TB, tuberculosis; MAOI, mono-
amine oxidase inhibitor; TCA, tricyclic antidepressants; CHF, congestive heart failure; DM, diabetes mellitus; HTN, hypertension; PVD, peripheral
vascular disease; ALD, advanced liver disease; CVA, cerebrovascular accident; CDVD, cardiovascular disease; COPD chronic obstructive pulmonary
disease; MVR, mitral valve regurgitation; RA, rheumatoid arthritis; PUD, peptic ulcer disease; BUN, ¼ blood urea nitrogen; CK, creatinine kinase;
CK-MB, creatinine kinase-MB isoenzyme; BNP, B-type natriuretic peptide; WBC, white blood cell count; MCV, mean corpuscular volume; MCH,
mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; AST, aspartate aminotransferase; ALT, alanine aminotransfer-
ase; GGT, gamma-glutamyl transpeptidase; NS, normal saline; LR, lactate ringers; GFR, glomerular filtration rate; SD, standard deviation; NSAIDs,
nonsteroidal anti-inflammatory drugs, HIV, human immunodeficiency virus; CT, computerized tomography; BMI, body mass index.
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The most important modifiable variables during the admission win-
dow for AKI and dialysis included IV hydration and admission medica-
tion exposures. Many of these risk factors were significant in the AKI
stage 1þ or 2þ models and represent actionable therapies that can
be embedded in clinical decision support to provide estimates of risk
reduction if they were administered or held, as clinically appropriate.

This was the first prediction model for HA-AKI to include IVF ad-
ministration calculated through bar-coded medication administration
records, which is important because IVF is a preventable risk factor.
IVF administration is either a protective factor or a risk factor for AKI,
depending on what type of fluid is given. The protective association
with the more isotonic fluids associated with volume resuscitation is
supported by the literature, which reports that volume expansion and
volume expansion protocols reduce the incidence of AKI.63–68 Our
models showed that NS, 1/2 NS, and LR are associated with a lower
risk of developing stage 1þ AKI, and that water alone is associated
with an elevated risk of developing stage 1þ AKI. The risk associated
with free water fluid administration could be related to disease sever-
ity, because free water volume is most commonly administered as the
solution for IV medications and for patients who get flushes in their IV
catheters after medication administration. However, risk associated
with free water administration is biologically plausible, because this
fluid is not effective for volume resuscitation and could also be a sig-
nificant risk factor that has not previously been described in the devel-
opment of AKI (and therefore needs further exploration). Isotonic IVF

was a protective factor, and delta hemoglobin was a risk factor for
stage 1þ AKI, supporting the theory that stage 1þ AKI is associated
with intravascular volume depletion. Causality cannot be determined,
because IVF may also mask the development of AKI by diluting serum
creatinine. However, the fact that NS and LR were protective and free
water IVF was a risk factor for stage 1þ AKI provides support that
each effect is not due to the dilution of serum creatinine concentra-
tions. Overall, whether isotonic IVF are protective against or mask the
development of stage 1þ AKI is unclear, and further studies are
required.

The mean pre-admission and admission GFR (or the level of kidney
dysfunction, which was significant in stage 1þ, 2þ, and dialysis in
our model) is one of the most important risk factors for the develop-
ment of AKI.69,70 Most of the medications that were significant in our
model are known risk factors for AKI.1,9–15 The fact that some of the
antibiotics that were significantly associated with AKI are not direct
nephrotoxins could have been due to their proxy association with acute
infection leading to sepsis. The choice of antibiotic associated with a
protective effect or risk likely represents the severity of disease.
Cephalosporins, tetracyclines, and macrolides are typically used for
less invasive infections and were protective, but penicillins and fluoro-
quinolones, which can be used for more serious infections, were risk
factors. Bactrim, vancomycin, and aminoglycosides, which are known
to be nephrotoxic, had a much stronger association with higher ORs
than other antibiotics.

Table 4: Results of discrimination and calibration metrics for the 50 bootstrap samples.

Discrimination and calibration metrics

Model Stage 1þ Stage 2þ Dialysis

Median (95% CI) Median (95% CI) Median (95% CI)

AUC

Logistic regression 0.758 (0.758–0.758) 0.715 (0.714–0.716) 0.825 (0.823–0.827)

Lasso regression 0.758 (0.757–0.758) 0.714 (0.713–0.715) 0.824 (0.822–0.826)

Random forest 0.746 (0.744–0.748) 0.721 (0.720–0.721) 0.823 (0.818–0.828)

NRI

Lasso vs LR 0.461 (0.460–0.463) 0.348 (0.344–0.351) 0.549(0.538–0.559)

RF vs Lasso 0.378 (0.377–0.379) 0.271 (0.267–0.275) 0.306

RF vs LR 0.419 (0.417–0.420) 0.332 (0.329–0.336) 0.409 (0.399–0.420)

IDI

Lasso vs LR 0.004 (0.004–0.004) 0.001 (0.001–0.001) 0.007 (0.006–0.007)

RF vs Lasso 0.022 (0.022–0.022) 0.004 (0.004–0.004) –0.021 (�0.022 to �0.021)

RF vs LR 0.026 (0.026–0.026) 0.005 (0.005–0.005) �0.015 (�0.016 to �0.014)

