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Abstract

Genome wide association studies of gene expression traits and other cellular phenotypes have been 

successful in revealing links between genetic variation and biological processes. The majority of 

discoveries have uncovered cis eQTL effects via mass univariate testing of SNPs against gene 

expression in single tissues. We present a Bayesian method for multi-tissue experiments focusing 

on uncovering gene networks linked to genetic variation. Our method decomposes the 3D array (or 

tensor) of gene expression measurements into a set of latent components. We identify sparse gene 

networks, which can then be tested for association against genetic variation genome-wide. We 

apply our method to a dataset of 845 individuals from the TwinsUK cohort with gene expression 

measured via RNA sequencing in adipose, LCLs and skin. We uncover several gene networks with 

a genetic basis and clear biological and statistical significance. Extensions of this approach will 

allow integration of multi-omic, environmental and phenotypic datasets.

Introduction

Studies of cellular phenotypes are transforming our understanding of the genetic influences 

on complex traits. Genomic screens of gene expression levels1, chromatin accessibility2, 

chromatin state3 and protein levels4 are all helping to elucidate how genetics is related to 

disease mechanisms. Over the last few years eQTL mapping has emerged as a key 

component in this research and has led to the identification of many genetic variants 

affecting gene expression. Typically, these studies involve assaying gene expression in a 
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single tissue or cell type, though multi-tissue experiments are beginning to emerge as a way 

to uncover the principles of gene regulation.

The standard paradigm for single tissue eQTL studies involves testing the expression of each 

gene or transcript against SNP genotypes in a local region to identify cis eQTLs. This 

approach has been successful, with recent large eQTL studies suggesting that there will be at 

least one cis eQTL for almost all expressed genes5. Multi-tissue approaches can increase the 

power to find cis eQTLs6, however, as cis eQTLs are estimated to account for only 30-40% 

of the heritability of expression levels7,8 there is a need to identify trans eQTLs to account 

for the remaining heritability.

The detection of trans eQTLs and networks of genes with related expression patterns is hard 

both computationally and statistically. Testing all genes against all SNPs via tens of 

thousands of genome-wide scans incurs a substantial penalty for multiple testing. In 

addition, trans eQTL effect sizes tend to be smaller than cis eQTLs making their detection 

harder9. For these reasons, scans for trans eQTLs usually work with a reduced set of genetic 

variants, such as those associated with disease traits9,10. In general, the approach of 

carrying out very large numbers of marginal statistical tests (of one SNP versus one gene at 

a time) ignores the complex structure of these datasets. The expression levels of each gene 

will likely be due to a mixture of several different sources, related to underlying biology and 

also confounding factors.

In this paper we present a novel method for the analysis of multi-tissue gene expression 

experiments, with a specific focus on identifying trans eQTLs and gene networks. The data 

from such experiments can be viewed as a ‘3D’ array, or tensor, with dimensions 

representing individual, gene and tissue (see Figure 1). Our method decomposes this tensor 

into a number of latent components (or factors) that represent major modes of variation in 

the dataset. Each of these components consists of three vectors of scores (or loadings) that 

indicate the relative contribution of each individual, gene and tissue. For example, if a 

consistent pattern of gene expression across a network of genes occurs in a subset of tissues, 

with a different magnitude in each individual, then our model aims to represent this in a 

single component. Such signals might naturally arise due to transcription factor genes that 

have multiple targets throughout the genome. If the expression level or function of a gene is 

altered by cis-acting genetic variants, then we would likely observe different magnitudes of 

effects across individuals.

One useful way to think about the approach is as analogous to the use of principal 

components analysis (PCA) applied to ‘2D’ (individual by SNP) genetic datasets. PCA is 

routinely used to decompose genome-wide SNP datasets into components of variation that 

are then used to understand population structure (see 11 for example). Here we aim to 

decompose higher dimensional datasets into components that uncover real biology.

Our method has several notable properties:

• Our approach is developed in a Bayesian framework, and we use a sparse 

‘spike and slab’12 prior to allow the gene loadings of each component to 

have a unique level of sparsity. This allows us to shrink gene effects to 
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zero so that we can infer more clearly which genes are involved in gene 

networks.

• The individual scores represent the magnitude of the effect of each 

component across individuals, analogously to the individual scores that are 

usually plotted in a PCA analysis of genetic datasets. We use these scores 

as phenotypes in genome-wide SNP scans to identify genetic variants that 

drive each component. The number of components we test is typically 

much smaller (a few hundred) than the number of genes (tens of 

thousands), which substantially reduces the multiple testing burden when 

compared to approaches that test all genes against all genetic variants in 

all tissues.

