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Abstract

The application of social network analysis to the organization of healthcare delivery is a relatively 

new area of research that may not be familiar to health services statisticians and other 

methodologists. We present a methodological introduction to social network analysis with a case 

study of physicians’ adherence to clinical guidelines regarding use of implantable cardioverter 

defibrillators (ICDs) for the prevention of sudden cardiac death. We focus on two hospital referral 

regions (HRRs) in Indiana, Gary and South Bend, characterized by different rates of evidence-

based ICD use (86% and 66%, respectively). Using Medicare Part B claims, we construct a 

network of physicians who care for cardiovascular disease patients based on patient-sharing 

relationships. Approaches for weighting physician dyads and aggregating physician dyads by 

hospital are discussed. Then, we obtain a set of weighted network statistics for the positions of 

hospitals in their referral region, global statistics for the physician network within each hospital, 

and of the network positions of individual physicians within hospitals, providing the mathematical 

specification and sociological intuition underlying each measure. We find that adjusting for 

network measures can reduce the observed differences between referral regions for evidence-based 

ICD therapy. This study supports previous reports on how variation in physician network structure 
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relates to utilization of care, and motivates future work using physician network measures to 

examine variation in evidence-based medicine.
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1 Introduction

A network is a graph that consists of a set of entities, called the nodes, and the relationships 

between them, called edges. In a social network, the edges between two individuals 

represent sociological relationships and can imply communication, influence, trust, or 

affiliation (Wasserman and Faust 1994). The application of social network analysis to health 

care, particularly with respect to its organization, is relatively new among health services 

researchers (Luke 2007; O'Malley 2013). It has been demonstrated empirically that 

professional relationships between physicians influence clinical outcomes, including 

prescribing behavior, diffusion of technology, and quality and cost of care (Barnett et al. 

2012; Bridewell and Das 2011; Fattore et al. 2009; Pollack et al. 2015). For example, 

physician networks with higher density have greater levels of Medicare spending (Barnett et 

al. 2012).

In this work, we employ social network methodology to examine the structure of patient-

sharing relationships among physicians and hospitals within two adjacent hospital referral 

regions (HRRs) (Wennberg and Cooper 1999) with disparate adherence to clinical guidelines 

regarding patient selection for implantable cardioverter defibrillator (ICD) therapy. ICDs 

have been proven effective for the prevention of sudden cardiac death in patients with 

advanced systolic heart failure (Bardy et al. 2005; Kadish et al. 2004; Moss et al. 2002). 

Patient selection for ICD surgery is an example of a clinical situation in which guidelines for 

evidence-based care exist, and yet there remains variation among hospitals’ rate of 

adherence to these guidelines (Al-Khatib et al. 2011; Matlock et al. 2011; Mehra et al. 

2009). Adherence to guidelines can be influenced by several factors, such as physician 

awareness, familiarity, or agreement with the guidelines, inertia of previous practices, and 

other external barriers (Cabana et al. 1999). These factors are potentially reinforced or 

modified by the professional network of a physician.

We used Medicare claims data to construct a network of physicians who care for 

beneficiaries with cardiovascular disease, a subset of whom received ICD therapy. To 

address the complexity of inferring the strength and type of relationships among physicians 

using claims-based data to quantify patient-sharing, we discuss approaches for weighting the 

relationships between physicians and for aggregating patient-sharing information by 

hospital. The patient-sharing physician networks we constructed reveal features of the 

organizational structure of the hospitals the physicians are fully or primarily affiliated with 

(Bynum et al. 2007) and of the positions of key physicians within these hospitals. The 

motivation for using a case study approach was to visualize and quantify these complex 

networks in ways that were feasible, informative, and comprehensible at both the aggregated 
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physician-level and hospital-level, which can be obscured with larger, more complex data, 

such as that for the entire United States. An in-depth case-study is an underrated way of 

detecting logical and data flaws that could threaten “big data” statistical analysis. We 

calculated several classic and modern network measures and investigated their association 

with evidence-based ICD use in the HRRs. This methodology can be applied generally to 

any situation where data is available on the relationships between all pairs of individuals 

within an organization or region. We take a novel approach to describing variation in the 

practice of evidence-based use of ICDs by constructing networks of physicians and hospitals 

and applying network analysis methodology. Thus, this paper serves as a methodological 

contribution to the meaningful and practical analysis of health systems.

2 Methods

We first detail the clinical problem that motivates the use of social network analysis (Section 

2.1) and then describe the social network analyses, the summary network measures they 

yield (Sections 2.2 and 2.3), and the subsequent statistical methodology that combines the 

various inputs in models of ICD utilization (Section 2.4).

2.1 Methodology related to clinical case study

2.1.1 Classification of evidence-based ICD implantations—Information from the 

National Cardiovascular Data Registry's (NCDR's) ICD Registry was used to determine the 

number of ICDs and rate of evidence-based ICDs that occurred among Medicare 

beneficiaries. We were interested in those ICD therapies prescribed for primary prevention 

in patients with heart failure. Thus, patients must be indicated as having heart failure in the 

registry to contribute to the number and rates of ICD therapy. Following the Class I 

recommendations in The American College of Cardiology Foundation (ACCF) guidelines, 

we considered an ICD therapy to be evidence-based in patients with a left ventricular 

ejection fraction (LVEF) ≤ 35% who have NYHA class II or III symptoms (Russo et al. 

2013). Any hospital or physician-level aggregation of ICD surgery counts between 1 and 11 

are indicated as “Not Reportable” to protect patient confidentiality.

