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Pattern recognition with “materials
that compute”

Yan Fang,1 Victor V. Yashin,2 Steven P. Levitan,1 Anna C. Balazs2*
Driven by advances in materials and computer science, researchers are attempting to design systems where
the computer and material are one and the same entity. Using theoretical and computational modeling, we
design a hybrid material system that can autonomously transduce chemical, mechanical, and electrical
energy to perform a computational task in a self-organized manner, without the need for external electrical
power sources. Each unit in this system integrates a self-oscillating gel, which undergoes the Belousov-Zhabotinsky
(BZ) reaction, with an overlaying piezoelectric (PZ) cantilever. The chemomechanical oscillations of the BZ
gels deflect the PZ layer, which consequently generates a voltage across the material. When these BZ-PZ
units are connected in series by electrical wires, the oscillations of these units become synchronized across
the network, where the mode of synchronization depends on the polarity of the PZ. We show that the
network of coupled, synchronizing BZ-PZ oscillators can perform pattern recognition. The “stored” patterns
are set of polarities of the individual BZ-PZ units, and the “input” patterns are coded through the initial
phase of the oscillations imposed on these units. The results of the modeling show that the input pattern
closest to the stored pattern exhibits the fastest convergence time to stable synchronization behavior. In this
way, networks of coupled BZ-PZ oscillators achieve pattern recognition. Further, we show that the conver-
gence time to stable synchronization provides a robust measure of the degree of match between the input
and stored patterns. Through these studies, we establish experimentally realizable design rules for creating
“materials that compute.”
INTRODUCTION
Prompted by recent developments in stimuli-responsive materials
(1) and nonconventional computing (2–4), researchers are attempt-
ing to bridge these fields to create “materials that compute,” where
the computer and the material are one and the same entity (5, 6).
Ideally, these materials would perform functions such as sensing,
communicating, and computing in a relatively autonomous manner,
enabling them to operate without connections to an external power
supply. One means of achieving these objectives is to integrate the
capabilities of energy-transducing, soft materials, such as oscillating
chemical gels, and modes of computation, such as oscillator-based
computing (2), which can exploit these materials characteristics. The
design of stand-alone “fabrics” that take input from the environment
and then process and transmit information can facilitate the creation
of new types of “smart” clothing and sensorial robotics, as well as ex-
pand the functionality of everyday objects (6).

Recently, we used theory and simulation to lay out design prin-
ciples for one class of materials that compute (5). The fundamental
unit in this system is composed of a polymer gel undergoing the
Belousov-Zhabotinsky (BZ) oscillatory reaction and an overlaying pi-
ezoelectric (PZ) bimorph cantilever (see Fig. 1). In these studies, we
exploited the inherent properties of the materials to achieve the
desired autonomous functionality. Namely, the BZ gels oscillate pe-
riodically without the need for external stimuli; the rhythmic pul-
sations are fueled by the BZ reaction occurring within the polymer
network (7). Moreover, PZs spontaneously generate a voltage when
deformed and, conversely, undergo deformation in the presence of an
applied voltage. By combining these attributes into a “BZ-PZ” unit
and then connecting the units by electrical wires, we designed a device
that senses, actuates, and communicates without an external electrical
power source. Here, we show that the device can also be used to per-
form computation, ultimately enabling materials that compute.

The operation of the simplest BZ-PZ oscillator network is il-
lustrated in Fig. 1, which depicts two units that are connected through
electrical wires. In the course of the chemical oscillations, the BZ gels
expand in volume and thereby cause the deflections x1 and x2 of the
PZ cantilevers, which give rise to an electric voltage U. Because of the
inverse PZ effect, the applied voltage will deflect the cantilevers, which
act on the underlying BZ gels and thereby modify the chemomecha-
nical oscillations in these gels. Thus, this coupling between the chemo-
mechanical energy (from the BZ gels) and the electrical energy (from
the deflected PZ cantilevers) enables the following functions: the com-
ponents’ response to self-generated signals (sensing), the volumetric
changes in the gel (actuation), and the passage of signals between
the units (communication). For computation, the communication also
leads to synchronization of the BZ gel oscillators (5).

