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Abstract

The source of genetic novelty is an area of wide interest and intense investigation. Although gene duplication is con-
ventionally thought to dominate the production of new genes, this view was recently challenged by a proposal of
widespread de novo gene origination in eukaryotic evolution. Specifically, distributions of various gene properties
such as coding sequence length, expression level, codon usage, and probability of being subject to purifying selection
among groups of genes with different estimated ages were reported to support a model in which new protein-coding
proto-genes arise from noncoding DNA and gradually integrate into cellular networks. Here we show that the genomic
patterns asserted to support widespread de novo gene origination are largely attributable to biases in gene age estimation
by phylostratigraphy, because such patterns are also observed in phylostratigraphic analysis of simulated genes bearing
identical ages. Furthermore, there is no evidence of purifying selection on very young de novo genes previously claimed to
show such signals. Together, these findings are consistent with the prevailing view that de novo gene birth is a relatively
minor contributor to new genes in genome evolution. They also illustrate the danger of using phylostratigraphy in the
study of new gene origination without considering its inherent bias.
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Introduction
Different species tend to have different numbers of genes. The
human genome, for instance, has somewhere between 19,000
and 25,000 protein-coding genes (Hattori 2005; Ezkurdia et al.
2014). By contrast, there are approximately 13,000 protein-
coding genes in the genome of the fruit fly Drosophila mela-
nogaster (Misra et al. 2002). There is some amount of overlap
between these two gene sets, but there are also genes unique
to each of the two organisms. The question of how these
differences in gene number and content arise has been an
area of interest and investigation for decades (Nei 1969; Ohno
1970; Wolfe 2001; Long et al. 2003; Zhang 2003, 2013;
Kaessmann et al. 2009). In general, these differences are at-
tributable to differential gene gains and losses in different
evolutionary lineages. In terms of gene gains, three distinct
mechanisms are known: Horizontal gene transfer, gene (and
genome) duplication, and de novo gene birth. Although the
first two mechanisms and their contributions to organismal
adaptation have been abundantly documented (Koonin et al.
2001; P�al et al. 2005; Zhang 2013; Qian and Zhang 2014), the
arising of genes from nongenic material through de novo
gene birth (Tautz and Domazet-Lošo 2011) was thought
nigh-impossible for a long time (Jacob 1977). Although the
last decade has seen the discovery of de novo gene birth in
several species (Levine et al. 2006; Begun et al. 2007; Cai et al.
2008; Heinen et al. 2009; Knowles and McLysaght 2009; Xiao
et al. 2009; Li, Zhang, et al. 2010; Wu et al. 2011; Yang and
Huang 2011), the number of reported cases remains small.

Because horizontal gene transfer merely transfers genes be-
tween species, gene duplication is commonly regarded as the
dominant source of new genes whereas de novo gene birth is
thought to have a minimal contribution.

The above view was recently challenged by Carvunis et al.
(2012), who claimed that de novo gene birth is common in
evolution and is a larger source of new genes than gene du-
plication. Specifically, they proposed that nongenic sequences
are spuriously transcribed and translated, and the protein
products may by chance possess biological functions, which
could be selected for, resulting in a gradual enhancement of
the protein function in evolution. They named the open-
reading frames (ORFs) that are transcribed and translated
but have not fully established their functions as proto-genes.
They asserted that their model predicts a number of trends as
proto-genes gradually age, including, for example, increases in
ORF length, expression level, codon usage bias, and probabil-
ity of being under purifying selection. The ideal test of their
hypothesis would be to conduct laboratory evolution exper-
iments and watch in real time how a nongenic sequence
turns into a functional protein-coding gene. But because
such evolutionary events are expected to be rare and the
evolutionary processes slow, the authors took an indirect
approach by comparing various properties among different
age groups of proto-genes and genes from the genome of the
budding yeast Saccharomyces cerevisiae, where gene ages
were estimated using phylostratigraphy (Domazet-Lošo
et al. 2007). In phylostratigraphy, the age of a gene from a
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focal species is defined by the time since the divergence be-
tween the focal species and its most distantly related taxon in
which a homolog of the gene is found by a commonly used
homology detection tool such as BLAST. Carvunis et al. re-
ported that multiple trends predicted by their model were
observed. The same claim was made in a similar study of
vertebrates (Neme and Tautz 2013). Carvunis et al. further
noted that 143 proto-genes originated in S. cerevisiae since its
divergence from its sister species S. paradoxus and 19 of them
are under purifying selection in S. cerevisiae. By contrast, they
noted that no more than five genes were estimated to have
been generated by gene duplication in the same period of
time. These results led Carvunis et al. to conclude that de
novo gene birth is widespread and is a bigger source of new
genes than is gene duplication. A subsequent study based on
a similar analysis of age distributions of gene properties sug-
gested that proto-genes are gradually integrated into cellular
networks by for instance gradual gains of protein interactions
and genetic interactions (Abrus�an 2013).