2.1.2 Selection of HRRs for case study—We aimed to investigate two HRRs that had 

differences in adherence to guidelines in their selection of patients who received ICDs. The 

proportion of patients with implanted ICDs that adhere to the guidelines in each of the 306 

HRRs ranged from 0.47 to 1, with a median of 0.84 and a mean of 0.83. In order to 

minimize differences driven by location and size, we limited our comparisons to HRRs that 

were within the same state, of similar population size, and with similar counts of ICD 

surgeries. After applying these criteria to the 306 HRRs in the United States, two 

geographically adjacent HRRs in Indiana, Gary and South Bend, which had rates of 

evidence-based ICDs of 0.86 and 0.66, respectively, were chosen for the case study.

2.1.3 Assigning physicians to hospitals and HRRs—Physicians were empirically 

assigned to hospitals using the physician hospital network (PHN) methodology described by 

Bynum (2007). Briefly, this approach determines the hospital at which a physician submitted 

the most Medicare claims (inpatient or outpatient physician services) or, if the physician did 
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not submit any claims for inpatient services either for specific services (Part B) or as the 

attending physician, they were assigned to the hospital at which the plurality of their 

assigned patients were admitted. The geographic location (zipcode) of the physician's 

hospital determines the HRR to which each physician is assigned, both of which serve as 

attributes of the physician nodes in the patient-sharing networks described below.

2.2 Bipartite network formation

A bipartite network is a network in which two distinct social entities make up the node set 

and direct relational ties exist only between nodes from different social entities (Iacobucci 

and Wasserman 1990). For example, in this work the two social entities that informed our 

bipartite network were patients and physicians, and we inferred ties between them by 

extracting Evaluation and Management (E&M) claims related to cardiac care from the 2008 

Medicare Physician/Supplier Part B claims file. We excluded claims associated with mid-

level practitioners (e.g., physician assistants and nurse practitioners).

2.2.1 Defining a relevant population of patients—We considered a cohort of 

beneficiaries who are 65 years or older on January 1, 2008, had full Parts A and B coverage 

(12 months or until death), and who did not have Medicare Advantage. In addition to this, 

we also restricted our network to include only patients with certain cardiovascular diagnoses 

who are at increased risk for requiring an ICD (Curtis et al. 2007). They must have had two 

or more visits for one of the following diagnoses (ICD-9 diagnosis codes in parentheses): 

arrhythmia (427.1, 427.41, 427.42, 427.5, 427.9), congestive heart failure (425.4, 428, 

428.0, 428.1, 428.2, 428.20, 428.21), coronary heart disease (410.xx, 411.xx, 414.xx, 429.2), 

or peripheral vascular disease (440.xx, 443.89, 443.9), where “.xx” ⊆ {.00, .01, .02....,.99} 

represents a superset of sub-diagnoses in existence that will vary depending on the condition 

being diagnosed. To avoid falsely classifying patients into this category, we required patients 

to have two claims separated by at least 7 days.

2.2.2 Constructing a patient-sharing network of physicians—The Part B claims 

were used to identify our population of cardiovascular patients and the physicians who 

treated them. From this we were able to construct a bipartite network between the physicians 

and patients, where a tie between the two social entities existed if a patient had at least one 

claim with the physician listed as the provider during 2008 (Fig. 1). A common approach to 

studying bipartite networks is to reduce the dimension and complexity by focusing on a 

unipartite network inferred from the bipartite relationship (Porter et al. 2007; Borgatti et al., 

2011). A benefit to this approach is that one can apply the myriad methods developed for 

unipartite network analyses. To form an undirected unipartite network among physicians, 

edges were created between physicians who shared at least one patient. A “dyad” in this 

network refers to a pair of physicians. Although patient-sharing is not a direct measure of a 

relationship, it has been used previously to determine physician ties (Barnett et al. 2012; 

Landon et al. 2012).

2.2.3. Weighting and aggregating patient-sharing networks—Patient-sharing 

relationships between physicians constructed with Medicare data can be made potentially 

more informative than simply existing or not-existing by quantifying the extent of the 
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physicians’ patient overlap and incorporating this information in the form of network edge-

weights. Weights we computed and considered include: number of shared patients, volume 

of visits with shared patients, or volume of billable procedures attributed to their shared 

patients quantified by the procedure's relative value unit, or RVU, for example. Weighting 

network edges by the number of shared patients may lend itself more easily to studies for 

which each patient episode of care is considered equally informative to a physician's practice 

irrespective of the number of visits entailed. However, to account for the wide range in 

number of clinical visits patients may have with their physicians, we also computed the 

geometric mean of shared visits across the common patients of each pair of physicians and 

summed these to form more refined edge-weights. Alternatively, we note that weighting 

edges by the geometric mean of the RVUs from the claims involving all shared patients may 

be ideal for studies interested in investigating variation in cost or total utilization of care. In 

the results reported herein, the physician dyads were weighted by the summed geometric 

means of the number of shared visits.

Our analyses also rely on the aggregation of physicians up to their hospital. One approach to 

creating an edge between a pair of hospitals involves summing the edge weights over each 

pair of physicians bridging the two hospitals. A second approach would be to weight the 

edges between hospitals by the number of unique patients who had clinical encounters at 

both hospitals. This approach is likely less favorable for studies aiming to interpret each 

connected physician dyad as an independent potential path for communication or influence. 

Finally, one could count the number of connected physician dyads that span two hospitals, 

assuming equal weights. This approach is a logical aggregation of a binary network. As we 

weighted the edges between physicians by the number of shared visits, we chose to weight 

edges between hospitals by summing these weights of the physician dyads that span each 

pair of hospitals.

2.3 Network metrics and definitions

All networks considered were undirected in the sense that all ties representing the 

relationship between nodes have no directionality associated with them. We note these 

network measures typically have straight-forward generalizations for directed networks 

(Wasserman and Faust 1994; O'Malley and Marsden 2008; O'Malley and Onnela 2015). The 

graph is denoted by G = (V, E) where V is the set of nodes (or vertices) and E is the set of 

edges between any pair of nodes. The network can also be represented in the form of a 

symmetric adjacency matrix A = [A]ij where aij = aji = 1 for all i and j that are connected in 

the network and is 0 otherwise. To distinguish value-weighted edges from the mere existence 

of the edge itself, we introduce the weighted adjacency matrix W, where wij represents the 

weight of the tie between nodes i and j.