Using our theoretical and numerical models, we studied syn-
chronization behavior in BZ-PZ networks and demonstrated that
networks involving just a few of these hybrid oscillators could ex-
hibit a variety of stable modes of synchronization (5). With mul-
tiple BZ-PZ units, the oscillators can be wired into a network of
arbitrary topology, formed, for example, from units that are con-
nected in parallel or in series (see Fig. 2). The resulting transduc-
tion between chemomechanical and electrical energy creates signals
that quickly propagate over long distances and thus permits remote
coupled oscillators to communicate and synchronize. We now
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show that the synchronization behavior in BZ-PZ networks can be
used for oscillator-based computing. Specifically, we use the syn-
chronization modes of the coupled BZ-PZ oscillator network to per-
form pattern recognition.
RESULTS

Theoretical modeling
The dynamic behavior of the BZ-PZ circuits (such as those in Figs.
1 and 2) can be captured by coupling the equations for the volu-
metric oscillations of the BZ gels to the equations for the bending
elasticity of PZ beams (5). Each BZ gel is assumed to be immersed
in a solution of BZ reactants under conditions required for the au-
tonomous chemomechanical oscillations of the gel. Notably, millimeter-
sized pieces of the gel can pulsate autonomously for hours (8). We
emphasize that the chemical energy from the BZ reaction provides
the external power source in this system. Namely, this energy powers
the mechanical oscillations of the gel that, in turn, prompt the deflec-
tion of the PZ cantilever, which generates the electrical voltage. This
process does not occur in the absence of the reagents necessary for the
BZ reaction (for example, the chemicals in the solution and the cata-
lyst in the gel). Moreover, the process will stop when the reagents are
Fang et al. Sci. Adv. 2016; 2 : e1601114 2 September 2016
consumed. However, the system can be resuscitated by adding more
BZ reagents to the solution (8). The gel size is taken to be suffi-
ciently small that the diffusion of dissolved reactants throughout
the gel occurs faster than variations of the reactant concentrations
in the course of the oscillatory BZ reaction. We used a modification
of the Oregonator model to describe the kinetics of the BZ reaction
in terms of the concentrations of activator, u, oxidized catalyst, v,
and volume fraction of polymer, f (see the Supplementary Materials)
(9, 10). In a system that consists of n units, the reaction kinetics for the
BZ gel in each unit is given by (11, 12)

ð1� fiÞd=dt ½ui ð1� fiÞ�1� ¼ FBZðui;vi;fiÞ ð1Þ

fi d=dt ðvi f�1
i Þ ¼ GBZðui;vi;fiÞ ð2Þ

where i = 1, 2,…, n labels the units, and FBZ and GBZ are the reaction
rates that depend on the concentrations ui, vi, and volume fraction of
polymer fi (see the Supplementary Materials).

In a BZ gel, periodic variations in the concentration of oxidized
catalyst, v, due to the BZ reaction affect the polymer-solvent inter-
actions and drive the gel’s rhythmic expansion and contraction. Be-
cause small gels equilibrate in size faster than the time scale for one
oscillation of the BZ reaction, a gel’s dimensions are determined by
a balance among the elasticity of the network, osmotic pressure of
the polymer, and force exerted by the cantilever; this balance is
expressed as follows (5, 13)

c0 ½li l�2
⊥ � fi ð2f0Þ�1� þ ðh0 l⊥Þ�2FðgÞ

i ¼ pFHðfiÞ þ c∗vi fi ð3Þ

The first term on the left-hand side of Eq. 3 is the elastic stress
within the gel that is proportional to the gel cross-link density, c0,
and depends on the gel’s degrees of swelling in the longitudinal, li,
and transverse, l⊥, directions. The volume fraction of polymer is
calculated as fi ¼ f0 l

�1
i l�2

⊥ , where f0 is the polymer volume frac-
tion in the undeformed gel. The second term in the left-hand side
of Eq. 3 is the pressure exerted on the gel by the cantilever, where
FðgÞ
i and h0 are the compression force acting on the gel and the size
Fig. 1. Two BZ-PZ oscillator units connected with electrical wires.
Each PZ cantilever consists of two identical layers of a polarized PZ
material; the internal and external surfaces are covered with thin electrodes
connected in parallel. Periodic volumetric changes in the self-oscillating BZ
gels cause rhythmic bending of the PZ plates. The vector of polarization in
PZ bending plates is oriented perpendicular to the plate surface (not
shown). The colors orange and blue are used to distinguish the two parts
of a bimorph PZ plate. The red and black solid lines show the electric wires
connected to the external and internal electrodes, respectively. The green
cubes depict the BZ gels.
Fig. 2. Multiple BZ-PZ oscillator units connected in serial (left) and parallel (right). e1, e2, …, en are the force polarities of the n connected
units. The orange and blue rectangles depict the two layers of a bimorph PZ plate. The green rectangles depict the self-oscillating BZ gels. The red
and black lines show the electrical connections to the respective external and internal electrodes in the PZ plates.
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of the undeformed gel cube, respectively. For simplicity, in Eq. 3,
we assumed that the gel deformations are uniaxial, and thus, l⊥ is
set to a constant value. Finally, the right-hand side of Eq. 3 provides
the osmotic pressure of the polymer that includes the contributions
according to the Flory-Huggins theory, pFH, and due to the hydrating
effect of the oxidized catalyst (see the Supplementary Materials). The
strength of the hydrating effect is controlled by the interaction
parameter c∗.