Although nothing is wrong with the theoretical model of
de novo gene birth, whether the reported genomic patterns
signify de novo gene birth and subsequent evolution is ques-
tionable for two reasons. First, some of the asserted predic-
tions from the de novo gene birth model do not seem to be
definitive. For example, it is unclear why the ORF of a gene
should continually increase in length with time. Although it is
easy to imagine scenarios where length increases are benefi-
cial, one can also come up with situations where length re-
ductions are advantageous. Because of the frequency of stop
codons in random sequences, it is likely that a de novo gene is
short and will increase in length in its early lifespan as a proto-
gene. But it is not clear that this trend would be monotonic or
prolonged for hundreds of millions of years. Once a function
is established, why would increasing rather than decreasing its
length tend to enhance or refine its function? Even if increas-
ing the ORF length is beneficial to the functional refinement
of a proto-gene, why should the length continue to rise even
long after the proto-gene has become a well-established gene
(e.g., when the gene is over 500 My old), as was observed by
Carvunis and colleagues? Second, phylostratigraphy tends to
underestimate gene age and the probability and amount of
underestimation differ among genes (Moyers and Zhang
2015). For example, the probability of age underestimation
decreases with the increase of ORF length, which could in
principle explain Carvunis et al.’s observation of a gradual
increase in ORF length with the estimated gene age. In this
work, we show that the age distributions of various gene
properties supporting widespread de novo gene birth are in
fact largely attributable to age estimation errors created by
phylostratigraphy. As such, there is no valid evidence to date
for a larger contribution of de novo gene birth than gene
duplication to new gene origination.

Results

Phylostratigraphy of Simulated Genes
To examine whether gene age estimation error caused by
phylostratigraphy could create spurious age distributions of

gene properties resembling Carvunis et al.’s observations, we
conducted a computer simulation of the evolution of all
S. cerevisiae protein sequences along the tree shown in
figure 1A using protein-specific parameters for site-specific
rates and overall evolutionary rate. All S. cerevisiae protein
sequences were simulated to have orthologs in all of the
species shown in the tree (fig. 1A). That is, they all have the
same age of 10, and there is no de novo gene origination in
our simulation. We then applied phylostratigraphy to esti-
mate the ages of the S. cerevisiae proteins by BLASTing them
against the simulated sequences in all other species. These
ages are referred to as estimated ages of simulated proteins
(fig. 1B). We subsequently computed age distributions of var-
ious properties of S. cerevisiae proteins using the above esti-
mated ages (figs. 2 and 3). Note that we used the properties
provided by Carvunis et al. for each S. cerevisiae protein in
these distributions; the only difference is the estimated gene
age. In other words, we ask what would be the observed age
distributions of gene properties if all S. cerevisiae genes have
the same true age with no de novo gene birth. If the age
distributions we observed resemble what Carvunis et al. ob-
served, their observations cannot be used to support the de
novo gene birth hypothesis because these observations are
expected even in the absence of de novo gene birth.

To derive protein-specific parameters for simulation, we
acquired 5,261 published orthologous protein sequence align-
ments from five sensu stricto yeast species (S. cerevisiae,
S. paradox, S. mikatae, S. kudriavzevii, and S. bayanus)
(Scannell et al. 2011). For each of these proteins, we estimated
the mean substitution rate per amino acid site and the substi-
tution rate at each site relative to the mean rate of the protein
(see Materials and Methods). These parameters were used in
the simulation of the evolution of the protein (see Materials
and Methods). For 619 S. cerevisiae proteins that do not have
homologs in all five sensu stricto yeast species, we simulated
their evolution in a conservative manner by sampling rate
heterogeneity patterns and mean evolutionary rates from
sensu stricto restricted proteins (see Materials and Methods).
In all, we simulated the evolution of all 5,878 proteins present
in the Carvunis et al. data set. The genetic distance of simulated
orthologous proteins matches well that of real proteins (sup
plementary fig. S1, Supplementary Material online).

Because the true ages are 10 for all genes in the simulation
(fig. 1A), any observed age distribution in which not all genes
are in age group 10 is spurious. We found that, for 11.4% of
simulated proteins, a homolog could not be found in the
most distant species considered (Schizosaccharomyces
pombe) (fig. 1A), which was estimated to diverge from
S. cerevisiae approximately 788 Ma (Heckman et al. 2001;
Hedges et al. 2006). The error rate of 11.4% is likely an under-
estimate, because a portion of our genes were evolved in a
conservative manner (see Materials and Methods) and be-
cause we assumed that each site has a fixed substitution rate
throughout its evolution, which is known to result in an un-
derestimation of the error rate (Moyers and Zhang 2015). Of
the 669 simulated proteins whose ages were underestimated
by phylostratigraphy, 185 had estimated ages of 1–4 (fig. 1B).
These genes would therefore be considered “candidate proto-
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genes” under Carvunis et al.’s definition, although they orig-
inated hundreds of millions of years ago in our simulation.
Most strikingly, phylostratigraphy determined that two of
these genes are S. cerevisiae-specific, despite that they origi-
nated in the common ancestor of S. cerevisiae and Sc. pombe.
Nevertheless, the number of genes with estimated age 1–9 is
greater in the actual data than in the simulated data (fig. 1B).
Although this disparity may indicate the presence of some de
novo genes, it may also be due to the fact that our simulation
is conservative. That is, evolutionary processes that are not
simulated here, such as gene duplication followed by rapid
divergence and changes in the evolutionary rate of a site
during evolution, could be responsible for this disparity.

Age Distributions of Six Gene Properties with
Statistical Support
We next compared the age distributions between the real
genes and simulated genes for each gene property used by
Carvunis et al. as evidence for their model of widespread de
novo gene birth. If the age distributions for a gene property
are similar between the real genes and simulated genes, the
age distribution observed by Carvunis et al. for the real genes
can be explained by phylostratigraphy errors and hence can-
not be used to support their model.