The size of a network is the number of nodes, or in other words the cardinality of V, and is 

denoted by N. The size of a patient-sharing physician network within a hospital is equal to 

the number of physicians in the network. The total number of dyads in an undirected 

network is then . The overall density of a network, μ, is typically 
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expressed as the ratio of the number of edges (the cardinality of E) divided by the maximum 

possible number of edges:

Density ranges from μ = 0 (no edges) for an empty network to μ = 1 for a complete network 

(all possible edges).

2.3.1 Node-level metrics and definitions—Generally speaking, centrality is a measure 

of the prominence of a node in the network. For graphs including weighted edges between 

pairs of nodes, weighted centrality measures can be calculated.

The node with the greatest number of ties, which is known as its degree, may be considered 

the most important or influential node in a network if it is felt that importance or influence 

manifests in terms of the number of direct connections to other nodes. Degree ranges from 0 

to N – 1, and is given by:

It follows that

where d̄ is the average degree of the nodes. The degree of a node has been extended to 

weighted networks by summing the weights of adjacent ties, a term known as node strength 
(Barrat et al. 2004), formalized as follows:

A deficiency of degree and node strength is that they do not take into account the extent to 

which the node is in a structurally important position in the network in ways other than those 

reflected in a node's direct connections.

An array of centrality measures aims to address additional aspects of positional importance 

in a network. The basis of several of them is the network distance between a pair of nodes, 

typically calculated as the minimum number of edges from one node to the other and 

referred to as the “geodesic distance.” We denote the geodesic distance between nodes i and 

j as gij with gii = 0. The geodesic distance between any two nodes can be easily determined 

from the ij'th element of the matrices Ak for k = 1, 2, ..., N – 1 due to the fact that [Ak]ij 

contains the number of paths of length k between nodes i and j. Therefore, for i ≠ j,
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If the network contains multiple components, or disparate groups of nodes with no edges 

linking them, then it is possible that no path exists between a pair of nodes. In this case, we 

let gij = ∞.

Geodesic distance can also be generalized to weighted networks (Opsahl et al. 2010). 

Newman (2001) and Brandes (2001) proposed to invert the edge weights, therefore 

converting their interpretation to the cost of the tie. By implementing Dijkstra's algorithm 

(Dijkstra 1959), they defined the “cost” of a path as the sum of the inverted edge weights 

and this the minimum cost path as:

This calculation of shortest path in weighted networks is used to calculate several centrality 

measures, such as weighted closeness and betweenness centralities. Briefly, the weighted 

closeness centrality is the inverse of the total weighted geodesic distance from a node to all 

other nodes in the network. The weighted betweenness centrality measures the relative 

frequency with which node i appears on the weighted geodesic path between all pairs of 

nodes (j,k). Descriptions for centrality measures in weighted networks can be reviewed in 

Opsahl et al. 2010, and detailed statistical descriptions for the measures in this study, 

including weighted closeness, betweenness, and eigenvector centrality (Newman 2004), and 

clustering coefficient, can be found in Appendix 1.

2.3.2 Exponential-family random graph modeling—Exponential-family random 

graph models (ERGMs) are probability models that summarize the general structure of 

graphs in terms of the frequency of various subnetworks or configurations (e.g., dyads, 

triads, nodes of particular degrees or types) and as such can be a flexible approach for 

handling the complex dependence structure of network graphs (Robins et al. 2007). ERGMs 

are based on exponential-family theory for specifying the probability distribution for a set of 

random graphs or networks to describe the local selection forces that shape the global 

structure of the network (Hunter 2008). One selection force is homophily, which is the 

tendency of actors in the network to form ties with similar others. In practice, this 

methodology can be employed to investigate functions of network statistics, such as degree 

distribution, triad configuration, or homophily on nodal attributes, that may be more or less 

common than expected in a simple random graph consisting of a set of n isolated vertices 

where edges between them are added at random and all ties have equal probability 

(Goodreau 2007). ERGMs are most often used to analyze single networks. The existence of 

multiple networks in our data set (e.g., for each hospital within each HRR) allow us to 

estimate separate ERGMs on each hospital to obtain a vector of network measures adjusted 

for the other terms in the ERGM. As seen in the general form for an ERGM presented 
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below, its fundamental feature is that multiple network features of any form and other 

variables may included as determinants of the network:

where gA(y) represents any possible network statistic. A indexes the multiple statistics 

included in the model vector g(y), and ηA represents the coefficients for these terms. κ 
represents the normalizing constant, the sum of exp(ΣAηAgA(y)) over all possible networks 

with n actors (Goodreau 2007). ERGMs provide a means to supplement the standalone 

descriptive measures described in Section 2.3.1 with adjusted counterparts that extract the 

independent contribution of each feature of the structure of the network. For example, the 

interpretation of the homophily coefficient is the change in the log-odds of the tie if the 

actors have the trait in common (homophilic dyad) compared to if they do not have the trait 

in common, conditioned on the rest of the network. The ERGMs in this study include k-star 

statistics, which is equivalent to the exponentially weighted degree statistic, and helps to 

obtain estimated coefficients of other terms that are free of confounding by the degrees of 

the actors. A configuration (i, j1,...,jk) is called a k-star if i is tied to each of j1, j2, up to jk 

(Snijders et al. 2006). An edge is a one-star. We used the alternating k-star, ‘altkstar’, term as 

a predictor, which is equivalent to the exponentially weighted degree term, as an 

approximate way of accounting for the degree distribution without encountering the 

numerical problems from including a list of individual k-star terms.