• We do not claim that all genes identified in a network will reach genome-

wide significance thresholds with the driving SNPs. However, when 

applied to real datasets we find that the majority of genes are nominally 

significant.

• The tissue scores vector indicates the ‘activity’ of the component for each 

tissue. By examining the entries of the tissue scores matrix across 

components we can make inferences about how many components are 

shared across tissues.

• Our model also allows for non-sparse components that might be expected 

to arise from confounding effects, such as batch effects or sequencing 

properties.

• In addition, the model can naturally accommodate missing data, such as 

samples without gene expression on subsets of tissues, which is a real and 

prevalent feature of multi-tissue experiments.

Our motivation for this work stemmed from similar approaches that have emerged in the 

field of neuroscience to uncover shared signals across different high-dimensional imaging 

modalities13,14. Most tensor decomposition methods15–17 are not able to handle missing 

data or invoke sparsity on the components, although there are some exceptions18. Our 

model is the first tensor decomposition method utilizing spike and slab priors with model 

fitting carried out using Variational Bayes (see Online Methods). Via extensive simulations 

(Supplementary Note) we show that our method has the best performance in terms of 

estimation of the component individual scores and recovery of sparsity patterns in the gene 

loadings when compared to other matrix and tensor decomposition methods, and is well 

powered to detect trans eQTL signals and gene networks. Our method is implemented in a 

software package called SDA (Sparse Decomposition of Arrays) (see URLs).

URLs
SDA Software : http://www.stats.ox.ac.uk/~marchini/sda.html
ICGC https://dcc.icgc.org/projects/details
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Results

We have validated our approach by applying it to RNA sequencing data from the TwinsUK 

cohort, which consists of gene expression measured on 845 related individuals in adipose, 

LCLs and skin19,20. In order to focus on robustly identified components we applied our 

method 10 times to the TwinsUK RNA-seq dataset and combined results across runs via 

clustering (see Online Methods). After clustering, we identified 236 robust components for 

further investigation. Examination of the tissue scores matrix is informative about which 

tissues each component is active in (see Supplementary Figure 1). We found that the 

majority of the 236 components were active in a single tissue (57 in Adipose, 74 in LCLs 

and 70 in Skin). There were 20 components that were active in all 3 tissues, 14 components 

active in just Adipose and Skin and 1 component active in Adipose and LCLs. The full 

details of these 236 components are given in the Supplementary Data Set.

The individual scores vectors of these components were then used as phenotypes in genome-

wide scans using SNP genotype data imputed using the 1000 Genomes Phase 1 reference 

panel. We used a threshold of 1×10-10 to assign significance (see Online Methods). There 

were 26 components that reached this level of significance: 5 were active in just 1 tissue (1 

in Adipose, 4 in LCLs), 20 components were active in all 3 tissues and 1 component was 

active in just Adipose and Skin. The majority of these components were clearly uncovering 

cis eQTLs. In all but two of these components we identified pairs of SNPs (significantly 

associated with our component scores) and genes (with a non-zero loading) that had 

previously been identified as a cis eQTLs in the MuTHER and GTEx studies7,21. These 

components exhibited very sparse gene loadings, with a single localized cluster of high gene 

loadings and highly significant SNP associations in the flanking region (Supplementary 

Figures 2-21). Methodology for the detection of cis eQTLs is well established and is best 

carried out using focused analysis that looks for such effects at SNPs flanking each gene. 

Our main focus is on uncovering trans eQTLs and gene networks so we do not pursue the cis 
eQTLs that our method finds any further.

The remaining 6 components were less sparse in their gene loadings, and exhibited patterns 

of gene loadings and SNP associations that highlight gene expression networks with 

substantial biological significance. For these networks the majority of gene loadings tend to 

be unidirectional suggesting the components are identifying a directional effect on 

expression. These components are summarized in Figures 2-6 which show the gene 

loadings, SNP GWAS and tissue activation patterns. Supplementary Table 1 shows that the 

majority of genes identified in each of these networks have nominally significant p-values in 

the relevant tissues. At the suggestion of a reviewer, we also applied PCA and ICA to the 

Twins UK dataset. Neither of these approaches uncovered the gene networks reported here; 

more details are given in the Supplementary Note.