We first examined the six trends for which statistical sup-
port was previously provided (Carvunis et al. 2012). These
trends are significant increases in ORF length (fig. 2A),
mRNA abundance (fig. 2B), proportion of genes in proximity
of transcription factor (TF)-binding sites (fig. 2C), proportion
of genes under significant purifying selection (fig. 2D), pro-
portion of genes with optimal AUG context (fig. 2E), and
codon adaptation index (CAI) (fig. 2F) with gene age esti-
mated through phylostratigraphy. Here, proportion of genes
under significant purifying selection was determined by test-
ing the action of purifying selection on each gene based on
sequence polymorphisms among eight S. cerevisiae strains. All

gene properties are defined as in Carvunis et al. (2012) and the
property data were acquired from the authors. We found
that, although qualitative appearances differed between the
real and simulated data in these age distributions (fig. 2),
statistical trends, quantified by Kendall’s s as in (Carvunis
et al. 2012), were almost identical between the two (table
1). Kendall’s s was used following Carvunis et al. Using
Spearman’s q did not alter our results. Both effect size (i.e.,
correlation coefficient) and significance level were reasonably
well matched. This implies that the observed statistical trends
of various gene properties with regard to gene age can be
largely explained by gene age estimation errors.

Carvunis et al. included in their analysis approximately
108,000 so-called small ORFs (smORFs) that were arbitrarily
assigned the age of 0. These S. cerevisiae smORFs are not
annotated genes, are at least 30 nt long, and are free from
overlap with annotated features on the same strand. The
similarity in the above six trends between real and simulated
data holds whether or not these smORFs were included in
our analysis (table 1).

Some of the S. cerevisiae genes analyzed are paralogous to
one another, but our simulation and subsequent phylostratig-
raphy treated them as unrelated genes, rendering our result
from the simulated data not directly comparable with that
from the real data. To solve this problem, we performed an
all-against-all BLASTP search of the original S. cerevisiae proteins
and recorded paralogous relationships. From this information,
we used the oldest age among each gene family as the age of all
genes in that family. This modification of phylostratigraphically
estimated gene age on our simulated data did not change our
results on the genomic trends studied above (table 1).

Age Distributions of Four Gene Properties without
Statistical Support
Carvunis et al. (2012) also reported four additional trends
without providing statistical support, including changes in

FIG. 1. Computer simulation for examining phylostratigraphic errors. (A) Tree used in the simulation of protein sequence evolution. The tree,
including relative branch lengths, follows Wapinski et al. (2007). Node label refers to the age group corresponding to that node. (B) Numbers of
genes estimated to belong to each age bin for real and simulated protein data. Numbers of genes in bins 1–10 for simulated protein data are 2, 6, 6,
171, 33, 222, 119, 36, 74, and 5,209, respectively. Numbers of genes in bins 1–10 for real data, as provided by Carvunis et al., are 143, 169, 133, 314, 90,
476, 381, 78, 469, and 3,625, respectively. Carvunis et al. arbitrarily assigned 107,425 smORFs to bin 0, which is not shown here.
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FIG. 2. Age distributions of six gene properties in real and simulated proteins. (A) Average coding sequence length of genes in each age bin.
Interestingly, although the same lengths are used for the real and simulated proteins, mean length is lower for simulated than real proteins in
each bin. This is an example of Simpson’s paradox in statistics and is not due to mistakes in our analysis. (B) Mean expression level of genes in
each age bin. (C) Proportion of genes having a TF-binding site within 200 bp of the translation start site for each age bin. (D) Proportion of
genes under purifying selection for each age bin. (E) Proportion of genes with optimal AUG context for each age bin. (F) Median CAI for each
age bin.
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FIG. 3. Age distributions of four additional gene properties in real and simulated proteins. (A) Mean hydropathicity value for each age bin. (B)
Mean proportion of transmembrane regions for each age bin. (C) Mean proportion of disordered regions for each age bin. (D) Amino acid
frequency ratios between age groups.

Table 1. Correlations (Kendall’s s) between Estimated Gene Age and Various Gene Properties for Real and Simulated Proteins.

Comparison ORF Length RNA
Abundance

Proximity of TF-Binding
Sites or Not

CAI Purifying
Selection or Not

Optimal AUG
Context

Age groups 0–10a

Real proteins 0.31** 0.27** 0.11** 0.12** 0.45** 0.14**
Simulated proteins 0.31** 0.27** 0.11** 0.12** 0.45** 0.14**
Simulated proteins
(assuming oldest paralog agesb)

0.31** 0.27** 0.11** 0.12** 0.45** 0.14**

Age groups 1–10c

Real proteins 0.39** 0.26** 0.08* 0.31** 0.32** 0.13**
Simulated proteins 0.33** 0.26** 0.06* 0.21** 0.27** 0.12**
Simulated proteins
(assuming oldest paralog agesb)

0.31** 0.21** 0.04* 0.22** 0.26** 0.13**

*P < 0.05;
**P < 1E-16.
aAnalysis includes all smORFs.
bThe age of a gene is assumed to equal that of the oldest gene in the same gene family. See main text for details.
cAnalysis excludes all smORFs.
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amino acid usage, hydropathicity, proportion of transmem-
brane regions, and proportion of disordered regions with es-
timated gene age. For the majority of these, the simulated
data do not qualitatively match the real data (fig. 3A–C). A
notable exception is the patterns found in amino acid usage,
where simulated data match real data quite closely (fig. 3D).
Note, however, no explicit explanation was provided by
Carvunis et al. why these observed trends are expected
from the de novo gene birth model (see Discussion). As
such, we do not see these trends as evidence for or against
the de novo gene birth model.