The behavior of the PZ cantilevers can be described by quasi-
static equations because the frequency of the chemomechanical os-
cillations (~ 10−2 Hz) is much lower than the eigenfrequency of a
cantilever (~ 104 Hz). Applied to the cantilever in the unit i, these
equations provide the deflection, xi, and the electric charge, Qi, of
the PZ plate as linear functions of the bending force, Fi, exerted on
the cantilever and the electric potential difference (voltage), Ui, be-
tween the electrodes (see Fig. 1) (14)

xi ¼ m11Fi þm12eiUi ð4Þ

Qi ¼ m12eiFi þm22Ui ð5Þ

The coefficients m11, m12, and m22 depend on the cantilever
dimensions, the material properties of the PZ, and the structure of
the plate (see the Supplementary Materials). The cantilevers are
considered to have a parallel bimorph structure, that is, they consist
of two identical layers of a polarized PZ material with the internal and
external surface electrodes connected in parallel (see Fig. 1). The can-
tilevers are taken to be sufficiently thin that they are deflected by the
relatively soft, expanding gels (5).

The vector of polarization in the PZ bending plates is oriented
perpendicular to the plate surface. The polarity of the voltage gen-
erated by the bending of the plate depends therefore on the mutual
orientation of the vector of polarization and the bending force ap-
plied to the cantilever’s tip in the direction normal to the surface.
Equations 4 and 5 capture the latter effect through the force polar-
ity ei, which has a binary value: it is equal to +1 if the direction of
the vector of polarization coincides with that of the applied force,
or −1 if the polarization and force are in opposite directions.

Within a BZ-PZ unit, the chemomechanical oscillations in the
BZ gel (Eqs. 1 to 3) and bending of the PZ cantilever (Eqs. 4 and 5)
are coupled through the forces and displacements because FðgÞ

i ¼ Fi
and xi = (li − l∗) h0, where l

∗h0 is the spatial offset between the gel
and cantilever. In an isolated unit, the force FðgÞ

i acting on the gel
depends only on the size of this gel, li. It is assumed that the can-
tilever remains in contact with the gel throughout the entire cycle
of gel swelling and deswelling so that xi ≥ 0 in an isolated unit.
Wiring multiple BZ-PZ units into a network leads to interactions
among all the PZ cantilevers, and hence, the force acting on a given
gel depends on the degrees of swelling (sizes) of all the gels in
the system.

We assume that the connected units are identical and differ only
in their force polarity. Then, the interaction between the BZ-PZ
units depends only on the network topology. The strength of inter-
action can be determined by using Eqs. 4 and 5, as demonstrated by
Yashin et al. (5) for the serial and parallel circuits in Fig. 2.

Given that Ui is the voltage across the ith unit, then for units
connected in series, the sum of the voltages over all n units is equal
to zero, that is, ∑n

i¼1Ui ¼ 0. In addition, for the serial connection,
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the charge on each unit is equal to the total charge in the system,
that is, Qi = Q. With these relationships, we calculate that the
bending force acting on the cantilever i can be written as

Fi ¼ Fð0Þ
i þ k ½Fð0Þ

i � ei n
�1∑

n

j¼1
ejF

ð0Þ
j � ð6Þ

Here, Fð0Þ
i ¼ m�1

11 xi is Hook’s law for a bending elastic plate, and
k ¼ m2

12ðm11m22 �m2
12Þ�1 is the coupling strength coefficient,

which is small and depends only on material properties of the can-
tilevers (5).