A large number of network features have been incorporated as predictors in software for 

ERGMs. However, as more subtle features of a network are included as predictors in 

ERGMs, substantial computational challenges are encountered (Handcock 2003a, Rinaldo 

2009). The clustering in our network is higher than would be expected by a random graph 

because it is a projection of the bipartite network between patients and physicians. 

Consequently, we found that ERGMs do not converge or yield plausible estimates for our 

physician network when including dyad dependent model terms such as the frequency of 

triad configurations or even the new alternating k-triangle or geometric weighted edgewise 

shared-partner network statistics (Goodreau 2007, Hunter 2007) designed to overcome 

degeneracy, under these conditions. Thus, we limited the scope of our ERGM's adjustment 

for non-homophily terms to the edges (i.e., density) and k-star statistics (i.e., actor degrees) 

using the ERGM library (Hunter et al. 2008) in the statnet package (Handcock et al. 2003b) 

in R (R Development Core Team 2008). This allows differences between the hospital 

networks in the estimated homophily coefficients, representing the extent to which 

homophily on various characteristics is a determinant of network ties adjusting for the 

network's density and degree distribution, to be used as predictors of the likelihood of an 

ICD recipient receiving guideline consistent care.

2.3.3 Computing network measures and visualizing networks—The igraph 

package in R was used to calculated weighted centrality measures of physicians and 

hospitals (Csardi and Nepusz 2006). Gephi version 0.9.1 was used to visualize the networks 

(Bastian et al. 2009). The network with hospital-level nodes was visualized with the 
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GeoLayout plugin to yield their true geographic locations (as given by latitude and longitude 

coordinates) while physician-level networks were visualized with the Force Atlas 2 layout.

2.4 Mixed-effects logistic regression of guideline-supported ICD implantation

Questions such as whether a patient's quality of care is more affected by the physician who 

attends to them or the institution at which they receive care has long been debated. A novel 

contribution of this paper is that the model of individual patient outcomes combined with the 

novel compendium of network-based predictors allows us to estimate the effects of 

predictors reflecting a physician's position in their hospital network, the features of the 

hospital network, and the position of the hospital in the network of hospitals within their 

HRR as well as patient characteristics in a model of a patient utilization outcome (guideline 

consistency of ICD implantation). The logistic model to address the above question and in 

general determine which network-based and other factors are most associated with the 

outcome is given by

(1)

where Yijkl is a binary indicator of evidence-based ICD therapy for patient k who received 

surgery from physician j at hospital i in HRR l (= 1 for South Bend, = 0 for Gary). Patient 

level covariates (age, sex, and race) are depicted by Pat, the network characteristics 

particular to a given physician are depicted by Phys, the descriptors of the hospital network 

and of a hospital's position in their HRR network are depicted by Hosp, and the effect of 

HRR (South Bend versus Gary) is represented by β1. Random effects for physician and 

hospital are depicted as θij and δi, respectively. The effects of particular interest are (i) the 

individual centrality of providers within their hospital network (included in Phys), (ii) the 

centrality of a hospital within the HRR (included in Hosp), and (iii) the adjusted homophily 

of provider specialty over and above the network's degree distribution (included in Hosp). 
While the bipartite nature of our data constrains the list of structural characteristics whose 

effects can be estimated, in general any network feature whose coefficient is estimable under 

an ERGM may be included in Hosp.

We began by modeling the effect of HRR (β1) adjusting only for patient level covariates, 

with physician and hospital as random effects, as depicted in Equation 2:

(2)

Then, Hosp and Phys covariates were added to determine whether adjusting for hospital or 

physician network measures reduces the impact due to geography observed between the two 

HRRs in the study, respectively, as follows:

(3)
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(4)

before finally combining all the predictors as depicted in (1). We used the glmer function in 

the lme4 package (Bates et al. 2015) in R to estimate each model in (1) - (4) above.

3 Results

3.1 Centrality of hospitals within an HRR

Gary, IN included 10,350 cardiovascular patients who had clinical encounters with 481 

physicians, and South Bend, IN included 9,653 cardiovascular patients who had clinical 

encounters with 639 physicians. Fig. 2 illustrates the aggregated hospital-level network, with 

edges weighted by summing the weights of the physician dyads spanning each pair of 

hospitals. Gary, IN (blue nodes) includes 6 hospitals, and ICD implantations occurred at 3 of 

them (herein referred to as “ICD capable hospitals”). South Bend, IN (green nodes) includes 

8 hospitals, 5 of which are ICD capable. The hospitals in Gary had high rates of evidence-

based ICD implantations (86% of ICDs qualified as evidence-based) compared with South 

Bend (66% of ICDs qualified as evidence-based). Receiving care in the South Bend HRR 

was a significant negative predictor of evidence-based ICD utilization in the model specified 

by Equation 2 (β1 = −1.09, p < 0.0001).

Table 2 reports the weighted centrality measures of the hospitals in each HRR network. The 

location and ties of a hospital may indicate paths of influence or communication between 

hospitals. Betweenness centrality is a measure of how frequently the hospital appears on the 

geodesic path between all other hospital pairs, and indicates potential influence of a hospital 

over the flow of communication in the network (Freeman 1979). Closeness centrality is the 

inverse of the sum of the geodesic paths from the focal hospital to all other hospitals in the 

network. In this setting it is hypothesized to capture a hospital's efficiency of diffusion and is 

motivated by the belief that the hospital disseminates knowledge to its ties, which then 

disseminate the knowledge to their ties, and so on until all hospitals in the network receive 

the knowledge (Freeman 1979). Eigenvector centrality indicates the centrality or influence 

of the adjacent ties of a hospital. Employing the model specified in Equation 3, we found no 

statistically significant associations between hospital centrality and evidence-based ICD use 

for patients in these HRRs, but hospital closeness centrality had a positive association and 

was approaching significance (p=0.06). However, the effect of receiving care at South Bend 

compared with Gary remained a statistically significant negative predictor of evidence-based 

ICD use (β1 = −1.334, p < 0.0001).