Age Distributions of Gene Properties Reflecting
Genetic Integrations
Subsequent to Carvunis et al.’s study, Abrus�an used Carvunis
et al.’s data to examine the phylostratigraphy-based age dis-
tributions of a number of additional gene properties that he
proposed to reflect gradual genetic integrations of de novo
genes into cellular networks or maturation of protein struc-
tures (Abrus�an 2013). These properties included genetic cor-
egulation, number of protein–protein interactions, number
of genetic interactions, number of feed-forward loops regu-
lating a gene, number of TFs regulating a gene, epistatic
effects, percent of a protein made up of alpha-helices or
beta-sheets, and the propensity of a protein to aggregate.
Interestingly, all significant trends he found in real genes are
also significant in simulated genes, except for the case of alpha
helices (table 2). We note that, in several but not all cases,
effect sizes are comparable as well (table 2). Even in those
cases where the effect size appears quite different between
real data and simulated data, the differences do not neces-
sarily support the de novo gene birth model, because the
differences may be attributable to new genes created through
gene duplication in the real data (He and Zhang 2005).
Furthermore, it is unclear whether several of the trends ob-
served (e.g., decrease in percent in beta sheets) indicate struc-
ture maturation of de novo genes. These appear to be post
hoc explanations rather than a priori predictions of the de
novo gene birth model (see Discussion).

Number of Young Genes under Purifying Selection
Carvunis et al. (2012) noted that they observed 19 genes that
are both S. cerevisiae-specific and under within-species puri-
fying selection. Based on their new analyses (Carvunis A-R,

personal communication), this number now drops to 16. The
abundance of these genes was suggested by Carvunis et al. to
be evidence of high rates of de novo (functional) gene birth in
comparison to gene duplication (Gao and Innan 2004;
Carvunis et al. 2012).

However, we noticed that 15 of the 16 genes are each
overlapped with another gene on the opposite strand and
the overlapping regions constitute between 73% and 93% of
each of these 15 genes (table 3). The remaining gene,
YOL166C, has no overlap with any annotated gene in S. cer-
evisiae. When searching for homologs in other fungal species,
Carvunis et al. removed sections of query genes which over-
lapped. We searched for homologs using the full sequences of
these query genes and discovered that many of them are
present in other species (table 3). All hits occurred in true
ORFs in the target sequence, which were at least 80 amino
acids long and were frequently annotated and known to be
transcribed. If these 15 genes are S. cerevisiae-specific, they are
not expected to have long ORFs (�80 codons) in other spe-
cies even when the opposite strand has an overlapping gene.
Thus, we conclude that these 15 genes are not S. cerevisae-
specific and that Carvunis et al.’s results were erroneous be-
cause of their use of short query sequences that rendered
BLAST powerless.

The gene of most interest is YOL166C, because it is not
overlapped by any other gene and has no hit in any other
sequenced species. There are two major questions to be ad-
dressed about this gene. First, is there a homologous sequence
in S. paradoxus, the species known to be the closest to
S. cerevisiae, such that one can identify the source of
YOL166C? Second, is there direct evidence for translation of
this gene? To approach the first question, we looked for the
S. paradoxus genomic region aligned to S. cerevisiae chromo-
some 15, base pairs 1–2078, a region encompassing YOL166C.
No such alignment exists in this region, according to the
Saccharomyces Genome Resequencing Project (SGRP)
Genome Browser. We further checked for the homologs of
YOL166C’s neighboring genes TEL15L and YOL165C. TEL15L
found a significant hit in the S. paradoxus retrotransposons
Ty5-10p and Ty5-5p, but YOL165C had no hit in S. paradoxus.
YOL165C and YOL166C are in the subtelomeric region of
chromosome 15 in S. cerevisiae. These regions are generally
quite unstable (Brown et al. 2010), so it is not surprising that
an orthologous region could not be found. Additionally, when

Table 2. Correlations (Kendall’s s) between Estimated Gene Age and Gene Properties Purported in
Abrus�an (2013) to Reflect Genetic Integration or Protein Structure Maturation.

Real Proteins Simulated Proteins

Genetic coregulation 0.05* 0.06*
% in alpha helices 0.04* �0.01
% in beta sheets �0.08* �0.11**
Aggregation propensity �0.14** �0.15**
Number of protein–protein interactions 0.22** 0.11**
Number of genetic interactions 0.14** 0.08*
Average magnitude of epistasis 0.13** 0.08*
Number of feed-forward loops regulating a gene 0.02 0.03*
Number of TFs regulating a gene 0.02* 0.03*

*P < 0.05;
**P < 1E-16.
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BLASTed against the S. cerevisiae genome, YOL166C only finds
itself as a hit.

To approach the second question, we searched for direct
evidence of translation of YOL166C. Carvunis et al. did not
find evidence of the translation of this gene under either rich
or starved conditions based on yeast ribosome profiling data
(Ingolia et al. 2009). Several papers report changes in the
transcript concentration of YOL166C under different condi-
tions (Fisk et al. 2006), but there is no evidence that YOL166C
is expressed at the protein level. Based on these analyses,
YOL166C does not meet the strict definition of a de novo
gene (see Discussion). However, it also does not appear to be
an instance of gene duplication. This leaves open the possi-
bility that this is an example of a de novo gene birth.

A major question remains about whether or not these 16
genes are under selective constraint. Carvunis et al. esti-
mated the nonsynonymous to synonymous substitution
rate ratio on a phylogeny of eight S. cerevisiae strains and
found this ratio to be significantly lower than 1, an indica-
tion of the action of purifying selection. However, their
method is commonly used for testing selection in gene
sequences collected from different species and is inappro-
priate for testing selection in sequences from the same
species, because, for intraspecific data, different regions of
the genome can have different phylogenies due to recom-
bination. Additionally, because the majority of the se-
quence was overlapped by another gene, inferring
selective constraint can be confounded (Wei and Zhang
2015). So, in the cases of these genes, only their nonover-
lapped portions should be used to infer selection. To in-
crease the accuracy and power of selection detection, we
used 38 S. cerevisiae strains in the SGRP (Cherry et al. 2012)
and counted the number of synonymous and nonsynon-
ymous polymorphisms in the region of a gene that is non-
overlapping with other genes (table 3). Using Fisher’s exact
test, we then examined whether the ratio between the ob-
served number of nonsynonymous polymorphisms to that
of synonymous polymorphisms is significantly different

