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Abstract

Genetic variation harbors signatures of natural selection driven by selective pressures that are often unknown. Estimating
the ages of selection signals may allow reconstructing the history of environmental changes that shaped human pheno-
types and diseases. We have developed an approximate Bayesian computation (ABC) approach to estimate allele ages
under a model of selection on new mutations and under demographic models appropriate for human populations.
We have applied it to two resequencing data sets: An ultra-high depth data set from a relatively small sample of unrelated
individuals and a lower depth data set in a larger sample with transmission information. In addition to evaluating
the accuracy of our method based on simulations, for each SNP, we assessed the consistency between the posterior
probabilities estimated by the ABC approach and the ancient DNA record, finding good agreement between the two
types of data and methods. Applying this ABC approach to data for eight single nucleotide polymorphisms (SNPs), we
were able to rule out an onset of selection prior to the dispersal out-of-Africa for three of them and more recent than the
spread of agriculture for an additional three SNPs.
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Introduction
Over the past decade, much effort has been devoted to the
discovery of selection signals using genetic variation data in
humans (Sabeti et al. 2007; Coop et al. 2009; Pickrell et al.
2009; Chen et al. 2010; Grossman et al. 2010, 2013; Yi et al.
2010; Hancock et al. 2011). Selection scans have employed a
variety of population genetic approaches that exploit differ-
ent aspects of observed genetic variation. Most approaches
for inferring positive selection are powered to detect events
from a limited period of time (usually recent) (Sabeti et al.
2006), but they have seldom been used in a way that explicitly
accounts for differential power and that connects selected
alleles to specific hypotheses. As a result, we know little
about how selective pressures changed over time as a conse-
quence of cultural and environmental transitions. Estimating
the ages of selection signals may facilitate inferences about
the history of human functional and phenotypic evolution,
especially in the case of advantageous alleles associated with
specific traits or diseases.

Among the many environmental shifts that occurred
during human evolution, the dispersal out-of-Africa and the
spread of agriculture and animal farming are recognized as
the transitions associated with the most dramatic environ-
mental changes and the onset of strong new selective pres-
sures. With the dispersal out-of-Africa sometime earlier than
40,000 years ago (Benazzi et al. 2011; Higham et al. 2011;

Mellars 2011), humans encountered—among other environ-
mental differences—colder climates, reduced levels of ultra-
violet radiation, and lower pathogen diversity. In contrast, the
spread of agriculture and animal farming around 12,800 years
ago (Gamble et al. 2004) led to dramatic increases in the
amounts and types of pathogens and, due to the higher pop-
ulation densities, in their transmission rates (Mira et al. 2006;
Harper and Armelagos 2010; Mummert et al. 2011). In addi-
tion, major dietary changes occurred, including the use of
milk in adult diets and an increase in the consumption of
complex carbohydrates from cultivated and processed grains
(Luca et al. 2010). These two environmental transitions offer a
framework for testing hypotheses about the impact of natural
selection on human phenotypes by asking whether the esti-
mated age of an advantageous allele associated with a phe-
notype is compatible with an onset of selection during the
dispersal out-of-Africa, the spread of agriculture, or both.

Here, we developed an approximate Bayesian com-
putation (ABC) method for estimating the ages of the se-
lected alleles under complex demographic models. This
approach, which generates a posterior probability distribution
for parameters of interest based on simulations, has been
widely applied to inference problems in population genetics
(Beaumont et al. 2002; Slatkin 2008; Peter et al. 2012), and it
allows one to consider the effects of selection in a complex,
and more realistic, demographic setting. We initially applied
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this approach to two resequencing data sets: A newly gener-
ated one obtained by sequence capture followed by sequenc-
ing (CapSeq) to obtain ultra-high depth data, and a lower
depth shotgun sequencing data set generated by complete
genomics (CG) for a larger sample of individuals. Because
both data sets provided similar estimates, we applied our
ABC approach to the CG data for five additional single nu-
cleotide polymorphisms (SNPs) previously reported to be as-
sociated with selective sweep signals. Finally, by comparing
our results with the rapidly growing ancient DNA data sets,
we determined that the ABC estimates are compatible with
the ancient DNA record.

Results

Ultra-High Depth Sequencing Survey and Comparison
with CG Sequence Variation Data

Several aspects of the empirical data may affect allele age
estimation, including the accuracy of genotype calling,
which in turn depends on the sequencing depth, the accuracy
of phasing, and the sample size. In order to compare sequenc-
ing data sets with different features for the purpose of allele
age estimation, we generated ultra-high depth sequence data
obtained by sequence capture (CapSeq) for genomic seg-
ments spanning three SNPs (rs6822844, rs3184504, and
rs12913832) associated with selection signals in Europeans.
These SNPs are polymorphic almost exclusively in Western
Eurasia, making it likely that selection acted on a new advan-
tageous mutation rather than on standing variation (supple-
mentary fig. S1, Supplementary Material online). Two of them
are associated with several immune-mediated diseases; how-
ever, the advantageous allele at rs6822844 protects against
disease (Todd et al. 2007; van Heel et al. 2007; Wellcome Trust
Case Control Consortium 2007; Zhernakova et al. 2007;
Adamovic et al. 2008; Hunt et al. 2008; Liu et al. 2008;
Albers et al. 2009; Daha et al. 2009; Festen et al. 2009;
Marquez et al. 2009; Teixeira et al. 2009; Hollis-Moffatt et al.
2010; Maiti et al. 2010; Petukhova et al. 2010; Warren et al.
2011), while at rs3184504 the advantageous allele associates
with increased disease risk (Wellcome Trust Case Control
Consortium 2007; Hunt et al. 2008; Barrett et al. 2009;
Alcina et al. 2010; Dubois et al. 2010; Stahl et al. 2010;
Zhernakova et al. 2011; de Boer et al. 2014). The third SNP
(rs12913832) is known to influence eye and hair color in
Europeans and to a lower extent also skin pigmentation
(Sulem et al. 2007; Han et al. 2008; Kayser et al. 2008;
Branicki et al. 2009; Cook et al. 2009; Eriksson et al. 2010;
Liu et al. 2010; Zhang et al. 2013). For a full description of
the SNPs, associated traits or diseases and selection signals, see
supplementary text S1, Supplementary Material online.