We found 2 clustered components (Figure 2) with individual scores that exhibit significant 

SNP associations in the gene CIITA on chromosome 16p13 (see also Supplementary Figure 

22). The first component is active mostly in Adipose and Skin and has a lead SNP 

rs9924520 (p-value = 1.33×10-23, MAF=0.247) that is an intronic variant of CIITA. The 

second component is active mostly in LCLs and has a lead SNP rs7194862 (p-value = 
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1.74×10-14, MAF=0.282) that is 5’ of CIITA. The SNPs rs9924520 and rs7194862 are in 

strong LD (r2 = 0.82). Both components show a cluster of MHC Class II genes on 

chromosome 6 with non-zero gene loadings. In addition, 2 other genes have significant gene 

loadings in both components (RFX5 on chromosome 1 and CD74 on chromosome 5). CIITA 
is known to be a master controller in the regulation of MHC Class II gene expression22. It is 

recruited to the proximal promoter regions of the classical MHC class II genes (HLA-DP, 

HLA-DR and HLA-DQ), and to HLA-DM, HLA-DO and the CD74 gene (encoding the 

molecular chaperone invariant chain which associates with the MHC class II complex) 

through protein-protein interactions with other components of the MHC class II 

enhanceosome, which includes RFX5. Supplementary Table 2 details the direct associations 

of SNPs rs9924520 and rs7194862 with the expression levels of all the genes identified in 

our components (in all three tissues) after correction for covariates and 15 PEER factors23 

(see Online Methods). Both SNPs are strongly associated with HLA-DOA and HLA-DMA 
in Adipose and Skin (p-values in the range [2.89×10-8, 5.56×10-19]) and with CIITA in 

Adipose (p-values = 2.08×10-11, 1.44×10-12). However, neither SNP reaches a strict 

Bonferroni threshold for a trans analysis of 9.05×10-13 = 5×10-8/(3×18409) (obtained by 

accounting for genome-wide testing across all genes in all tissues) with any of the other 

genes in the 3 tissues. These results suggest that while a trans eQTL association would have 

been found between SNPs in the CIITA region and expression at two MHC class II genes, 

the more extensive network of genes recovered by our components would not have been 

uncovered via a marginal trans analysis.

Figure 3 shows significant associations in the gene NLRC5/CITA on chromosome 16q13 

(see also Supplementary Figure 23). The lead SNP rs289749 (p-value = 1.34×10-11, 

MAF=0.3) is an intronic variant of NLRC5/CITA. The component shows a cluster of genes 

on chromosome 6 with non-zero gene loadings that include MHC Class I genes (HLA-O, 
HLA-B, HLA-F, HLA-A, HLA-E), BTN genes (BTN3A2, BTN3A1, BTN3A3, BTN2A2, 
BTN2A1), TAP1, TAP2, PSMB8 and PSMB9. Overexpression of NLRC5/CITA is known to 

increase mRNA levels of genes encoding human MHC Class I molecules and proteins 

functioning in the MHC Class I mediated antigen presentation pathway, including beta-2-

microglobulin (B2M), transporter associated with antigen processing 1 (TAP1) and the 

proteasome subunit beta type-9 (PSMB9)24. B2M, TAP1 and PSMB9 all have significant 

gene loadings in the component. Supplementary Table 3 details the direct associations of 

SNP rs289749 with the expression levels of all the genes in the component in all three 

tissues. In skin, rs289749 is strongly associated with NLRC5/CITA (p-value = 1.37×10-28) 

and moderately associated with several MHC class I genes; HLA-F (p-value = 3.02×10-12), 

HLA-A (p-value = 1.22×10-9) an HLA-B (p-value 1.35×10-10)); although none of these 

associations would pass a Bonferroni corrected significance level in a trans analysis 

(9.05×10-13). p-values for association between rs289749 and other genes in this component 

suggest that the link between NLRC5/CITA and BTN, TAP and PSMB genes or the B2M 
gene would not have been recovered using a traditional trans analysis. In addition, these 

direct associations fail to provide evidence for the signal in either Adipose or LCLs.

Figure 4 shows significant associations for a cluster of SNPs near LSM11 on chromosome 

5q33.3 which is known to be involved in histone RNA processing25 (see also 

Supplementary Figure 24). The gene loadings of our component show a striking cluster of 
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23 histone genes in the chromosome 6p21 cluster as well as the gene HIST2H2BE in the 