3.2 Physician networks within hospitals

The following sections focus on network descriptors for the structure of physician ties 

within each hospital. The hospital that performed the highest number of ICD implants 

among hospitals in each HRR is visualized in Fig. 3. St. Mary Medical Center (hospital ID: 

150034) performed the largest number of ICD surgeries in Gary, where 85 patients received 

ICDs and 83.5% were evidence-based. The hospital with the highest number of ICD 
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implants among hospitals in South Bend was Memorial Hospital of South Bend (hospital ID: 

150058), where 60 patients received ICDs and 58% were evidence-based. The density of St. 

Mary Medical Center was 0.41 and the average degree of all of the physicians within this 

hospital was 30. The density of Memorial Hospital was 0.19 and the average degree of all 

physicians within this hospital was 30. These metrics demonstrate that, on average, 

physicians share at least one patient with a relevant cardiovascular diagnosis with 30 other 

physicians in their hospital. This supports the observation that a larger network does not 

necessarily lead to an increase in the average degree of physicians, certainly not a linear 

increasing trend. Thus, larger networks tend to have lower density.

Homophily by attributes describes the tendency of individuals to form ties with those who 

are similar to them. ERGMs were used to examine differential homophily of physicians by 

specialty within each hospital adjusting for the network's density (e.g., edges) and degree 

distribution (e.g., altkstar). For doctors assigned to St. Mary Medical Center, pairs of 

physicians were more likely to be tied if their specialties were cardiology (est = 2.772, p < 

0.0001) or emergency medicine (est = 1.702, p < 0.0001) and less likely to be tied if the 

specialties were family practice (est = −1.834, p < 0.0001) (Table 3). The pairs of physicians 

in Memorial Hospital were more likely to be tied if their specialties were cardiology (est = 

2.662, p < 0.0001) or emergency medicine (est = 3.084, p < 0.0001), and less likely to be 

tied if their specialties were family practice (est = −1.547, p < 0.0001) (Table 3). The set of 

ERGM adjusted homophily coefficients were specified by Hosp in Equation 3 and were not 

found to be statistically associated with evidence-based ICD use. The effect of receiving care 

in South Bend remained a negative predictor of evidence-based ICD therapy (β1 = −1.099, p 
= 0.022).

3.3 Centrality of physicians within hospitals

We are interested in examining whether the network position and direct connections of the 

cardiologists who implanted at least one ICD in 2008, herein referred to as “ICD capable 

physicians”, is associated with rates of evidence-based ICD use, as they are likely key 

determinants in the decision of whether or not a patient is selected for ICD surgery. These 

physicians were identified as the corresponding physician indicated on the associated 

claims/files: those with CPT code 33249 in Medicare Part B/outpatient or those with the 

ICD-9 codes 222-227 in the inpatient/Medpar files. There were a total of 14 physicians 

identified to be ICD capable in these two HRRs (Table 1). St. Mary Medical Center had 3 

ICD capable physicians, and Memorial Hospital had 2 ICD capable physicians. The ICD 

capable physicians in each of these hospitals are labeled with letters (Fig. 3). ICD capable 

physicians tended to have strongly weighted ties with cardiology and cardiac surgery, 

consistent with the high estimated homophily effects of cardiologists obtained from the 

ERGMs (Fig. 4). Next, we calculated the centrality measures for the physicians within each 

network. The ICD capable physicians in St. Mary Medical Center and Memorial Hospital 

were in the top quartile for degree and node strength (Table 4), indicating that they are 

central in the patient-sharing network in terms of the number and strength of direct 

connections to other physicians in both hospitals.
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We analyzed the effects of node strength and closeness, betweenness, and eigenvector 

centrality measures of ICD capable physicians on evidence-based ICD use (Equation 4) and 

found adjusting for these network measures reduced the effect of receiving care in the South 

Bend HRR on evidence-based ICD use (β1 = −0.275, p = 0.67). The node strength of ICD 

capable physicians was the only physician centrality measure to show a statistically 

significant (positive) association with evidence-based ICD therapy (est = 0.001, p < 0.05). 

The significance of node strength was dependent upon the inclusion of weighted closeness 

centrality in the model.

Finally, we estimated combined models which included predictors reflecting physician's 

position in their hospital network, the features of the hospital network, and the position of 

the hospital in the network of hospitals within their HRR in a model of evidence-based ICD 

implantation as specified by Equation 1 (Box 2). First, we found that adjusting for ICD 

capable physician centrality and hospital closeness centrality reduced the effect due to HRR 

(β1 = −0.677, p = 0.17) (Table 5). Second, we found that including as a covariate the hospital 

ERGM adjusted homophily coefficient that had the largest estimate for evidence-based ICD 

use (family practice) in addition to physician and hospital centrality reduced the effect of 

HRR on evidence-based ICD use (Table 5). Overall, including ICD capable physician node 

strength and closeness centrality as covariates without hospital-level centrality measures in 

the patient-level analysis had the largest impact on reducing the HRR effect on evidence-

based ICD therapy, suggesting that differences in ICD capable physician centrality between 

HRRs may be an explanatory factor for the variation in guideline-supported care delivery.

4 Discussion

This work provides an illustrative example of how classic and modern network analyses can 

be used to describe the organization of physicians and hospitals within geographic regions, 

and how they may influence evidence-based ICD implantation. With this case study, we 

ascertained the structure of complex networks by performing detailed contextual analyses. 