The region spanning these SNPs were captured and
sequenced in 14 unrelated CEU (Centre d’Etude du
Polymorphisme Humain from Utah of Northern European
descent) samples (supplementary table S1, Supplementary
Material online). The average coverage depth per sample
was very high (219�, 292�, and 307� for the rs6822844,
rs3184504 and rs12913832 regions, respectively) (supplemen-
tary figs. S2 and S3 and tables S2 and S3, Supplementary

Material online). We observed that on average ~53% of the
reads at heterozygous positions were identical to the refer-
ence suggesting that there is a small bias against the
nonreference allele (supplementary fig. S4, Supplementary
Material online), but no evidence of significant allelic dropout
at heterozygous positions, consistent with previous reports
for libraries prepared by array capture (Hedges et al. 2011;
Kiialainen et al. 2011).

In order to assess the accuracy of the CapSeq genotype
calls, we compared the CapSeq genotypes with the HapMap
(HapMap_2010-08_phaseII+III) genotypes for all 23,488 over-
lapping SNPs and we found 162 discordant genotype calls
(supplementary tables S4, Supplementary Material online).
We then used the Phase 3 1000 Genome (1KG) data to in-
vestigate the sources of error. Of the 162 inconsistent geno-
type calls, 68 of them had been called also in the 1KG data
and all of them were consistent with our calls (supplementary
table S5, Supplementary Material online) supporting the high
accuracy in the CapSeq genotype calls.

We also compared the CapSeq data with the CG data set,
which includes a total of 32 CEU trios sequenced at ~30�
depth. To examine the concordance between CapSeq and CG
genotype calls, we focused on the six individuals who were
sequenced in both data sets (i.e., NA10855, NA11830,
NA12489, NA10864, NA10839, and NA12762) (supplemen-
tary figs. S5 and S6, Supplementary Material online). Even
though the concordance rate of genotypes in the overlapping
SNPs is ~100% (1 discordant genotype call out of 1,189 calls
across the 3 genomic regions), the results in supplementary
figure S5, Supplementary Material online, show a significantly
lower number of variable sites in the CG data than in the
CapSeq data in the six overlapping samples (32%, 41%, and
36% for rs6822844, rs3184504, and rs12913832, respectively);
the lower number of variable sites in the CG data could be
due to the lower sequence coverage (~30� for GC vs.
4200� for CapSeq) and/or to more aggressive data filtering
in CG. In addition to read depth and variant filtering ap-
proach, the CapSeq and the CG data differ also with regard
to sample size (64 for CG vs. 14 for CapSeq) and to phasing,
with the CG data probably having fewer switching errors (al-
though CG haplotypes were used as a scaffold to increase the
accuracy of phasing the CapSeq data; see Materials and
Methods for “Sequence capture and sequencing”).

An Approximate Bayesian Computation Approach to
Estimate Age of Beneficial Alleles

To estimate allele ages, we developed an ABC approach (sup-
plementary texts S2–S4 and figs. S7–S12, Supplementary
Material online) and, to explore whether the different features
of the CapSeq and CG data affect the inference of allele ages,
we applied it to both data sets. To this end, we ran 1.5 M
simulations of natural selection acting on a new mutation
matching the features of each of the three regions for the
CapSeq as well as the CG data sets (supplementary fig. S2 and
table S6, Supplementary Material online). The selection signals
based on extended haplotype homozygosity (EHH) could
result from weakly negative rather than positive selection
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acting on these SNPs (Sabeti et al. 2006; Nielsen et al. 2007),
because, conditional on the current allele frequency, positively
and negatively selected alleles are expected to have the same
genomic signature (Maruyama 1974). For this reason, we sim-
ulated selection coefficients (s) that included positive as well
as slightly negative values (�0.01� s� 0.1). We defined the
selected region as the segment over which the EHH is greater
than 0.05, and we calculated three partially nonredundant
summary statistics (SSs) for each of the selected regions:
The inverse of the genetic length of the selected region
(1/LH), the average number of mutations accumulated in
the haplotypes carrying the selected alleles divided by the
physical length of the selected region (MH), and the number
of singleton variants divided by the total number of segregat-
ing sites in these haplotypes (RH) (see Methods; supplemen-
tary texts S2–S3, Supplementary Material online). The same
SSs were calculated for the CapSeq and CG data sets (shown
in table 1; see supplementary table S7, Supplementary
Material online, for correlation with the log(t) and the corre-
lation between the SSs, where t is the allele age). Next, for each
region, the 1,500 simulations with SS values closest to those
observed in the CaqSeq or the CG data were used to estimate
the posterior joint probability distribution for the selection
coefficient and the age of each of the three alleles (supple-
mentary fig. S8, Supplementary Material online).