For units connected in parallel, the system obeys the following
constraints: Ui = U and ∑n

i¼1Qi ¼ 0. In this case, the bending force
acting on each cantilever is

Fi ¼ Fð0Þ
i þ kei n

�1∑
n

j¼1
ejF

ð0Þ
j ð7Þ

Equations 6 and 7 show that the bending force on a given can-
tilever contains contributions from all BZ-PZ units in the network.
The cross terms on the right-hand sides of Eqs. 6 and 7 correspond
to pairwise interactions, which depend on the force polarities, and
are relatively weak because k is small. The pairwise interactions in
the serial and parallel circuits have the same magnitudes but are
opposite in signs.

We previously observed that these coupled BZ-PZ oscillator
networks can achieve both in-phase and antiphase synchronization,
depending on the initial phases, connection type, and force polarity
of each oscillator unit (5). By specifying these conditions, the
network can exhibit particular modes of synchronization. Below,
we discuss how the synchronization dynamics in the BZ-PZ could
be used for pattern recognition tasks.

Pattern recognition with BZ-PZ oscillator networks
A number of schemes have been proposed for using networks of
oscillators for pattern recognition tasks (2, 15–17). Of particular
relevance to our studies is the oscillatory neural network (ONN)
model (2), which has been implemented using electrical phase-
locked loop circuits and microelectromechanical systems (3, 4).
This model for a dynamical system yielded attractor basins at the
minima of an appropriate energy function (that is, Lyapunov
energy function) that could be obtained by adjusting the coupling
parameters, through specified rules for updating the neural network
(18). The networks described by this model can be used to store
patterns that are represented by phase differences between the os-
cillators and to perform the functions of an associative memory (2).
Specifically, an input pattern drives the dynamics of the network
toward some modes of synchronization among the oscillators, and
convergence to a particular mode constitutes recognition of a specific
pattern from a set of stored patterns.

Inspired by the ONN model, we propose a similar computing
paradigm for networks of coupled BZ-PZ oscillators. We specifical-
ly focus on BZ-PZ oscillators that are connected in series. Figure 3
illustrates how we transcribe a black-and-white image into this se-
rially connected network. Each oscillator unit represents one pixel of
the image, and we specify the polarity of the PZ cantilever in each
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unit according to the color of the image. In particular, we assign the
polarity the value of +1 for a white pixel and −1 for a black pixel.
Rastering through the n pixels in the image (going from left to
right), we assign a value of the polarity to each of the n oscillators
according to the color of the pixel. In the device, the desired force
polarities can be achieved by flipping the connecting wires; this
changes the sign of the voltage generated by a BZ-PZ unit.

Our rationale for the above procedure is based on our findings
for the synchronization of three BZ-PZ oscillators connected in se-
ries (5). For a serial circuit of three oscillators having different force
polarities, for example, {+1 , +1, −1}, the only stable mode of syn-
chronization corresponds to the in-phase synchronization (no phase
difference) of the +1 units, which, in turn, are synchronized antiphase
(phase difference 0.5) with the −1 unit. Note that all phases are nor-
malized to vary between 0 and 1. On the basis of extensive numerical
simulations and a linear stability analysis (see the Supplementary
Materials), we conjecture that multiple BZ-PZ units connected in
series exhibit a stable synchronization mode characterized by the
in-phase synchronization of all the oscillators that have the same
polarity and the antiphase synchronization with oscillators of dif-
ferent polarity.

There is an important difference between the ONN model and
the BZ-PZ network shown in Fig. 3. Namely, in the ONN model, the
coupling weights of oscillators are real numbers assigned according to
the Hebbian learning rule that makes storing multiple patterns possi-
ble (19). In contrast, the force polarity factors in our oscillator network
can only be a binary value, +1 or −1, so that each oscillator network is
expected to store a single pattern. Hence, in this work, we define the
pattern recognition task as retrieving one pattern that is closest to the
pattern stored in the system from multiple input patterns.

To initiate the recognition process, we use an input pattern to
initialize the phase φ of each oscillator in the network, with φ = 0
for a black pixel and φ = 0.5 for a white pixel (see Fig. 4). Notably,
the dynamics of the BZ gels are chemo-, photo-, and mechanore-
sponsive (13, 20), and hence, the initial variations in phase among
the units can be introduced by local applications of chemical stim-
ulation, light, or pressure.
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After the initialization, the system evolves the phases into some
stable state, transforming the input pattern to some other pattern.
As detailed below, our simulations reveal that an input pattern evolves
to the stored pattern, which is defined by the set of force polarities.
The rate of convergence of the input image to the stored image de-
pends on the similarity between the two images. “Convergence”
means that the oscillators representing the black pixels in the stored
pattern establish the in-phase synchronization among themselves, and
the antiphase synchronization with the oscillators that represent the
white pixels. As detailed in the Supplementary Materials, we confirm
the stability of the state of synchronization imposed by the stored pat-
tern by using a linear stability analysis.