1q21 cluster (Figure 4 purple points). There are also additional signals at other histone genes 

on chromosome 1q42 (HIST3H2A), 11q23 (H2AFX) and 12p12 (HIST4H4). SNP 

rs6882516 (p-value = 2.39×10-15, MAF=0.206) is in the 3’ UTR of LSM11 and predicted to 

be a microRNA binding site using mirSNP26. Key histone gene regulatory factors are 

organized in a limited number of subnuclear foci. It is known that cell cycle-dependent 

phosphorylation of p220NPAT by cyclin E/CDK2, that induces histone gene transcription, 

occur at these intranuclear sites. p220NPAT colocalizes with both (a) the histone gene clusters 

on chromosome 1q21 and 6p21, (b) the protein subunit LSM1113. A set of 31 significant 

genes (loadings with a PIP>0.5, see Online Methods) show Gene Ontology p-values of 

1.91×10-25 and 1.40×10-24 for the terms ‘nucleosome organization’ and ‘chromatin 

assembly or disassembly’ respectively. The tissue scores indicate that this component is only 

active in LCLs. Supplementary Table 4 details the direct associations of SNP rs6882516 

with expression levels of LSM11 and the other genes in this component in all three tissues. 

The SNP is significantly associated with LSM11 in LCLs (p-value = 5.57×10-33), and has p-

values in the range (2.65×10-12, 1.17×10-12) with three histone genes in our component with 

extreme gene loadings (HIST1H1C, HIST1H2BJ and HIST1H2BK). Although these 

associations are encouraging, they do not pass a strict trans analysis significance level and 

additionally, these direct associations do not uncover the link between LSM11 and the 

histone gene cluster on 1q21 (the p-value for rs6882516 and HIST2H2BE in LCLs is 

5.40×10-9).

Figure 5 shows significant associations near the gene USP18 (see also Supplementary Figure 

25). The lead SNP rs2401506 (p-value = 9.82×10-16, MAF=0.358) is 5kb upstream of 

USP18. The set of 160 genes in the loadings with a PIP>0.5 show Gene Ontology p-values 

of 1.73×10-42 and 1.23×10-38 for the terms ‘defense response to virus’ and ‘response to type 

I interferon’ respectively. Of the 70 genes annotated by ‘response to type I interferon’ we 

find 28 with non-zero gene loadings (Supplementary Figure 26). These include all four of 

the 2′-5′ oligoadenylate synthetase (OAS) gene family (OAS1, OAS2, OAS3 and OASL) 

known to be actively induced by interferons27, the genes STAT1 and STAT2 which are key 

mediators of type I and type III IFN signaling, several Interferon γ-inducible protein (IFI) 

genes (IFI6, IFI44L, IFI16, IFIH1, IFIT1, IFIT3, IFIT5, IFIT2, IFITM1, IFITM2, IFI35) and 

the genes MX1 and MX2 also related to IFN signaling. USP18, a type I IFN-induced protein 

that deconjugates the ubiquitin-like modifier ISG15 (which is also in our component) from 

target proteins28, plays an important function in down regulation of interferon 

responses29,30 and significantly inhibits tumour growth31. The tissue scores indicate that 

this component is only active in LCLs. Supplementary Table 5 details the direct associations 

of SNP rs2401506 with the 160 genes identified in this component across all three tissues. 

There is only evidence of association in LCLs, with several genes obtaining p-values smaller 

than 1×10-8 (IFIT1, PLSCR1, STAT1, CMPK2, RSAD2 and EIF2AK2) but none are 

significant when accounting for genome-wide testing across all genes, suggesting that this 

network of genes would not have been uncovered by a scan of all SNPs versus all genes.

Figure 6 shows two significant associations on separate chromosomes for a component with 

a striking cluster of non-zero gene loadings for zinc finger genes on chromosome 19. SNP 

rs17611866 (p-value = 5.40×10-21, MAF = 0.251) on chromosome 16 is a mis-sense variant 
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in ZNF75A, which is one of 6 ZNF genes in a local cluster. Flanking genes ZNF263 and 

TIGD7 have non-zero gene loadings (see Supplementary Figure 27). SNP rs12630796 (p-

value = 5.10×10-17, MAF = 0.487) on chromosome 3 is an intronic SNP in SENP7. A SNP 

in high LD with this SNP (rs13320918, p-value = 7.34×1015, MAF = 0.377) has been shown 

to be a microRNA QTL for miR-1270 (p-value=1.71×10-10) which is located in a zinc finger 

cluster on chromosome 19p1232. In a separate study, 4 other intronic SNPs in SENP7 
(rs2553419, rs2682386, rs9859077 and rs2141180), all in high LD with each other and with 

rs13320918, were shown to correlate with cis-acting regulation of SENP7 expression in CD4 

and CD8 lymphocytes and trans-acting regulation of ZNF154, ZNF274 and ZNF81433, 

which all reside within a ~250-kb region on chromosome 19q13.43 (see Supplementary 

Figure 28).