Although these alleles have been considered advantageous,
the posterior distributions of selection coefficients included
negative values; a larger proportion of negative s values was
obtained in the CapSeq versus the CG data sets (table 2). Still,
the vast majority of the retained simulations had a positive s
value, with the highest proportion for the pigmentation SNP
and the lowest for the rs6822844 immunity SNP. Therefore,
even though we cannot rule out that weak purifying selection
underlies the observed population genetic signals, positive
selection is by far the most likely explanation. As expected,
the plots of the joint posterior probability distributions show
that s is inversely related to t in both data sets (supplementary
fig. S8, Supplementary Material online). The joint posterior
distributions occupy a different space compared with the
priors, which confirms that the sequence variation data con-
tain information for estimating t (figs. 1 and 2). Because our

main goal is to estimate t and compare it with historical
information, in the results that follow we integrate over s to
get the marginal posterior distribution of t (Slatkin 2008).
Based on the posterior marginal distributions of t (fig. 1),
we estimated the age of the three alleles from the mode
of the distributions for both CapSeq and the CG data sets.
The CapSeq and CG data yield a similar point estimate for
rs3184504*T, while those for rs6822844*G and rs12913832*G
are markedly different. This is probably due to the flat shape
of the posterior distribution for the latter two variants,
suggesting that there is limited information in the data to
estimate the allele age with confidence. Significant overlap
between the 95% credible intervals (CIs) for the CapSeq and
the CG is observed for all SNPs (fig. 1). We note that the upper
boundary for the CI of the oldest variant, that is, 120,236 years,
coincides with the upper end of the range of the prior on t in
our simulations; therefore, the true upper boundary may be
older than what we estimated.

To infer the onset of selection acting on these alleles in
relation to the main transitions during human evolution, we
used the posterior probability distribution to calculate the
probability that the age of each allele is more recent than
the spread of agriculture (<12,800 years ago) (Pinhasi et al.
2005) or older than the dispersal out-of-Africa and into
Europe (442,000 years ago) (Benazzi et al. 2011; Higham
et al. 2011; Mellars 2011). As shown in table 2, most of the
probability mass for the light pigmentation and the auto-
immunity protective alleles is observed for values of t older
than the dispersal out-of-Africa. In contrast, the autoimmu-
nity risk allele at rs3184504 is substantially younger and
incompatible with an onset of selection prior to the out-of-
Africa migration (probability that t442 kya is 0.44%).

The posterior probability distributions are more peaked for
the CG than the CapSeq data for all 3 SNPs and in particular
for rs3184504. This suggests a greater amount of information
in the CG than the CapSeq data, probably due to the larger
sample size and the greater phasing accuracy. In general, at a
qualitative level, we conclude that there is good agreement
between the results obtained using these two data sets (sup-
plementary fig. S8, Supplementary Material online). For this
reason, we used the CG data to estimate the age of five

Table 1. Summary Statistics of Sequence Variation in the CG Data and, in Parentheses, in the CapSeq Data.

rs6822844 rs3184504 rs12913832

Length (kb) 680 1600 350

No. of selected allelesa 17 (17) 53 (19) 99 (25)

No. of nonselected allelesb 111 (11) 75 (9) 29 (3)

pc 195.029 (248.847) 189.429 (227.008) 63.188 (86.675)

Sd 1,394 (1,015) 2,561 (1,394) 625 (492)

RH 0.583 (0.295) 0.594 (0.479) 0.481 (0.448)

MH 0.00012 (0.00020) 0.00011 (0.00024) 0.00015 (0.00016)

1/LH 13.311 (20.356) 8.446 (15.589) 5.307 (11.158)

aNumber of sequences carrying the selected allele.
bNumber of sequences carrying the nonselected allele.
cNucleotide diversity.
dNumber of segregating sites.
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additional alleles associated with selection signals in European
populations.

Estimating the Age of Five Additional Alleles using
CG Data

As for the three SNPs above, the five additional SNPs are
polymorphic almost exclusively in European populations
(supplementary fig. S1, Supplementary Material online).
Three of them are associated with well-established adaptive
phenotypes: Lactase persistence (rs4988235) (Enattah et al.
2002) and skin pigmentation (rs1426654 at SLC24A5 and
rs16891982 at SLC45A2) (Newton et al. 2001; Nakayama
et al. 2002; Graf et al. 2005; Lamason et al. 2005). The remain-
ing two SNPs, rs17810546 and rs2188962, are strongly associ-
ated with immune-mediated diseases (Barrett et al. 2008;
Hunt et al. 2008; Dubois et al. 2010; McGovern et al. 2010;
Jostins et al. 2012); in both these cases, the allele associated
with the selection signal increases disease risk. For a full de-
scription of the selection and association signals for these five

SNPs, see supplementary text S1, Supplementary Material
online.

When we applied our ABC approach to these SNPs, the
highest observed posterior probability for negative values of
s was 1.88% (compared with 9% in the prior) (table 2), sup-
porting the notion that these five alleles are advantageous.
With a mode at 6,034 years ago, the posterior distribution of t
for rs4988235 at the LCT gene points to a recent origin and
spread for lactase persistence (fig. 2). Although rs1426654 and
rs16891982 are both associated with skin pigmentation,
the two selected alleles are estimated to have different ages
(fig. 2), with the allele at SLC24A5 showing a modal value
between 30,000 and 40,000 years ago and the posterior dis-
tribution for the SLC45A2 allele showing a relatively flat dis-
tribution with a weak mode at around 80,000 years ago. Both
autoimmunity SNPs, rs17810546 at IL12A and rs2188962 at
IRF1, showed modal values of t between 7,000 and 12,000
years ago (fig. 2).