We showed how edges at varying levels of aggregation, namely, between physicians and 

between hospitals can represent two distinct but related aspects of patient sharing practices 

within an HRR. By generating centrality measures of hospitals within their HRR, estimates 

of homophily by specialty within hospitals, and centrality of physicians within their hospital 

network, we were able to examine whether these various summaries of network structure 

were associated with evidence-based ICD therapy. Our results suggest that differences in 

evidence-based ICD use observed between the two HRRs may be driven by differences in 

physician network structure, specifically node strength and closeness centrality of the ICD 

capable physicians, a finding and line of inquiry which has not yet been investigated in the 

literature. A diminished effect of the HRR demonstrates that previously unobserved 

measures that relate to the positions of providers within their hospital networks may account 

for some of the variation in evidence-based ICD therapy observed across the geographic 

regions.

In this work, we chose the simplest approach for characterizing within-guideline ICD 

therapy by selecting those heart failure patients with NYHA Class II or III symptoms and 

LVEF ≤ 35%. In using these rules, we are more conservative than previous studies that place 
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more requirements on within-guideline patients, for example that they had been diagnosed 

with CHF for at least 3 months. (Al-Khatib et al. 2011). We recognize that under certain 

clinical conditions, it may be appropriate to prescribe ICD therapy to a patient who is out-of-

guidelines (for example if they are getting a replacement ICD but in the meantime their 

health has improved), so our out-of-guideline measure is not the clinical gold standard. 

However, it is unlikely that the wide differences we observe between our two sample regions 

can be explained by such differences.

It is not yet well understood whether patients’ quality of care is more affected by the 

physicians who attend to them or the institutions at which they receive care. Here we 

develop and describe a multi-faceted statistical design and methodology for addressing 

whether the answer to this question is provided by physician networks. The case study 

demonstrates that network structure, and measures of relationships between physicians, may 

be a driving factor for differences in care observed between geographic regions. The 

influence of node strength, or increased patient sharing with a higher number of physicians 

in the networks, of ICD capable physicians on greater adherence to ICD guidelines warrants 

further study. One hypothesis of interest is whether ICD capable physicians who have more 

clinical encounters with a greater number of patients receiving care from their connections 

in the network are more discriminating in which patients receive the surgery out of necessity 

and therefore are more likely to follow clinical guidelines.

This work also provides an example of approaches to weighting edges between actors in a 

network and how centrality measures are calculated for weighted networks. It is important 

for researchers constructing physician networks to consider how they are planning to 

interpret edges between physicians, which will help guide their strategy regarding if and 

how they weight edges or aggregate dyads. Aggregating dyads by hospital results in loss of 

information regarding physician-level variation in network measures, but it has the 

advantage of reducing the total number of nodes in the network, making visualization of the 

entire network more feasible and interpretable. This approach would be useful for 

illustrating the implementation and diffusion of a new practice or technology across a 

network of hospitals.

In conclusion, this novel compendium of methods for network construction and applications 

of network methodology has the potential to yield insights about latent phenomena, such as 

organizational traits of hospitals and structural importance of physicians, for which we do 

not have direct observations (Lurie et al. 2009). This approach holds promise in identifying 

new aspects of regional differences in health care delivery and diffusion of appropriate (or 

inappropriate) application of new technologies and health care practices. Network measures 

have widespread application across disciplines that relate to the diffusion of knowledge. For 

example, eigenvector centrality measured by Google PageRank, is a tool that has had a 

substantial influence on the information most readily available through a web-based search 

(Brin and Page 1998). By providing precise mathematical definitions, graphical illustration, 

and supporting intuition, we hope to have provided a similar starting point for future work in 

network analysis, to help policy-makers better understand the complex networks of hospitals 

and physicians, and help investigators to better target interventions.
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Appendix

The centrality measures discussed herein can be calculated for unweighted and weighted 

networks. We specify the descriptions for weighted networks to reflect our use of a weighted 

network. Unweighted counterparts can be derived by simplifying the weighted measures in 

the case when all the weights equal 1. The unweighted measures are presented or described 

explicitly below when they have a particularly intuitively interpretable form.

The weighted closeness centrality (Cwc) is the inverse of the total weighted geodesic 

distance from a node to all other nodes in the network. Thus, if  denotes the weighted 

geodesic distance from node i to node j, it follows that

Closeness centrality measures both the direct and indirect connections of node i to quantify 

its closeness to all other nodes in the network. Therefore, if node i has smaller geodesic 

distances than all other nodes, it is considered most central in the network and subsequently 

will have a larger centrality measure. Multiplying  by N – 1 yields the inverse of the 

average geodesic distance of node i to the other nodes and is the measure used herein. If 

 for any nodes j ≠ i then . For studies interested in computing closeness 

centrality for a network containing multiple components, or subnetworks of nodes with no 

connecting dyads between them, a common practice is to use the largest connected 

component of the network (the set of nodes for which a finite length path exists between 

every pair of nodes) to compute closeness centrality and other network measures that depend 

on distance measures between nodes.

The weighted betweenness centrality (Cwb) measures the relative frequency with which node 

i appears on the weighted geodesic path between all two pairs of nodes (j, k) such that j ≠ i 
and k ≠ i. A standardized measure of betweenness centrality is obtained by dividing the 

relative frequency by the total number of geodesic paths that could have included the focal 

node, yielding the measure:

where 0 ≤ σjk(i)/σjk ≤ 1 is the sum of the weights along the weighted geodesic paths between 

nodes j and k that pass through node i, denoted σjk(i), divided by the sum of the weights 

along all of the weighted geodesic paths between nodes j and k, denoted σjk. If there is a 

unique weighted geodesic path between nodes j and k then  and the numerator of 

 reduces to a binary indicator variable.
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Eigenvector centrality (Ce) represents the importance of a node based on the importance of 

the nodes it shares edges with. Let C denote a vector of centrality values defined such that 

the centrality of node i, denoted,  is proportional to a linear combination of the centrality 

of the nodes with whom node i is directly connected, implying the mathematical relation

where W is the weighted adjacency matrix (equal to A for binary networks). Therefore, the 

eigenvector centrality measure satisfies the matrix equation WC = λC, which is immediately 

recognized as being equivalent to the characteristic equation whose solution yields the 

eigenvalues and eigenvectors of W. Intuitively, the solution that best discriminates between 

the nodes’ positions in the network is the eigenvector associated with the principal (largest) 

eigenvalue of W, representing the axis along which most of the variability in W occurs. 