Supplementary Table 6 details the direct associations of SNPs rs12630796 and rs17611866 

with SENP7 on chromosome 3 and genes with non-zero gene loadings in the component in 

all three tissues. This analysis partially recovers the signal that we find using our method, 

see the Supplementary Note for more details.

It can be challenging to interpret the large number of components that are produced by 

sparse matrix and tensor decomposition methods. By clustering components across 

independent runs of the method, and then selecting components with genetic associations, 

we have shown that it is possible to identify gene networks with clear biological 

significance. However, we have found evidence that the components without genetic 

associations are also capturing important variance in the data. Many components have 

individual scores vectors that are significantly associated with variables measuring 

properties of the sequencing; these components are mostly dense with several thousand non-

zero gene loadings (see Supplementary Figures 29-31 and Supplementary Table 7). 

Similarly, we have identified several components that are significantly associated with 

measured phenotypes including age, BMI and cholesterol levels (Supplementary Figure 32). 

We find two components that show association with age. These components are shown in 

Supplementary Figures 33 and 34. The most significant molecular function ontology term 

for both components is ‘oxidoreductase activity’ with p-values of 1.9×10-24 and 2.1×10-22.

In addition, we have found that it can be useful to examine the components from a single run 

of the method. Specifically, we focus on the best run of 10 that produces the highest value of 

the model negative free energy (Online Methods). We identified all components highlighted 

in Figures 2-6 with significant or very close to significant GWAS p-values. In addition, we 

find several components that identify KLF14 as a master trans regulator34 (for example, see 

Supplementary Figure 35). More details are given in the Supplementary Note and the 

Supplementary Data Set.

A previous analysis of a similar set of samples in the MuTHER study7 using a microarray 

based gene expression experiment called 518, 491 and 493 trans eQTLs SNPs at a normal 

GWAS threshold of 5×10-8. They reported an FDR of < 10% at this threshold, however only 

~5% of these signals replicated at a nominal significance threshold of 0.05 in at least one out 

of 5 other studies. The overlap with our results is (a) a SNP rs7714390 on chromosome 5 

(near our lead SNP rs6882516) associated with two Histone genes (HIST1H2BK on chr 6 
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with a p-value = 8×10-9 in LCLs and HIST2H2BE on chr1 with a p-value of 3.2×10-8 in 

LCLs) (b) a SNP rs220377 on chr 16 (near our lead SNP rs17611866) associated with a Zinc 

finger gene (ZNF667 on chr 19 with a p-value = 2.9×10-9 in LCLs), and (c) several 

associated SNPs near rs4731702 that overlap with the KLF14 network with p-values 

between 4.4×10-8 and 2.2×10-15). This analysis did not identify the Type I Interferon 

network or the MHC networks that we find in our analysis.

Discussion

We have described a new algorithm for efficient tensor decomposition for multi-tissue gene 

expression datasets, and have demonstrated its utility on a real, three tissue dataset to 

uncover sparse gene networks with clear biological and statistical significance. A marginal 

analysis of all SNPs versus all genes would not have uncovered these networks in the same 

way or with as much power. For example, no aspect of the Type I interferon component 

would have been identified. We have further shown in simulations that our method has good 

power to detect sparse gene networks correlated to genetic variants, and dense confounding 

factors.

This approach complements current eQTL analysis pipelines that tend to mainly focus on 

identifying cis eQTLs in one tissue at a time. Analysis of cross tissue effects usually 

proceeds in a subsequent step by comparing effect sizes across tissues. Our method focuses 

on decomposing the complete multi-tissue dataset into components of variance with varying 

levels of sparsity. We then test each component against genetic variation genome-wide to 

uncover underlying eQTL effects, ensuring robustness by only considering components that 

are consistently found across multiple runs. We view our approach as complementary to an 

association analysis of all SNPs versus all genes, since it requires 2 orders of magnitude 

fewer tests, and has more power to detect SNP associations with gene networks.

In general, we find that dense components uncovered by our method show high levels of 

significance with confounding variables and the method additionally uncovers many very 

sparse components that represent cis eQTLs. More interestingly, we find 6 components with 

intermediate levels of sparsity with gene loadings spread across multiple chromosomes that 

represent gene networks showing a highly significant association with genetic variants. In all 

6 of these components, we are able to link the gene networks they describe to known 

biology. In the future it will be natural to apply this method to gene expression datasets with 

even more tissues, such as that being collected by the GTEx Project37 or the Allen Institute 

for Brain Science (AIBS) human microarray data set38.