We further calculated the posterior probability that t falls
in each of the three periods defined by the two major

FIG. 1. Posterior probability distribution for the age (t) of the selected alleles at rs6822844, rs3184504, and rs12913832 in the CapSeq data and CG
data. The posterior mode and 95% credible interval are shown in the caption with parenthesis. The red dashed line marks the spread of agriculture
(12,800), the purple dashed line marks the out-of-Africa (42,000), and the black dashed line represents the prior probability distribution for t that
is proportional to a demographic model estimated by a pairwise sequentially Markovian coalescent (PSMC) approach (Li and Durbin 2011).

Table 2. Posterior Probability that the Age of an Allele Falls within Three Major Time Periods Based on the CG Data and, in Parenthesis, on the
CapSeq Data.

t s4 0 Phenotypes associated
with Selected Alleles

<12.8 kya 12.8–42 kya 442 kya

rs4988235 99.73% 0.27% 0.00% 100.00% Lactase persistence

rs12913832 0.08% (0.00%) 9.89% (1.81%) 90.03% (98.19%) 99.83% (99.98%) Blue eyes and blond hair color

rs1426654 0.04% 76.74% 23.22% 100.00% Light skin pigmentation

rs16891982 0.02% 1.37% 98.61% 100.00% Light skin pigmentation

rs6822844 12.43% (9.62%) 37.22% (20.71%) 50.35% (69.67%) 85.75% (74.79%) Autoimmune disease protection

rs17810546 95.44% 4.56% 0.00% 99.95% Autoimmune disease risk

rs3184504 68.37% (42.23%) 31.19% (45.86%) 0.44% (11.90%) 99.49% (94.93%) Autoimmune disease risk

rs2188962 28.55% 58.30% 13.15% 98.22% Autoimmune disease risk
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environmental transitions, as described above (table 2). The
lactase persistence allele and autoimmunity risk allele at
rs17810546 significantly support a time of onset more
recent than the spread of agriculture with a cumulative pos-
terior probability (p. p.) of 495%. For the other autoimmu-
nity risk SNP (rs2188962), the distribution is shifted toward
slightly older ages compared with the other two, but the
mode coincides with the spread of agriculture. In contrast,
both skin pigmentation alleles are estimated to be older than
the spread of agriculture (cumulative p. p. � 99.06%), where
rs1426654 is likely to be due to a selective event between the
two transitions and rs16891982 is estimated to be older than
the dispersal out-of-Africa (cumulative p. p.� 98.61%).

Comparison of Allele Age Estimates with the Ancient
DNA Record

The rapidly growing ancient DNA data sets, especially for
European populations, offer an opportunity to compare
allele age estimates with inferences based on the archaeolog-
ical record. To this end, we downloaded aligned sequence
data from four recent ancient DNA studies (Lazaridis et al.
2014; Skoglund et al. 2014; Allentoft et al. 2015; Haak et al.
2015). The samples were grouped into five periods based on
the upper bound of the specimen age estimate: 8-7, 6-5, 5-4,
4-3, and 3-1 thousand years ago (kya). We then estimated the
allele frequency in each period using a maximum-likelihood
method described in Mathiesson et al. (2015) (fig. 3).

To evaluate the agreement between our estimates and the
ancient DNA data, we simulated trajectories, conditional on
the current frequency, by sampling t and s from the joint

posterior distribution for each SNP (supplementary figs. S8
and S12, Supplementary Material online) and calculated the
mean frequency of the derived alleles in each of the five pe-
riods (fig. 3). These mean frequencies over time show a re-
markably good fit to the pattern observed in the ancient DNA
data for most SNPs (fig. 3), even though the simulations use a
demographic model that does not account for the history of
migrations in Europe (Allentoft et al. 2015; Haak et al. 2015).
This oversimplification may explain the discrepancy between
ancient DNA and our data for rs16891982 or rs12913832 in
the transition from the 8-7 to 6-5 kya periods. Overall, the
match between the allele frequency change over the past
8,000 years estimated by the ABC approach and that inferred
by ancient DNA suggests that our allele age estimates are
reasonably accurate.

Discussion
Although extensive catalogs of selection signals have been
generated by genome scan studies (Vitti et al. 2013), limited
effort has been devoted to estimating the age of selective
events in a systematic manner and to developing a time
frame for the history of the selective pressures that acted
during human evolution (Peter et al. 2012; Beleza et al.
2013). Here, we developed an ABC approach for estimating
the ages of new advantageous alleles. In addition to assessing
its accuracy based on simulations, we have tested it on dif-
ferent types of empirical data. First, we have applied it to two
resequencing data sets, allowing the comparison between
ultra-high depth data from a relatively small sample of unre-
lated individuals and lower depth data in a larger sample with
transmission information. The two data sets yielded

FIG. 2. Posterior probability distribution for t of the selected allele at five SNPs (rs4988235, rs1426654, rs16891952, rs17810546, and rs2188962) for which
only CG data were available. The posterior mode and 95% credible interval are shown in the caption with parenthesis. The red dashed line marks the
spread of agriculture (12,800), the purple dashed line marks the out-of-Africa (42,000), and the black dashed line represents the prior probability
distribution for t that is proportional to a demographic model estimated by a PSMC approach (Li and Durbin 2011).
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qualitatively similar results, implying that the publicly avail-
able CG data are sufficiently accurate for allele age estimation.
For each SNP, we also assessed the consistency between the
posterior probabilities estimated by our ABC approach and
the ancient DNA data, which showed good agreement be-
tween these two types of data and between inferential meth-
ods. Finally, to reconstruct the history of selective pressures in
European populations, we used the posterior probability dis-
tributions to test if the estimated ages are compatible with
two major environmental transitions during human evolu-
tion. Based on this analysis, we were able to rule out an onset
of selection older than the dispersal out-of-Africa for three of
the eight SNPs tested (rs3184504, rs4988235, rs17810546),
while we ruled out an onset of selection more recent than
the spread of agriculture for three other SNPs (rs12913832,
rs1426654, and rs16891982).