from the corresponding ratio under neutrality, which was
calculated from the potential numbers of nonsynonymous
and synonymous sites in the same region (Zhang et al.
1998). In none of the 16 genes could the null hypothesis
of neutrality be rejected in favor of the action of purifying
selection or positive selection. This is probably unsurprising,
because no evidence was found for their translation by
Carvunis et al. and these genes probably bear no protein
function. As a comparison, the same selection test was
conducted for 100 randomly picked genes classified to
age group 10 by Carvunis et al., and 86 of them were found
to be under significant purifying selection. However, these
genes are among the longest in the set. For the nonover-
lapped region of an average gene in table 3, the probability
of detecting significant purifying selection is about 2% even
when all nonsynonymous mutations are strongly deleteri-
ous. In other words, there is virtually no power to detect
purifying selection acting on such short sequences.

Discussion
The origin of new protein-coding genes from noncoding se-
quences is a fascinating hypothesis that has been supported
by the discoveries of dozens of cases of de novo gene birth in
human, Drosophila, yeast, and other species (Levine et al.
2006; Clark et al. 2007; Cai et al. 2008; Heinen et al. 2009;
Knowles and McLysaght 2009; Xiao et al. 2009; Li, Zhang,
et al. 2010; Wu et al. 2011; Yang and Huang 2011). Previous
studies established a set of criteria for identifying de novo
gene birth: 1) The candidate de novo protein-coding gene
is transcribed and translated, 2) its homologous sequence can
be found in the syntenic region in related species but the
sequence has no protein-coding capacity, and 3) the se-
quence is ancestrally noncoding (Knowles and McLysaght
2009). One should add the fourth criterion of action of nat-
ural selection for a de novo gene to be considered functional.
Satisfying all these criteria would prove de novo gene birth
beyond reasonable doubt.

Table 3. Reexamining Purported Saccharomyces cerevisiae-Specific Selected Genes.

Gene Age Based on
Full Sequence

Nonoverlapped
Length in Nucleotides (full length)

No. of Synonymous
Polymorphisms in
Nonoverlapped Region

No. of Nonsynonymous
Polymorphisms in
Nonoverlapped Region

P valuea

YBR232C 6 55 (360) 1 0 0.29
YCL046W 2 58 (324) 0 0 1.00
YDR537C 7 47 (606) 0 2 0.57
YER087C-A 7 62 (552) 0 0 1.00
YFL013W-A 5 53 (804) 1 1 1.00
YGL152C 6 71 (678) 2 2 0.58
YHL030W-A 9 49 (462) 0 2 0.57
YIL071W-A 6 111 (477) 0 0 1.00
YLR232W 9 58 (348) 1 2 1.00
YLR358C 6 50 (564) 0 1 1.00
YNL105W 10 88 (429) 0 0 1.00
YNL109W 8 50 (546) 0 0 1.00
YOL150C 8 62 (312) 0 0 1.00
YOL166C 1 339 (339) 3 3 0.37
YOR055W 6 55 (435) 0 0 1.00
YOR135C 10 91 (342) 1 0 0.30

aBased on two-tailed Fisher’s exact test of the neutral hypothesis.
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However, not all of the above criteria were used and sat-
isfied in Carvunis et al.’s study. Instead, Carvunis et al. relied on
estimating gene age by phylostratigraphy and using age dis-
tributions of various gene properties to test widespread de
novo gene birth. For their approach to work, gene age esti-
mation must be reliable and de novo gene birth must be
widespread. Unfortunately, phylostratigraphy is known to
be biased (Elhaik et al. 2006; Moyers and Zhang 2015).
Thus, only those trends that are predicted by the de novo
gene birth model but cannot be produced by phylostrati-
graphic bias may be used to support the model. But, we found
that essentially every trend reported by Carvunis et al. (2012)
and Abrus�an (2013) is explainable at least to some extent by
phylostratigraphic bias. One might argue that the age distri-
butions observed from the actual data are not exactly the
same as those observed from the simulated data, providing
evidence for the de novo gene birth hypothesis. This argu-
ment is flawed for two reasons. First, a realistic simulation
requires many parameters. Because not all parameters are
known, we conducted conservative simulations. For example,
the substitution rate of a site is unlikely to be constant in
evolution (Fitch 1971; Penny et al. 2001; Zou and Zhang 2015)
and this inconstancy increases phylostratigraphic error
(Moyers and Zhang 2015). But because of the lack of infor-
mation on the extent of this rate variation over time, we
assumed no such variation in our simulation, rendering the
phylostratigraphic error underestimated and our results con-
servative. Furthermore, the parameters chosen in simulating
genes that are not found in all five sensu stricto yeast species
also made the results conservative. Thus, the fact that the
observed trends in real data are not exactly the same as in the
simulated data does not necessarily indicate the existence of
biological signals. Second, even if a biological signal truly exists,
it does not necessarily support the de novo gene birth hy-
pothesis. For instance, in figure 2B, one can see a gray peak at
age 7, indicating that genes of age 7 have unusually high
expressions. This feature in the real data is not present in
the simulated data, so might mean a true biological signal.
Nevertheless, this signal is not predicted by the de novo gene
birth model and thus cannot be used to support the model.