Brier

LR 0.067 (0.067–0.067) 0.010 (0.009–0.010) 0.001 (0.001–0.001)

RF 0.068 (0.068–0.068) 0.010 (0.009–0.010) 0.001 (0.001–0.001)

Lasso 0.068 (0.068–0.068) 0.010 (0.009–0.010) 0.001 (0.001–0.001)

Area under the receiver operating characteristic curve (AUC) values are represented for each model by median and 95% confidence intervals (95%
CIs) for the stage 1þ, 2þ, and dialysis outcomes. The continuous net reclassification index (NRI) and integrated discrimination improvement (IDI)
values are reported as the improvement of the second model vs the first model (model A vs model B being positive is interpreted as model B hav-
ing a superior classification). The Brier score is represented for each model with medians and 95% CIs.
LR¼ logistic regression, RF¼ random forest.
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The lab values are proxies for disease states. Aspartate amino-
transferase, alanine aminotransferase, total bilirubin, and alkaline
phosphatase are elevated in acute liver disease, which is a risk factor
for AKI. Serum glucose is elevated in diabetes, but can also contribute
to dehydration through the osmotic load in very elevated states.
Creatinine kinase-MB isoenzyme is elevated in acute myocardial in-
farction; elevated sodium, elevated BUN, and decreased chloride are
seen in hypovolemic states; and low bicarbonate is seen in sepsis, all
of which are risk factors for AKI. Admission CT scans with and without
IV contrast were slightly protective in stage 1þ AKI; however, they
were risk factors in both stage 2þ AKI and dialysis, with CT scans
with IV contrast being significant for dialysis. These findings are lim-
ited by the inability to determine which patients actually received IV
contrast during the CT scan, as described in our methods.

The differences in risk factors for AKI stage 1þ, AKI 2þ, and dialysis
are likely explained by the fact that mild AKI is associated with a less se-
vere phenotype. In contrast, severe AKI represents more intrinsic renal
injury with sustained loss of function.71 The relative sensitivity and spe-
cificity of severity grades of the standard definitions of AKI is an active
area of research and discussion. For this reason, we reported the

models across the spectrum of severity. Indeed, the differences in risk
factors and strengths of associations between outcome severities sup-
port the need to use different risk models for these different outcomes.

We expanded our prior single-center work37 by developing the
model in a large national cohort, exploring which modeling methods
appears to be more robust regarding prediction performance, and
evaluating additional novel risk factors available within the Veterans
Health Administration EHR. We extended prior models of AKI in the lit-
erature. Previously, studies have looked at adverse outcomes after the
development of AKI11 or in select populations.26–33 The present study
captured data on all hospitalizations and predicted AKI outcomes be-
fore a patient developed AKI. Random forests have been used to pre-
dict AKI development in the contrast-induced nephropathy
population;30 however, our study compares the ability of random for-
ests, lasso regression, and logistic regression to predict outcomes for
all populations. Finally, this study was performed on a nationwide co-
hort of over 100 hospitals, which is larger than previous studies on
HA-AKI prediction.

This study includes some limitations, so its results should be inter-
preted cautiously. Our cohort is largely comprised of male patients

Figure 3: Each model’s observed to expected ratio plots are presented for lasso regression (Figures 3a–c), logistic regres-
sion (Figures 3d–f), and random forest (Figures 3g–i).
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Figure 3: Continued
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and may not generalize to a population with a greater proportion of fe-
male patients. In addition, the models we used were internally vali-
dated, and the generalizability of those models will need to be
assessed through external validation in other populations. However,
there is growing literature to suggest that local refitting or remodeling
of a developed risk model is warranted on a regular basis, regardless
of external validation, and all risk prediction models should be used
with caution in other clinical settings if refitting/remodeling is not per-
formed.72–74 Another limitation of our study is the secular trend that
creatinine assay changes introduced during the study. Extensive vali-
dation of ICD-9 codes for accuracy have been performed previously at
the VA and other institutions for chronic conditions such as congestive
heart failure, coronary artery disease, and hypertension;75,76 however,
some ICD-9 codes have not been extensively studied.

CONCLUSIONS
This study explored multiple modeling methods, including logistic re-
gression, lasso regression, and random forests for modeling HA-AKI in
a large nationwide cohort. Traditional regression methods outper-
formed machine learning methods in this domain. Our final recom-
mendation is to use lasso regression within this clinical setting, given
its intuitive representation of the risk factors and ORs, its ability to
simplify the model based on the selection of the most important clini-
cal predictors, and its equivalent performance to logistic regression
and similar and superior performance to random forests. This study
also explored novel risk factors within the EHR data and demonstrated
the ability of multiple risk modeling techniques to effectively predict
HA-AKI and identify potential risk factors that can trigger interventions
to prevent HA-AKI. We were able to determine multiple clinical risk
factors that could be intervened upon and were able to show the po-
tential risks and benefits of IVF in a predictive model, which has not
been done previously. These models can be used for population health
in dashboards and within institutional and provider quality profiling ac-
tivities and, additionally, can be used to support clinical decision sup-
port for individual patients that is both more appropriate to the patient
context and also provides explicit recommendations for risk mitigation
through preventable risk factors in the model.
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