Previously, a similar ABC approach was used in Peter et al.
(2012) to distinguish between neutrality, selection on stand-
ing variation and selection on a de novo mutation. Even
though allele ages and selection strengths were also estimated
in that paper, the focus was on the distinction between dif-
ferent selection scenarios. Although we have a qualitative
understanding of how selection on standing variation versus
de novo mutations are expected to affect genetic diversity
(Barrett and Schluter 2008), the expected patterns differ only
slightly. As a consequence, the strategy of Peter et al. (2012)
was to focus on very strongly selected alleles, where distinc-
tion is easiest, and to use a wide variety of SSs with the aim of
capturing as much of the “signal” as possible for the ABC
analysis. In contrast, here our main motivation is the estima-
tion of the age of alleles for which we have a priori reasons to
assume that selection acted on a new mutation. This problem
has been extensively studied (Kimura and Ohta 1973; Slatkin
and Rannala 1997, 2000; Slatkin 2000), which allowed us to
design a relatively straightforward approach where the choice

of SSs can be motivated directly by theory, and which allowed
us to investigate also selection signals that are less strong.

Naively, it might seem desirable to include as many statis-
tics as possible; however, there are well-established drawbacks
to increasing the number of statistics used. In addition to
increasing the run-time of the algorithm, having a large
number of statistics implies that we aim at matching simu-
lations and observations in a very high-dimensional space.
This is problematic because more simulations are required
to cover the space adequately, or a larger approximation error
has to be introduced. In Peter et al. (2012), this was handled
by using partial least squares to reduce the dimensionality;
however, this introduces an additional layer to the algorithm,
increasing complexity (Wegmann et al. 2009). A second issue
of adding SSs with little marginal information is that each
statistic adds statistical noise, thus requiring more simulations
to obtain the same accuracy.

A further difference between our work and that of Peter
et al. (2012) lies in the simulation scheme for the ABC esti-
mation. Although Peter et al. (2012) reported allele age esti-
mates, the allele age was not an independent parameter in
their simulation framework, namely simulations were per-
formed conditional on the allele frequency at present back-
ward in time with a fixed selection coefficient. The time when
the trajectory hit zero was recorded as the age of the allele. In
contrast, here we simulate forward-in-time trajectories with
the time of mutation drawn from an explicit prior distribu-
tion, and simulations are rejected if not consistent with the
present allele frequency. For the purpose of estimating allele
ages, the latter approach is preferable because it gives us
direct control over the parameter and prior distributions. In
particular, forward-in-time trajectories allow us to draw allele
ages from a distribution that takes into account the fact that
the influx of new mutations is proportional to the effective
population size at a given time, and thus fewer mutations

FIG. 3. Comparison between the ABC simulated allele frequency (dots) and the allele frequency observed in the ancient DNA data (bar graphs) for all
eight SNPs. The line plots show the mean allele frequencies at the five time points with 95% confidence intervals in 10,000 simulated trajectories. The
bar graphs show maximum-likelihood estimates of allele frequency in the ancient DNA data. The frequency at the present is calculated from the CG
data. Because the lactase allele is absent in the 8-7 and 6-5 kya periods, the allele frequency is only shown for three time points: 4, 3, and 1 kya. The 95%
confidence intervals for the SLC24A5 SNPs are very narrow because the advantageous allele was fixed in most of the simulations.
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enter a population when the population size is low. For back-
wards-in-time trajectories, the proper way to do this is to use
importance sampling (Slatkin 2001), which was not done in
Peter et al. (2012), leading to inflated prior probabilities of
allele ages in times when the effective population size is low.
We note that even though our estimate of t for the LCT allele
(fig. 2; 6,034 years ago; 95% CI 4,458–8,905) is compatible with
that of Peter et al. (2012) (11,200 years ago; 95% CI 1,500–
64,900), our estimate is closer to that obtained based on an-
cient DNA data (fig. 3).

An important feature of our study is that we combined
information from genome-wide scans for selection and
genome-wide association studies (GWAS) of common phe-
notypes to choose advantageous alleles with known pheno-
typic effects. Given the rapid growth of genome-scale
sequence data and GWAS, this integrated approach promises
to shed new light on the selective pressures that shaped dif-
ferent biological processes and phenotypes with the ultimate
goal of reconstructing a broad narrative for the history of
human functional evolution (Carroll 2003).