A common pitfall of phylostratigraphy-based studies is to
report whatever nonrandom trends observed and then pro-
vide post hoc explanations, as if all nonrandom trends have
biological meanings. The problem of these kinds of explana-
tions has been pointed out in other contexts (Pavlidis et al.
2012). Carvunis et al.’s and Abrus�an’s studies also fall into this
trap. Many of the trends they reported are not predicted a
priori from the de novo gene birth model. These trends in-
clude ORF length in figure 2, all four properties in figure 3,
genetic coregulation, % alpha helices, and % beta sheets in
table 2. As mentioned, there is no particular reason why the
refinement of the biological function of an ORF has to occur
by increasing the ORF length rather than decreasing the
length. Similarly, there is no prediction that as proto-genes
age and mature, the mean hydropathicity should decrease,
trans-membrane fraction of the protein should decrease, dis-
ordered fraction should increase, and certain amino acid fre-
quencies should increase or decrease. In fact, the authors offer

no explanation of why these trends are expected under the de
novo gene birth model. Even for the trends that may be
predicted by the de novo gene birth model, one cannot ex-
plain why some of them continue even for genes with age 10
(e.g., expression level and CAI), as if the maturation of de novo
genes takes more than 500 My. Phylostratigraphic error re-
mains the simplest and best explanation of the observed
trends, whether or not they are predicted from the de
novo gene birth model.

One might ask why phylostratigraphic error could result in
seemingly nonrandom age distributions of so many gene
properties. Based on the property of BLAST search, we pre-
viously predicted and demonstrated that gene age underes-
timation in phylostratigraphy is more severe when the
protein under investigation is shorter or evolves faster
(Moyers and Zhang 2015). Thus, the increase in ORF length
with age observed in the simulated data (fig. 2A) is a known
bias of phylostratigraphy. Lower protein evolutionary rates
are caused by stronger purifying selection, so it is unsurprising
that phylostratigraphic error causes a positive correlation be-
tween gene age and proportion of genes under purifying se-
lection (fig. 2D). Because protein evolutionary rate is strongly
negatively correlated with its mRNA expression level (Zhang
and Yang 2015), mRNA expression level must also impact
phylostratigraphic error, as seen in our simulated data (table
1). Hence, a positive correlation between gene age and ex-
pression level (fig. 2B) reflects an expected bias of phylostra-
tigraphy. Phylostratigraphic error is also expected to create a
positive correlation between gene age and CAI (fig. 2F), be-
cause CAI is positively correlated with gene expression level
(Sharp and Li 1987). Because the expression level of a gene is
positively correlated with the probability that the gene is in
proximity of TF-binding sites (Wong et al. 2015) (s¼ 0.094 in
our data, P < 1E-300), phylostratigraphic error also causes a
positive correlation between gene age and proportion in
proximity of TF-binding sites (fig. 2C). It was reported
(Miyasaka et al. 2002) and confirmed here that the expression
level of a gene is positively correlated with the probability that
the gene has an optimal AUG context (s¼ 0.057, P < 1E-
300), potentially explaining why a positive correlation be-
tween gene age and proportion in optimal AUG context is
created by phylostratigraphic error (fig. 2E). Amino acid usage
is known to be correlated with gene expression level (Akashi
and Gojobori 2002), potentially explaining the observed
trends in figure 3D. In fact, we found that all gene properties
examined by Carvunis et al. are significantly correlated with
one or more of the three factors that impact phylostrati-
graphic bias: ORF length, evolutionary rate, and expression
level (table 4 and supplementary table S1, Supplementary
Material online).

The contribution of de novo gene birth compared with
gene duplication to the origin of new (functional) genes is an
important subject of evolutionary genomics. Carvunis et al.
suggested that there have been 16 de novo births of func-
tional genes in S. cerevisiae since its split from S. paradoxus.
They compared this with a suggested five genes formed by
duplication in the same time period (Gao and Innan 2004),
though this duplicate gene number has since been challenged
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(Casola et al. 2012). If correct, Carvunis et al.’s comparison
would contradict the paradigm that duplication is the pri-
mary source of new genes. We found that 15 of the 16 genes
claimed by Carvunis et al. to be S. cerevisiae-specific and under
selection have homologous ORFs in at least one other species
and that none of the 16 bear significant signals of natural
selection or have evidence for translation. To our knowledge,
there are only two verified instances of functional de novo
gene births in S. cerevisiae (Cai et al. 2008; Li, Dong, et al. 2010),
whereas approximately 144 functional duplications occurred
in that time based on the inference from gene family expan-
sions since the common ancestor of sensu stricto yeasts
(Hahn et al. 2005). Although these estimates may not be
precise, gene duplication appears to surpass de novo gene
birth by 2 orders of magnitude in terms of contribution to the
number of new functional genes. Of course, apart from this
rate difference, the two mechanisms of new gene origination
may supply different kinds of genetic materials. Gene dupli-
cation confers a functional gene structure to the daughter
gene, whereas de novo gene birth provides something closer
to a blank slate, a near-random form and function that may
or may not be useful. It is possible that de novo gene births
offer a greater degree of novelty, even if they contribute less
frequently to the genome.

The investigation of de novo gene birth mechanisms brings
up the question of what is meant by a (functional) gene.
There is no shortage of answers to this question (Demerec
1933; Gerstein et al. 2007). Clearly, in the de novo gene birth
model discussed here, what is meant is a functional, protein-
coding gene. It is thus important to prove the functionality of
a gene by demonstrating that it is under purifying or positive
selection. Given the widespread transcription of intergenic
sequences in eukaryotes (Johnson et al. 2005) and widespread
translation of noncoding RNAs (at least based on ribosome
profiling data) (Ingolia et al. 2014), it is probably not rare for a
random noncoding sequence to be spuriously transcribed
and translated. For example, over 100 human pseudogenes