There are several interesting ways in which this model can be extended or changed. The 

method can be naturally extended to higher dimensional datasets. For example, 4D multi-

tissue gene expression experiments through time and/or under different experimental 

conditions (see Supplementary Figure 36).

One assumption of our model is that the gene loadings pattern of a component is constant 

across active tissues, which may or may not be true dependent upon the dataset being 

analyzed. One way to overcome this would be to develop a model that applies a matrix 
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decomposition to the gene expression matrix for each tissue but with a linked individual 

scores matrix (see Supplementary Figure 37). A downside of such an approach is that it 

would significantly increase the number of unknown parameters in the factorization. 

However, this model would allow variation in the gene loadings between tissues if there 

were indeed clear differences, and might be a way of combining together components found 

by our tensor method (like those describing MHC class II regulation pathways) with clearly 

similar gene loadings. However, it may also be necessary to model the similarity between 

gene loadings to aid estimation, given the larger parameter space. This approach has strong 

connections to sparse canonical correlations analysis (CCA)39 and unsupervised multi-view 

learning40.

Such a linked matrix decomposition method could also be used to integrate different 

genomic datasets. The model has no constraint that the set of matrices being jointly 

decomposed have the same dimensions. So, for example, matrices of gene expression and 

epigenetic measurements could be jointly decomposed to uncover relevant shared biology 

(see Figure 7). Example applications might include joint decomposition of different omics 

datasets collected on cancer samples from the International Cancer Genome Consortium 

(ICGC) (see URLs). This model can further be extended to tensors of different data types 

(see Supplementary Figure 38).

Online Methods

Bayesian Sparse Tensor Decomposition Model

We use Y to denote the 3D array or tensor containing pre-processed gene expression 

measurements. Y has dimensions N × L × T where N is the number of individuals, L is the 

number of genes and T is the number of tissues. We model Y as follows

where C is the number of components (also called factors). A is an N × C matrix with the cth 

column containing the individuals scores of the cth component. B is a T × C matrix with the 

cth column containing the tissue scores of the cth component. X is a C × L matrix with the 

cth row containing the gene loadings of the cth component.

The error term is modeled as  where λlt is the precision of the error term at 

the lth gene in the tth tissue.

We deal with missing samples for a given tissue by not including them in the model 

likelihood. We introduce an indicator variable Int that equals 1 when gene expression has 

been measured in tissue t for sample n and zero otherwise. The likelihood is then given by
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where Θ is the vector of model parameters.

We fit this model in a Bayesian framework, and place priors on the entries of the matrices A, 

B, X and also the precisions λlt. A key prior is the one we place on the elements of the gene 

loadings matrix X. We wish to encourage sparsity in the rows of this matrix, so we use a 

hierarchical ‘spike and slab’ prior42 of the form

For the purposes of making inference easier (see Supplementary Note) we use the equivalent 

factorization of the spike and slab distribution as Xcl = WclScl where

For the elements of A and B we use standard normal priors Anc ∼ N(0,1) and Btc ∼ N(0,1).

Model fitting

We fit this model using Variational Bayes (VB)43, which approximates the posterior 

distribution . The approach iteratively refines the estimate Q(Θ), by 

minimizing the Kullbeck-Lieber (KL) divergence between Q(θ) and P(Y ｜ θ), or 

equivalently maximize the negative free energy. Once converged, Q(θ) can be used to 

approximate properties of the posterior distribution. The full details of the parameter 

factorization we use, the resulting VB update equations and details of parameter 

initialization are given in the Supplementary Note. The resulting algorithm has complexity 

O(NLTC2) and can be run on a multi-core server. For the TwinsUK data analyzed in this 

paper the method took 20 hours for each of the 10 runs using 8 threads.

Our model has the ability to shrink an entire component to zero (ρc = 0) and effectively 

remove that component from the model. In this way our model can adaptively choose the 

number of components it needs. Just a small amount of experimentation is needed to find a 

large enough value of C so that components start being shrunk to 0. For the TwinsUK data 

we fit the model with 1,000 components and found that in all 10 runs of the method around 

50 components would always be estimated as 0.

Summarizing the Variational Bayesian posterior approximation

The form of the VB posterior for every entry of the gene loadings matrix Xcl has the same 

spike and slab form as the prior. We use this distribution to calculate the expected value, 

denoted EQ(Xcl). We also calculate a Posterior Inclusion Probability (PIP) that Xcl is not 

equal to zero, which is equal to EQ(Scl). We use the PIPs to infer a network of genes for each 

component consisting of the genes with a PIP > 0.5. We summarize the individual and tissue 
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scores vectors in a similar way by using the expected values of the VB posterior, EQ(Acl) 

and EQ(Bcl) respectively.