It has long been hypothesized that the spread of agricul-
ture and the adoption of animal farming led to major in-
creases in pathogen exposures and, as a consequence, in
the frequency of alleles associated with stronger immune re-
sponse (Armelagos and Harper 2005). Consistent with this
proposal, most alleles associated with selection signals and
with autoimmune diseases increase risk and only a minority
of such advantageous alleles is protective (Barreiro and
Quintana-Murci 2010; Casto and Feldman 2011). Our findings
support this scenario in that the three advantageous alleles
that increase disease risk are incompatible with an onset of
selection at the dispersal out-of-Africa and are markedly more
likely to have arisen during the spread of agriculture.
Interestingly, we infer that an advantageous allele that pro-
tects against autoimmune diseases is older than the spread of
agriculture, leading us to speculate that a less reactive
immune system was beneficial in a different, earlier phase
when human populations first expanded out-of-Africa into
northern latitudes. This transition was likely associated with a
reduction in pathogen levels, which in turn resulted in selec-
tion to change the set point for the immune response
(Pennington et al. 2009). Interestingly, the correlation be-
tween pathogen diversity and latitude was shown to be
due to the effects of climate factors, for example, temperature
and precipitation rate (Guernier et al. 2004). Consistent with a
role for climate factors as major determinants of pathogen-
related selective pressures, many alleles associated with auto-
immune diseases are also strongly correlated with climate
variables (Hancock et al. 2011). In line with this proposal,
several inflammation phenotypes are more common or
more severe in individuals of African ancestry. These include
benign neutropenia (Haddy et al. 1999; Hsieh et al. 2007),
which was shown to be associated with an advantageous
allele at near-fixation frequency in sub-Saharan Africa
(Reich et al. 2009), a weaker response to the anti-inflamma-
tory effects of glucocorticoids (Chan et al. 1998; Federico et al.
2005; Maranville et al. 2011), and higher levels of C-reactive

protein, which is a biomarker of inflammation (Albert et al.
2004; Kelley-Hedgepeth et al. 2008).

An onset of selection more recent than the spread of ag-
riculture can be ruled out for all the pigmentation SNPs, and
for two of these three SNPs (i.e., rs12913832 and rs16891982),
selection prior to the dispersal out-of-Africa is by far the most
likely scenario, consistent with the idea that light pigmenta-
tion alleles were driven to high frequency when humans
moved to higher latitudes. The ages of skin pigmentation
alleles have been previously estimated based on microsatellite
(Beleza et al. 2013) and sequence variation (Soejima et al.
2006) data. Our estimate for rs1426654 at SLC24A5 is consis-
tent with those obtained by Beleza et al. (2013), but it is not
for rs16891982 at SLC45A2, with our estimate being substan-
tially older. Soejima et al. (2006) estimated the age of the
AIM1 allele to be relatively young, that is, 10,965 years, but
the confidence intervals for this estimate are compatible with
selection acting as early as 39,000 years ago (Soejima et al.
2006), similar to our estimates for the pigmentation alleles we
tested. More importantly, at least two of the pigmentation
SNPs show marked discrepancies with the ancient DNA data.
This is not surprising given that we used a simplified model of
European history that does not take into account the com-
plex ancestries of these populations (Allentoft et al. 2015;
Haak et al. 2015) and the distribution of selective pressures
across Europe. In particular, recent work has shown that sub-
stantial geographic structure was present with regard to pig-
mentation among European hunter-gatherers as well as
between these and the farmer populations (Mathieson et
al. 2015). Therefore, there is still substantial uncertainty
about the history of selective pressures acting on human
pigmentation traits. Additional contemporary and ancient
DNA data may help clarify the tempo and mode of evolution
of these traits.

An example of how to use ancient DNA data to learn
about allele age estimates was provided by the study of
Sams et al. (2015), which estimated the ages of neutral alleles
and tested the accuracy of these estimates using data from a
single ancient DNA sample. However, for positively selected
alleles, t and s need to be considered jointly to model the allele
frequency trajectory (Slatkin and Rannala 2000). The ABC
approach we developed here is appropriate for this goal be-
cause it generates a joint posterior probability distribution of t
and s for each SNP from which parameters can be sampled to
obtain expected allele frequencies at any given time point in
the past. The expected allele frequencies can then be com-
pared with those estimated based on ancient DNA data. In
the case of the SNPs tested here, this comparison increases
the confidence in our age estimates.

In summary, our study is an example of how sequence
variation data coupled with inferential approaches that ac-
count for the complexities of human population history may
begin to illuminate hypotheses about the evolution of selec-
tive pressures acting on different phenotypes. The growing
catalog of GWAS provides invaluable information regarding
the genetic bases of many phenotypes that were likely targets
of natural selection during human evolution, but little is
known about the history of these selective pressures. The
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analysis of a larger group of variants associated with a specific
phenotype (e.g., risk to autoimmune diseases, height, etc.)
could reveal broadly consistent patterns of allele ages, thus
providing strong evidence for a given evolutionary scenario.
Investigation of other GWAS SNPs will also require extending
the ABC approach to cases in which selection acted on stand-
ing variants that previously were not or were only weakly
affected by selection, as already investigated by Peter et al.
(2012).

Materials and Methods

Sequence Capture and Ultra-High Depth Sequencing
of the Regions Spanning rs6822844, rs3184504, and
rs12913832

DNA of 14 unrelated CEU individuals was purchased from the
Coriell Cell Repository (http://ccr.coriell.org). In order to im-
prove the accuracy of the allele age estimation, individuals
were chosen to oversample the selected allele at each of the
targeted SNPs, that is, rs6822844, rs3184504, and rs12913832
(supplementary table S1, Supplementary Material online).
Despite the nonrandom sampling, the average levels of link-
age disequilibrium (LD) between the two autoimmunity
SNPs, as measured by the correlation coefficient r2, were sim-
ilar to those within the complete sample of unrelated CEU
individuals.