were reported to be translated, but the vast majority of them
are not under purifying selection at the protein level (Xu and
Zhang 2016). If one starts to call all such sequences as de novo
genes, de novo gene birth rate is expected to be high, even if
only a tiny fraction of them are functional. The real question is
the birth rate of de novo genes that have selected functions. It
is thus imperative to require the fourth criterion (natural
selection) in identifying de novo genes. Nonetheless, we rec-
ognize that statistical tests of natural selection may be pow-
erless for species-specific genes because only intraspecific
polymorphism data may be used and because newly created
de novo genes may be short. Thus, it appears that a more
productive approach to estimating the rate of de novo gene
birth is to identify de novo genes that arose in the common
ancestor of a few closely related species such as that of
S. cerevisiae and S. paradoxus rather than in S. cerevisiae.
Although Carvunis et al. and this study focused on protein-
coding genes, noncoding RNAs may also play important bi-
ological functions. It is possible that the larger part of genetic
novelty in evolution is in the aspect of noncoding RNA genes.
When searching for de novo genes in the future, it may be
beneficial to expand the scope of “gene” to include this group.

In conclusion, it is clear that de novo gene birth plays some
role in the formation of new genes in yeast, given previously
identified cases. However, compared with gene duplication,
the relative contribution of de novo gene birth to new genes
is minor. Moving forward, evidence for de novo gene birth will
need to be evaluated gene by gene based on the criteria
mentioned rather than in aggregate, because current geno-
mic studies for these trends are insufficient and confounded
by phylostratigraphic error.

Materials and Methods

Yeast Genes
For simulation of sequence evolution, we acquired 5,261
orthologous sequence alignments in protein format from

Table 4. Correlations (Kendall’s s) between Various Gene Properties and Three Properties Known to
Bias Phylostratigraphy, Using Genes in Age Groups 1–10.

Evolutionary Rate ORF Length Expression Level

TF-binding sites �0.09* 0.02* 0.08*
CAI �0.33** 0.15** 0.26**
Optimal AUG context �0.14** 0.05* 0.14**
Purifying selection �0.22** 0.37** 0.09**
Mean hydropathicity 0.03* �0.14** �0.10**
Percent in disordered regions 0.05* 0.13** 0.01
Percent in transmembrane regions 0.07* �0.07* �0.07*
Genetic coregulation �0.10** 0.03* 0.07*
Number of TFs �0.07* 0.02* 0.02*
Number of feed-forward loops �0.07* 0.02 0.03*
Percent alpha helices �0.05* �0.07* 0.09**
Percent beta sheets �0.01 �0.22** 0.03*
Aggregation propensity 0.05* �0.06* �0.11**
Number of protein–protein interactions �0.23** 0.11** 0.15**
Number of genetic interactions �0.11** 0.11** 0.04*
Average magnitude of epistasis �0.12** 0.05* 0.10**

*P < 0.05;
**P < 1E-16.
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the sensu stricto group of yeast species from http://www.
saccharomycessensustricto.org/current//aligns/coding_all
files.fasta.tgz last accessed January 25, 2016 (Scannell et al.
2011). Except for two alignments, all contain five ortholo-
gous sequences from five sensu stricto yeast species. The
simulation of the 5,259 genes that have alignments of five
sequences used parameters estimated from the alignments.
The simulation of other genes in S. cerevisiae used param-
eters estimated from a set of sensu stricto restricted genes.

To identify sensu stricto restricted genes, we acquired pro-
tein databases of four yeast species outside of the sensu
stricto group. These species were S. castellii and S. kluyveri,
downloaded from the Saccharomyces Genome Database
(SGD) at http://www.yeastgenome.org/download-data/se
quence last accessed January 25, 2016 (Cherry et al. 2012),
as well as Kluyveromyces thermotolerans and
Zygosaccharomyces rouxii, acquired from the Genolevures
Consortium (Souciet et al. 2009). Using the alignments ac-
quired from Scannell et al.(2011), we created five databases,
one for each of the sensu stricto species. We then performed
a BLASTP (E value ¼ 0.01, in following with Carvunis et al.)
search using each of these individually as a query, and the
target being an aggregate of the S. castellii, S. kluyveri, K.
thermotolerens, and Z. rouxii proteins. We identified proteins
for which none of the five sensu stricto yeast homologs found
a hit in the target database, amounting to 148 genes. These
148 genes exist in all five sensu stricto yeasts but are not found
in the four outgroup species. Although homology detection
error may explain the apparent restriction of these genes to
the sensu stricto group, this is not a problem for our simula-
tion, because it is exactly our goal to identify patterns of genes
that appear to be sensu stricto restricted, whether or not they
are in reality.

Main Simulation of Evolution
The evolutionary tree including the relative branch lengths
used in simulation was from a previous study of yeast genes
(Wapinski et al. 2007). For each of the 5,259 proteins with
alignments of five sequences, we used TreePuzzle (Schmidt
et al. 2002) to classify all sites into 16 equal-sized rate bins
according to a discrete gamma model of among-site rate
heterogeneity and estimated the relative rates of the 16
bins. We also inferred the mean evolutionary rate across all
sites of the protein between S. cerevisiae and S. bayanus; all
branch lengths for the protein concerned were then esti-
mated using the relative tree branches aforementioned.
Using all of these parameters, we simulated the evolution
of these proteins using ROSE (Stoye et al. 1998), which allows
the evolutionary rate for each site to be specified by the user,
along the tree in figure 1A. ROSE evolves sequences through
amino acid substitutions and insertions and deletions (indels).
For each branch of the tree, ROSE first performs the amino
acid substitution function, and then performs the indel func-
tion. If the branch is an internal branch in the tree, it then
copies the resulting amino acid sequence to the base of each
of the two branches after the split.