Identifying robust components

The model is complex and has a large number of parameters and there is no guarantee that 

the VB algorithm will find a global solution when optimizing the bound on the marginal 

likelihood. Running the method multiple times highlights this issue. Some components are 

found consistently across multiple runs, whereas other components only occur in a small 

number of runs. For example, our method often uncovers components that show strong cis 
eQTL signals when using the associated component scores as phenotypes. To identify robust 

components, we implemented a method that clusters similar components across different 

runs. We then focus on large clusters containing components from multiple different runs, 

and use these as the basis for our search for novel signals.

More specifically, we run our method 10 times and store the individual and tissue scores, 

gene loadings and PIPs. We calculate the absolute correlation between the individual scores 

for all pairs of components across the 10 runs. Hierarchical clustering is then used to group 

components into clusters, using one minus the absolute correlation as a dissimilarity 

measure. The clustering is terminated when no correlations between clusters are above 0.6.

The components within each cluster are then combined. We take the mean of the individual 

scores, tissue scores and gene loadings and the median PIPs. The individual scores for each 

component cluster are then used as a phenotype against a genome-wide dataset of SNPs on 

the same individuals to identify which components have a genetic basis. We apply quantile 

normalization to the individual scores before testing for association with SNPs. Tissue 

scores are thresholded to obtain tissue activity patterns. The distribution of tissue scores 

tends to be tri-modal with one, well defined mode centered on zero so a threshold can easily 

be picked to set small score values to zero. We only test averaged components calculated 

from clusters with a minimum (user-defined) membership size, in order to focus on 

components that are robustly and consistently identified across runs.

Analysis of the TwinsUK dataset

Gene expression levels were measured for 845 female twins from the TwinsUK cohort using 

whole transcriptome sequencing (RNA-seq), with data in three tissues (adipose, 

lymphoblastoid cell lines (LCLs) and skin) for the majority of the individuals19,20. 

Experiments were performed using the Illumina TruSeq sample preparation kit and 

sequenced on a HiSeq2000 machine. Reads were mapped on to the GRCh37 reference 

genome using BWA v0.5.944. Only reads that map uniquely were used. We run the method 

using RPKMs (reads per kilobase per million) after performing the following pre-processing 

and normalization steps; (i) genes with >20% zeros in all three tissues are removed resulting 

in 18,409 genes, (ii) quantile normalization of expression data within each tissue, (iii) rank 

based transformation of each gene onto a standard normal.

Samples were genotyped on a combination of the HumanHap300, HumanHap610Q, 1M-

Duo and 1.2MDuo Illumina arrays. Samples were imputed using the 1000 Genomes Project 

Phase 1 reference panel (data freeze 10 November 2010) using IMPUTE245 and filtered 
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(minor allele frequency (MAF) < 0.01 and IMPUTE info value < 0.8). Imputed genotypes 

were available on 795 of the 845 individuals.

We also used 11 concurrently measured phenotypes that were available on the samples (age, 

BMI, weight, height, total cholesterol, HDL cholesterol, LDL cholesterol (calc), total 

triglycerides, adiponectin, insulin and glucose) and variables derived from the sequencing. 

Specifically, we used (a) the mode of the insert size calculated for each sample, which can 

vary between sequencing library preps, (b) GC-content of the reads from a sample, which 

can vary due to biochemical differences in library prep and lane effect, (c) date of 

sequencing and (d) primer index.

We ran our method 10 times on the dataset and combined components across runs via 

clustering (see above). Supplementary Figure 39 shows the resulting distribution of cluster 

size. Only those clusters with more than or equal to 5 components were then retained for 

GWAS.

We used a linear mixed model46 to test an individual scores vector as a phenotype against 

the SNP genotypes. The scores vector was subset down to the 795 individuals for which 

imputed genotype data was available. We used a Bonferroni corrected significance threshold 

of 1×10−10, calculated by scaling a genome-wide significance threshold of 5×10−8 by 500 to 

account for the multiple GWAS we perform.

Testing associations between individual scores vectors and phenotypes and batch variables 

was also performed using a linear mixed model46, again only using 795 individuals. Only 

one member of each twin pair was used in the associations with age. The categorical batch 

variables, date and primer index, were dealt with by creating binary vectors (one for each 

category) and individually using these as a fixed effect in the linear mixed model.