The genomic segments to be captured were defined based
on the decay of LD surrounding each targeted SNP. More
specifically, r2 values were calculated using the CEU
HapMap data between each targeted SNP and all the SNPs
within 2 Mb to obtain a map of LD decay. The genomic seg-
ment to be captured was chosen so that no SNP outside the
segment had an r2 value greater than 0.2 with the focal SNP.
The coordinates of the three segments were (hg_18) as fol-
lows: chr4:122729299–123782528 (rs6822844; 1.053 Mb);
chr12:109769404–111681303 (rs3184504; 1.911 Mb), and
chr15:25542017–26213429 (rs12913832; 0.671 Mb) (supple-
mentary fig. S1 and table S2, Supplementary Material
online). Unique probes were designed using the SSAHA algo-
rithm (Ning et al. 2001) with an average length of ~85 bp to
capture the targeted regions avoiding repetitive elements. Of
the targeted regions, 72.3% were directly covered by probes,
and 86.5% of the regions were either directly covered or
within 100 bp of a probe. The standard NimbleGen array
capture protocol (Albert et al. 2007) was modified to allow
sequencing on the Illumina Genome Analyzer II (Almomani
et al. 2011). For each sample, an Illumina paired end (PE)
library was created following the manufacturer’s instructions
with minor modifications. Sequence capture was done ac-
cording to Roche NimbleGen’s instructions. Each sequencing
library was run on a lane of an Illumina Genome Analyzer II,
which generated an average of 70 M 76 bp PE reads per lane
(supplementary table S3, Supplementary Material online).

Sequence Data Processing

BWA 0.5.9rc1 (Li and Durbin 2009) was used to align the
sequence reads to the human reference genome sequence
(build National Center for Biotechnology Information 36;

NCBI36) that was obtained from the Genome Analysis Tool
Kit (GATK) website. Alignment and variant calling was per-
formed following GATK’s “Best practice for variant detection
v. 2” and using default parameters except that –a 600 was
used for the alignment step (bwa sampe). The duplicate reads
(i.e., read pairs with the same orientation and alignment po-
sition) were removed using Picard. Genotype calls that did
not fulfill the following criteria were removed: (1) QUAL� 50;
(2) HRun� 5; (3) MQ0� 4 or MQ0� 0.1�DP; (4) PLAA/
PLAB or BB� 20, where AA is the most likely genotype; (5)
“not in cluster” of 3 SNPs within 10 bases; and (6) not inside
an indel. Genotype data were imputed and phased using
IMPUTE2 (Howie et al. 2011) with the CG data as the refer-
ence panel; first, we used the CG haplotypes to help phase our
sequence data at shared SNP sites between the two data sets.
Second, we imputed our data based on the CG haplotypes
and used the haplotypes phased in the first step as a scaffold
for phasing private SNP sites to our data. Third, we removed
the imputed SNP sites (i.e., private SNP sites to CG) from the
phased haplotypes.

We downloaded the CG data for CEU including 32 trios
from ftp.1000genomes.ebi.ac.uk:/vol1/ftp/release/20130502/
supporting/cgi_variant_calls/filtered_calls/ (last accessed July
2015). First, we extracted a region included within 2.5 Mb
upstream and downstream to each of eight focal SNPs. We
then removed SNPs with missing genotypes or Mendelian
errors. Third, we phased the data for the parents of each
trio using the SHAPEIT2 with the pedigree information
(Delaneau et al. 2012, 2013), thus providing a total of 64
unrelated individuals. This strategy increases phasing accuracy
by combining both transmission and LD information, and it
mirrors the approach used to generate the high-quality
HapMap CEU haplotypes (Marchini et al. 2006). To compare
sequence data for three regions including rs6822844,
rs3184504, and rs12913832 between CG and CapSeq, we pre-
pared the CG data that had the same coordinates as CapSeq.
For the five SNPs analyzed using only the CG data, we used
the sequence data for a region 500 kb upstream and down-
stream of the focal SNP site and processed the data as for the
initial set of three SNPs.

Allele Age Estimation by ABC

We developed an ABC method to estimate the age of a new
selected allele by incorporating coalescent-based simulations
into the local linear regression (Beaumont et al. 2002). We
provide details of the ABC method in supplementary text S2,
Supplementary Material online. Briefly, simulations of natural
selection acting on a new mutation were run using mssel
(program available from R. Hudson upon request), a modified
version of ms (Hudson 2002), which allows recombination
and complex demography. First, we generated trajectories
for a focal SNP by Wright–Fisher forward simulations. Every
trajectory started at frequency 1/2Ne using a t value that was
sampled from a prior proportional to the population size
under the demographic model inferred by Li and Durbin
(2011) for a CEU individual. The selection coefficient s was
sampled from a uniform distribution between�0.01 and 0.1.
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We only accepted a trajectory if the frequency at present was
compatible with observed one. Otherwise, we sampled a new
value of s. This process generates a conditional prior on s that
we use in the subsequent step of the ABC estimation of t.
Second, we generated neutral variation around the SNP by
coalescent simulations conditional on the trajectory. For each
simulation, we chose 28 and 128 chromosomes, respectively,
for the CapSeq or the CG data, with the frequency of the
selected allele matching the frequency of the targeted alleles
in the corresponding data set (supplementary table S6,
Supplementary Material online).