We used the JTT (Jones, Taylor, and Thorton)-f model in
the ROSE simulation of protein sequence evolution, where “f”

refers to the amino acid compositions of the protein con-
cerned (Nei and Kumar 2000). Each site along the protein has
a particular relative rate. The relative rate for a site is multi-
plied by the length of the branch to obtain the expected
amount of evolution along the branch at the site. ROSE
makes substitutions based on this expected amount of evo-
lution and the substitution matrix supplied. This is repeated
for all sites along the amino acid sequence.

For indels, there are two parameters that determine indel
formation in ROSE, the indel threshold and the indel function.
The indel threshold measures how frequently indels occur
and was determined in the following manner. Taking the
alignments of the yeast sensu stricto orthologs acquired
from Scannell et al. (2011) and using a custom script, we
determined the minimum number of indels necessary to
produce the observed gapped alignments. From this informa-
tion, we determined the number of indels per amino acid,
averaged over all proteins. This indel threshold was then ap-
plied to all proteins in simulation. The indel function is a
vector that sums to 1 and gives, at each vector site i, the
probability of an indel of size i, given that an indel is occurring.
For the indel function, we took the observed frequencies of
indel sizes from 1 amino acid to 30 amino acids long (ac-
counting for>99% of all observed indels), and adjusted these
frequencies to sum to 1. Sequence simulation was performed
once for each protein.

Simulation of Other Proteins
Sequences were acquired as described above, but we could
not determine evolutionary rate or rate heterogeneity for
proteins lacking an alignment or the two proteins from
Scannell et al. (2011) that do not have alignments of all five
orthologous sequences. We used parameters estimated from
the group of sensu stricto limited genes to simulate these
proteins. To do this, we took each protein in this group and
multiplied the relative rates of all sites by the average evolu-
tionary rate for the protein. This gave us an absolute evolu-
tionary rate for each site. We then concatenated these
numerical vectors into a single vector from which we could
sample rates for each protein (supplementary fig. S2,
Supplementary Material online). We specifically sampled
the inferred absolute substitution rates of a contiguous set
of sites. From there, we performed a simulation of evolution
as described above. This simulation likely rendered our esti-
mate of phylostratigraphic error rate conservative, because on
average sensu stricto limited genes are expected to evolve
more slowly than the 619 genes which do not have homologs
in all sensu stricto species, as fast evolution is a reason for an
apparently young gene age (Moyers and Zhang 2015). Note
that smORF sequences were not simulated. Instead, they
were universally assigned to age group 0, as in Carvunis
et al. (2012).

Protein Phylostratigraphy
To perform protein phylostratigraphy, we used BLASTP with
a permissive E value of 0.01, following the methods of
Carvunis et al. (2012). We used the simulated sequences cor-
responding to S. cerevisiae as the query, and each other
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species as an independent database. We ran BLASTP searches
for each simulated species independently rather than as a
single aggregate database to increase sensitivity of homology
detection.

Carvunis et al. conducted BLASTP, TBLASTX, and
TBLASTN searches; the latter two searches require the use
of DNA sequences. We chose not to simulate the evolution of
protein-coding DNA sequences because realistic simulation
of codon sequence evolution is difficult and because protein-
based homology searches are generally much more sensitive
than DNA-based homology searches.

NCBI Homology Searches
We acquired from SGD the DNA and protein sequences of
Carvunis et al.’s 16 genes of age group 1 that were purported
to be under purifying selection. We used the NCBI BLAST tool
to perform BLASTN, TBLASTN, and TBLASTX searches
against the full nonredundant database of all species. We
restricted results to a permissive E value of 0.01, and only
considered hits that had at least 40% query coverage.

Testing Purifying Selection in 16 Young Genes
We downloaded the reference sequence for each of the 16
young genes in question from the SGD, and noted exactly
which nucleotides were not overlapped by another anno-
tated ORF. We then acquired single nucleotide polymor-
phisms (SNPs) for all chromosomes in all strains, available
at ftp://ftp.sanger.ac.uk/pub/users/dmc/yeast/latest/cere_
matches.tgz last accessed January 25, 2016. We extracted
the SNPs of 38 strains present in both the SGRP data and
the phylogeny in Liti et al. (2009). We extracted only those
SNPs for which quality score was 55 or greater, following
Carvunis et al. (2012). We modified the reference sequence
for each strain, producing FASTA files containing each strain’s
sequence. We removed all sections of the sequence which
were overlapped with another ORF. In order to retain full
codons, we removed any codon which had even partial over-
lap with another ORF. We then aligned these sequences using
MUSCLE (Edgar 2004). We performed Fisher’s exact test using
the observed numbers of synonymous and nonsynonymous
SNPs and the potential numbers of synonymous and non-
synonymous sites estimated assuming 70% of random muta-
tions are nonsynonymous (Zhang et al. 1997). In no case was
the result significantly different from the neutral expectation.

The 38 strains used are as follows: DBVPG6040, NCYC361,
S288c, W303, 378604X, YJM789, YS2, YS4, YS9, 273614N,
YIIc17_E5, RM11_1A, YJM975, YJM978, YJM981, DBVPG1853,
322134S, BC187, DBVPG6765, DBVPG1788, L-1374, L-1528,
DBVPG1106, DBVPG137, SK1, DBVPG6044, NCYC110, Y55,
UWOPS87_2421, UWOPS83_787_3, UWOPS03_461_4,
UWOPS05_227_2, UWOPS05_217_3, K11, Y12, Y9, YPS606,
and YPS128.

Other Data Sets
We were provided with various gene properties from Carvunis
et al. through email communication. We downloaded data
sets used by Abrusan (2013) from the supplementary data of
that paper. The definitions and measurements of all of these

properties were detailed in the respective publications
(Carvunis et al. 2012; Abrusan 2013).

Supplementary Material
Supplementary figures S1 and S2 and table S1 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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