Gene Ontology analysis was carried out using the TopGO R package47. Gene ontology 

analysis evaluates whether a particular set of genes are enriched for a GO term in 

comparison to a background gene set. TopGO uses Fisher's exact test to get a p-value for 

enrichment based on the expected and observed number of genes with a GO term. Of the 

18,409 genes used in this analysis, 13,965 have GO annotations. To get a significance level 

for this analysis we randomly sampled 10,000 sets of genes of a random size and performed 

an enrichment analysis on each set. We take the smallest p-value from each gene set to 

create a null distribution and use this distribution to estimate a significant level of 1%.

We use a linear mixed model46 to perform direct associations between the SNPs and the 

(normalized) expression levels of genes involved our components. In order to account for 

unmeasured confounding factors, we fit the PEER model23 to each tissue’s expression data 

with 15 factors and use these as covariates in the mixed model. In addition to the PEER 

factors, we also include two phenotypes, (age and BMI) and two tissue-specific batch 

variables (GC mean and insert size mode) as covariates.

Application of fastICA

We used the R package fastICA to apply ICA to the TwinsUK dataset. We concatenated the 

normalized expression data from the 3 tissues into a single matrix. Only 618 out of 845 
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individuals had expression data on all 3 tissues, so this matrix had 618 rows and 3×18409 

columns. We fit the maximum number of components possible (618). We selected the 200 

components for the measure of kurtosis of the gene loadings was > 3.5 and ran a GWAS 

against all SNPs. We also tested the components individual scores against the known 

confounding variables from the sequencing. More details are given in the Supplementary 

Note.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Graphical representation of the method.
The gene expression data tensor (top left) is decomposed into the product of an individual 

scores matrix, a tissue scores matrix and a gene loadings matrix (top right). Columns of the 

individual scores matrix are then used as phenotypes in a GWAS using SNP genotypes 

(bottom left) in order to uncover genetic variation correlated with the latent components.
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Figure 2. MHC Class II regulation.
Figures a and b shows two components identifying a similar network in different tissues. 

(Top left) GWAS with the component’s individual scores vector as a phenotype. (Top right) 

Boxplot of individual scores stratified by genotypes at the lead GWAS SNP. Boxplots show 

the median, upper and lower quartiles, with whiskers extending to either 1.5 times the 

interquartile range (IQR), or to the most extreme data point if this is within 1.5 times IQR. 

(Bottom left) Gene loadings for the component. Only gene loadings with a PIP>0.5 are 

shown. (Bottom right) Tissue scores vector for the component shown as a barplot.
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Figure 3. MHC Class I regulation.
(Top left) GWAS with the component’s individual scores vector as a phenotype. (Top right) 

Boxplot of individual scores stratified by genotypes at the lead GWAS SNP rs289749. 

(Bottom left) Gene loadings for the component. Only gene loadings with a PIP>0.5 are 

shown. (Bottom right) Tissue scores vector for the component shown as a barplot.

Hore et al. Page 18

Nat Genet. Author manuscript; available in PMC 2017 March 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. Histone RNA processing.
(Top left) GWAS with the component’s individual scores vector as a phenotype. (Top right) 

Boxplot of individual scores stratified by genotypes at the lead GWAS SNP rs6882616. 

(Bottom left) Gene loadings for the component. Only gene loadings with a PIP>0.5 are 

shown. (Bottom right) Tissue scores vector for the component shown as a barplot.
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Figure 5. Type I Interferon Response.
(Top left) GWAS with the component’s individual scores vector as a phenotype. (Top right) 

Boxplot of individual scores stratified by genotypes at the lead GWAS SNP rs2401506. 

(Bottom left) Gene loadings for the component. Only gene loadings with a PIP>0.5 are 

shown. (Bottom right) Tissue scores vector for the component shown as a barplot.
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Figure 6. Zinc finger gene network.
(Top left) GWAS with the component’s individual scores vector as a phenotype. (Top right) 

Boxplots of individual scores stratified by genotypes at the lead GWAS SNPs, rs17611866 

and rs12630796. (Bottom left) Gene loadings for the component, with zinc finger genes on 

chr 19 highlighted in purple. Only gene loadings with a PIP>0.5 are shown. (Bottom right) 

Tissue scores vector for the component shown as a barplot.
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Figure 7. Multi-omics data integration.
Graphical representation of a linked decomposition for several genomic assays. A matrix 

decomposition is applied to each data type. The matrix decompositions identify a different 

loadings matrix for each data type and a shared individual scores matrix.
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