Furthermore, because A is real-valued and square, the Perron-Frobenius theorem implies 

that the eigenvector associated with the largest unique eigenvalue of W contains only 

positive elements thereby yielding a quantity suitable for use as a centrality measure 

(Ruhnau 2000). Weighted eigenvector centrality  for node i is therefore defined as the 

ith element of the vector WCe that solves the equation:

The generalization of eigenvector centrality to a weighted network is still the leading 

eigenvector of the adjacency matrix, but ties that are valued at twice the weight will 

contribute twice as much to the vertex's eigenvector centrality (Newman 2004). Compared 

with closeness and betweenness centrality measures, eigenvector centrality is more 

informative for binary-valued networks when centrality is driven by differences in degree, 

and it is more informative in situations where a high degree node is tied to many low degree 

nodes or vice versa (Bonarich 2007).

Another important network measure is network clustering. The clustering coefficient is a 

measure of how complete the neighborhood of the node is (Latapy et al. 2008) and does not 

directly involve the focal node nor its edges. The igraph package uses the weighted 

clustering coefficient as defined by Barrat (2004):

where  is the strength of node i, di is the degree of node i, wij is the weight of the edge 

between nodes i and j, and aij are elements of the adjacency matrix. The unweighted 

counterpart to this can be calculated intuitively with the following definition:
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In the case of a binary-valued network, the clustering coefficient reduces to the ratio of the 

number of triangles (or closed triads) involving node i, denoted ti, divided by the number of 

two-paths with node i at the apex (a “two-star”), denoted di(di – 1). In other words, 

ClustCoefi is the ratio of the sum of the weighted products over the closed triads to the sum 

of the weighted products over all open or closed triads with respect to node i (the weighted 

products reduce to binary indicators in the case of binary networks). A network with a high 

level of clustering implies if nodes i and j have highly weighted edges to node k, it is more 

likely i and j will also have highly weighted edges (or have ties in a binary network) than in 

a network with little clustering.
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Box 1

Approaches to weighting and aggregating dyads in 

complex patient-sharing physician networks.
Problem Approach

Weighting edges between physicians Number of shared patients

Volume of shared patient visits

Volume of shared relative value units

Aggregating edges between hospitals Sum of all physician dyads weights spanning pairs of hospitals

Volume of unique patients with clinical encounters at each pair of 
hospitals

Sum of physician dyads bridging pairs of hospitals

Note: Each approach for weighting and aggregating may be more or less appropriate depending upon the study 

design and research questions. In this work, edges between physicians were weighted by the volume of shared 

patient visits, and edges between hospitals were aggregated by summing the physician dyad weights spanning 

each pair of hospitals.

Box 2

Physician and hospital network metrics included in 

combined model for predicting evidence-based ICD 

utilization.
Unit Metric Interpretation

Hospital Closeness centrality The efficiency at which patient-sharing ties 
connect the hospital to all other hospitals in their 
network

Homophily coefficient 
by family practice

The likelihood of sharing patients among family 
practice physicians

ICD capable physician Node strength The number of clinical encounters a provider has 
with patients who are cared for by his/her 
patient-sharing connections in the hospital 
network

Closeness centrality The efficiency at which patient-sharing ties 
connect the ICD capable physician to all other 
providers in the hospital network

Note: The network metric(s) that had the largest effect within each category (even if it did not reach statistical 

significance of p<0.05) was included in the combined model to demonstrate how various network metrics can 

be used as predictors in models of evidence-based care.
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Fig. 1. 
Diagram depicting construction of the bipartite network. Physicians who share patients are 

tied to each other to create a unipartite network of physicians. Physicians are assigned to a 

hospital based on where the majority of patients they submit claims for receive their care. 

Ties between hospitals are formed by aggregating physician-level dyads
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Fig. 2. 
Network aggregated to hospital-level nodes. Patient-sharing ties for hospitals in Gary, IN 

(blue) and South Bend, IN (green) are shown. Nodes are placed based on their latitude and 

longitude coordinates to show patient-sharing patterns across geographic space. The nodes 

are sized by degree and the edges are weighted by the number of physician pairs spanning 

the hospitals
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Fig. 3. 
(A-B) Network of physicians at ICD hub hospitals. The patient-sharing practices of 

physicians at St. Mary Medical Center (A) and Memorial Hospital (B) are shown. Nodes 

represent physicians and are colored by specialty and sized by degree. Edges are weighted 

by the number of shared patient visits between the physicians. For a cleaner graph, edges 

with a weight of one were not visualized. (C-D) The correlations, presented as percentages 

to conserve space, between centrality measures calculated from the within-hospital or the 

broader within-HRR networks for physicians at St. Mary Medical Center (C) and Memorial 

Hospital (D) are shown
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Fig. 4. 
Ego-centric graphs of ICD capable physicians. The ICD capable physicians at St. Mary 

Medical Center (A) and Memorial Hospital (B) are shown. The physicians tied to each ICD 

capable physician are aggregated by specialty. The nodes are sized by the number of 

physicians within each specialty, and the edges are weighted based on the number of shared 

patient visits between the physicians
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Table 1

Evidence-based ICD implantation in the two HRRs.