For the three regions analyzed in both CapSeq and CG data
sets (rs6822844, rs3184504, and rs12913832), we took into
account the features of the genomic regions and the data
processing (i.e., gap exclusion, phasing) in the coalescent sim-
ulations. Specifically, we simulated a subset of the surveyed
length (i.e., subregions), which was delimited either by the
edge of the surveyed segment or by the presence of a
strong recombination hotspot (i.e., a region with 430�
the background recombination rate). The length of the sim-
ulated subregions was 680 kb, 1.6 Mb, and 350 Kb for
rs6822844, rs3184504, and rs12913832, respectively (supple-
mentary fig. S2, Supplementary Material online, and table 1).
For the five SNPs analyzed using only the CG data (rs4988235,
rs1426654, rs16891982, rs17810546, and rs2188962), we first
retrieved 1 Mb region centered on each focal SNP site and
then removed flanking regions if there are recombination
hotspots (supplementary fig. S2, Supplementary Material
online). To take into account the uncertainty in the mutation
rate (�), we sampled� from a truncated normal distribution
in which the variance was the square of the mean and the tails
were truncated at half of the mean and at 1.5 times the mean.
The mean of the distribution was set at the estimate based on
the number of fixed derived alleles in the 1KG data identified
using the alignment of human, chimpanzee, orangutan, and
rhesus macaque, assuming a divergence time between human
and chimpanzee of 5 Ma and an ancestral population size of
12,500 diploid individuals (Patterson et al. 2006; Hobolth et al.
2007, 2011; Scally et al. 2012). The estimates for the popula-
tion recombination rate parameter for each region were ob-
tained from Myers et al. (2005) inferred from HapMap data;
because the genomic segments that we considered do not
contain strong hot spots, these estimates were assumed to
apply uniformly in our simulations. The parameter values
used in the simulations are given in supplementary table
S6, Supplementary Material online. We tested the sensitivity
of the inference to various assumptions and aspects of the
data (i.e., the effect of complex demography, sample size,
phasing uncertainty, and missing data) in supplementary
text S4, Supplementary Material online.

We retained the 1,500 simulations (from the 1.5M simu-
lations) that were closest to our observed data based on three
SSs: 1/LH, MH, and RH. These SSs were chosen based on an
initial exploration of a broad range of SSs to identify a subset
that contains information about allele ages (supplementary
text S3, Supplementary Material online). These SSs were cal-
culated only for the haplotypes carrying the derived allele at
the selected site, which will be referred to as “selected

haplotypes”, and for the genomic region defined by the po-
sitions away from the selected allele where the EHH declines
to 0.05, which will be referred to as the “selected region.” 1/LH

is defined as the inverse of the genetic length of the selected
region (Sabeti et al. 2002). MH is defined as the average
number of mutations within the selected region divided by
the physical length of the region. MH is proportional to the
estimator of age described by Thomson et al. (2000) and is
proportional to the number of mutations that have occurred
on the selected haplotypes since the most recent common
ancestor of these haplotypes. RH is defined as the number of
singletons divided by the total number of segregating sites in
the selected haplotypes over the selected region. Therefore,
1/LH captures the idea of the “haplotype homozygosity decay”
method (Sabeti et al. 2002), while MH is related to the infor-
mation captured by the “counting” method (Thomson et al.
2000). RH was included because the allele frequency spectrum,
and in particular the number of singletons, depends on both
demography and selection; because all simulations assumed
the same demographic model, RH reflects the effect of
selection.

The accepted values of t and s for each region were ad-
justed by local linear regression, as implemented in the R
package “abc” (Csilléry et al. 2012). Then, we applied the
Gaussian kernel density estimation with a bandwidth
chosen following Silverman’s “rule of thumb” (Silverman
1986) to generate the posterior distributions. To evaluate
the fit of the model with the observation from each of the
SNPs, we generated distributions of SSs by simulating data
from the posterior distributions that we estimated by ABC
and tested if the observed SSs were included within the var-
iation of simulated SSs (supplementary text S2 and figs. S9–
S10, Supplementary Material online). We further investigated
if the estimated posterior distributions depend on the prior
by comparing our results with those obtained using a uniform
prior distribution (supplementary fig. S11, Supplementary
Material online).

Comparison with the Ancient DNA Record

We estimated the past frequency of eight SNPs using ancient
DNA data. First, we retrieved aligned sequence reads (BAM
files) of ancient European samples from different ages
(Lazaridis et al. 2014; Skoglund et al. 2014; Allentoft et al.
2015; Haak et al. 2015). Second, the age of each sample was
defined as the one reported by the original publication by
either using radiocarbon dating or from other archaeological
evidence; samples were excluded from downstream analysis if
age estimates were unavailable. Samples were then classified
in five different periods based on the upper value of the age
estimates. The total number of samples in each period was
31 in 8-7 kya, 25 in 6-5 kya, 72 in 5-4 kya, 36 in 4-3 kya, and 6
in 3-1 kya. Third, we estimated the reference allele frequency
in each period using a likelihood function, described by
Mathieson et al. (2015) (fig. 3). The CG allele frequency rep-
resents the frequency in the contemporary populations. All
the allele counts in the ancient DNA data sets are available at
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the Ancient Human Genome Archive (http://genome-data.
cri.uchicago.edu/ahga/; last accessed July 2015).

To evaluate if the frequency observed in the ancient DNA
data is consistent with the estimates from our ABC, we
simulated 10,000 trajectories for each SNP, conditional on
their current frequency, by sampling t and s from the
joint posterior distribution (supplementary figs. S8 and S12,
Supplementary Material online). The trajectory started at
t with the frequency 1/2Ne, and the frequency changed
under the Wright–Fisher model with the corresponding
value of s. We calculated the average allele frequencies at
the lower bound of each period (7, 5, 4, 3, or 1 kya) as well
as 95% confidence intervals to compare with the allele fre-
quency estimated using ancient DNA data (fig. 3). If we esti-
mated the allele frequencies at each time point by using
frequency as a parameter in the ABC, we obtained virtually
identical posterior distributions (data no shown).

Data Access
All raw sequencing reads can be retrieved from the NCBI
Sequence Read Archive (http://trace.ncbi.nlm.nih.gov/
Traces/sra/sra.cgi) under accession no. SRP017764.

Supplementary Material
Supplementary texts S1–S4, figures S1–S12, and tables S1–S7
are available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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