Hospital HRR No. Providers in Network No. ICD capable physicians 
(labels)

No. ICD procedures Rate of evidence-based ICD 
implantation

150034 Gary 74 3 (A,B,C) 85 0.84

150035 Gary 111 1(D,E) 27 0.85

150002 Gary 133 2 (F) Not reportable Not reportable

150015 Gary 61 0 0 0

150102 Gary 14 0 0 0

150126 Gary 88 2 (G) 0 0

150058 SB 155 2 (H,I) 60 0.58

150018 SB 126 2 (J,K) 15 0.73

150012 SB 163 1 (L) Not reportable Not reportable

150026 SB 70 1(M) Not reportable Not reportable

150076 SB 30 0 Not reportable Not reportable

150006 SB 76 0 0 0

151300 SB 6 0 0 0

151313 SB 13 0 0 0

Note: A physician can perform ICD surgeries at more than one hospital, and thus some hospitals without an assigned ICD capable physician will 
have a count for ICD surgeries. The letters A-M represent the ICD capable physician assigned to that hospital. SB: South Bend, IN. Hospitals with 
between 1 and 10 ICD procedures are not reportable to protect patient confidentiality.
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Table 2

Network characteristics of hospitals.

Centrality measure

Hospital HRR Degree Node strength Betweenness (weighted) Closeness (weighted) Eigenvector (weighted)

150034 Gary 5 40367 0 0.0003 0.64

150035 Gary 5 17562 0 0.0005 0.26

150002 Gary 5 42569 0 0.0005 0.65

150015 Gary 5 4522 4 0.0008 0.05

150102 Gary 5 1174 9 0.0009 0.02

150126 Gary 5 18080 0 0.0009 0.32

150058 SB 7 25995 0 0.0005 0.67

150018 SB 6 13608 0 0.0015 0.23

150012 SB 7 28276 0 0.0007 0.69

150026 SB 6 7862 13 0.0016 0.10

150076 SB 7 2524 13 0.0016 0.07

150006 SB 6 2552 0 0.0012 0.07

151300 SB 6 898 0 0.0013 0.02

151313 SB 3 822 5 0.0009 0.02

Note: Edges between hospitals are weighted by summing the weighted physician dyads that span each pair of hospitals. SB = South Bend.
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Table 3

ERGM adjusted homophily effects within St. Mary Medical Center and Memorial Hospital.

St. Mary Medical Center (150034), Gary Memorial Hospital (150058), South Bend

Estimate Std Err p-value Estimate Std Err p-value

Edges −23.030 2.088 <0.001 −20.298 0.889 <0.001

Altkstar 3.876 0.351 <0.001 3.286 0.150 <0.001

Cardiology 2.772 1.026 0.007 2.662 0.475 <0.001

Family Practice −1.834 0.255 <0.001 −1.547 0.096 <0.001

Internal Medicine −0.398 0.339 0.241 0.208 0.182 0.255

Emergency Medicine 1.702 0.408 <0.001 3.084 0.466 <0.001

Other specialty −1.004 0.142 <0.001 −1.245 0.129 <0.001

Note. ERGM adjusted coefficients for the network's density (edges), degree distribution (altkstar), and homophily effects by specialty are listed for 
the two ICD hub hospitals. Specialties included in the “other” category did not achieve an estimable effect when included as an independent 
specialty. The set of ERGM adjusted homophily by specialty estimates in these models were included in Equation 3 as hospital-level covariates.
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Table 4

Network measures of ICD capable physicians in hub hospitals.

St. Mary Medical Center (150034), Gary Memorial Hospital (150058), South Bend

A B C hospital average (1st Qu, 3rd 

Qu)
H I hospital average (1st Qu, 

3rd Qu)

Degree 58 58 54 30 (16, 46) 83 77 30 (17, 227)

Node strength 2194 2195 1345 651 (74, 782) 605 1149 297 (16, 337)

Betweenness (weighted) 32.5 9.5 8.5 56.3 (4, 94) 796.9 337.3 123 (4, 173)

Closeness (weighted) 0.004 0.003 0.004 0.004 (0.004, 0.004) 0.002 0.002 0.002 (0.002, 0.002)

Eigenvector (weighted) 0.23 0.16 0.14 0.07 (0.007, 0.09) 0.03 0.22 0.03 (0.001, 0.03)

Clustering Coefficient (weighted) 0.56 0.56 0.61 0.79 (0.67, 0.90) 0.41 0.46 0.73 (0.62, 0.86)

% ICDs that are evidence-based 82 100 84 84 73 55 58

Note: Network measures for each ICD capable physician and the average, 1st, and 3rd quartile of all physicians in the ICD hub networks are 
shown. Physicians A, B, and C are from St. Mary Medical Center (83.5% evidence-based ICD implantation) and Physicians H and I are from the 
Memorial Hospital (58% evidence-based ICD-implantation).
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Table 5

Models of association between HRR and evidence-based ICD use with various adjustments for network 

centrality and network other measures.

Estimate Std. err. p-value

HRR (South Bend) without adjusting for network measures −1.09 0.306 <0.0001

Estimate Std. err. p-value

HRR (South Bend) −0.677 0.494 0.171

Physician node strength 0.005 0.003 0.050

Physician weighted closeness centrality 0.157 0.264 0.551

Hospital weighted closeness centrality 0.384 0.286 0.178

Estimate Std. err. p-value

HRR (South Bend) −0.825 0.618 0.182

Physician node strength 0.005 0.003 0.096

Physician weighted closeness centrality 0.136 0.307 0.656

Hospital weighted closeness centrality 0.637 0.713 0.372

Family practice homophily −0.252 0.410 0.539

Note: The model estimates, standard errors (std. err.) and p-values for models adjusting only for patient characteristics (top), and then also for 
physician and hospital centrality (middle) and physician and hospital centrality and family practice homophily (bottom) are shown.
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