Figure 4 illustrates the pattern recognition task performed by
three different BZ-PZ oscillator networks, which store the respec-
tive images for the digits “0,” “1,” and “2.” The networks are simulta-
neously initialized with the same distorted “1” test image. Namely, the
test image is used to set the initial phases of the pixels, as noted above.
In the panels on the left, we show the temporal evolution in the
systems by plotting the phase differences between the first oscillator
and all the other oscillators (in the given system) as a function of time.
The phase differences are plotted in the range from 0 to 0.5, which
correspond to the in-phase and antiphase synchronization, respective-
ly (see the Supplementary Materials). In the panels on the right, the
first image represents the initial input pattern, and the temporal evo-
lution of the networks is displayed through a sequence of images for
the first 60 units of time; the interval between the images is equal to
10 time units. The unit of time is k−1T0 ~ 5 min, where k ≈ 0.2 is the
strength of coupling (see Eq. 6) and T0 ~ 1 min is the period of os-
cillation of the uncoupled oscillators. Figure 4 reveals two important
results. First, all these three networks converge to their own stored
patterns. Second, the network that stores the number “1” converges
faster than the other two systems. That is, the network storing the
image “1” provides the best match between the input and stored
patterns and, hence, is the “winner” in the recognition task.

The results shown in Fig. 4 suggest that the convergence time
can serve as a degree of match (DoM) that measures the differences
between the input pattern and each stored pattern. Hence, a system
Fig. 3. Schematics indicating how to transpose a black-and-white image onto the serially connected network of the BZ-PZ oscillators. Here,
we store a binary image of the digit “0” that contains 60 pixels. The force polarity of an oscillator is set to +1 for a white pixel and to −1 for a black pixel.
The coloring in the BZ-PZ units is the same as in Fig. 2. Note that assigning e3 = −1 is achieved through flipping the red and black connector wires.
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consisting of multiple BZ-PZ oscillator networks can recognize
patterns by detecting the shortest convergence time among the net-
works (15, 21). To support this hypothesis, we conducted multiple
computational tests discussed in the next section.

As noted above, the initial input patterns can be introduced into
the network by setting the phases of oscillation in the individual BZ
gels through chemical, optical, or mechanical techniques (20). An-
other method for storing patterns is to take advantage of the coupled
oscillator network dynamics. Because each oscillator network evident-
ly converges to the pattern set by the force polarities, we can set the
oscillator force polarities with the input pattern vectors in the same
Fang et al. Sci. Adv. 2016; 2 : e1601114 2 September 2016
way as we set the stored patterns. Once the network phases become
stable to the phases corresponding to the input test pattern, we
switch the force polarities to the stored pattern and then measure
the convergence time to this stored pattern.
DISCUSSION

Robustness of the pattern recognition
Here, we discuss various computer simulations designed to analyze
synchronization of coupled BZ-PZ oscillators connected in series,
Fig. 4. Illustration of the pattern recognition task. The three different BZ-PZ oscillator networks, which store the respective images for the digits
“0,” “1,” and “2,” are initialized with the same distorted “1” input image. The phase differences of the oscillations in the networks converge to the
respective stored patterns in the course of synchronization. The blue and red lines distinguish between the two groups of oscillators that converge
to the phase difference of 0 and 0.5, respectively. The convergence is the fastest in the network exhibiting the best match between the input and
stored patterns, that is, in the network that stores the digit “1.”
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and demonstrate that the convergence time of coupled oscillator net-
works does indeed provide a robust measure of pattern recognition.

We conduct the following three sets of computer simulations
focused on measuring and comparing the convergence times obtained
with different test patterns and stored patterns. First, we explore how
the convergence time of a network is related to the difference between
the input pattern and the stored pattern (test 1). Second, we test the
capability of two independent networks to discriminate between two
stored patterns with the “cross-pattern” test (test 2). Finally, we apply
the coupled oscillator network to the recognition task for images of the
digits “0” to “9” and analyze the recognition performance and robust-
ness (test 3).

For all these tests, we define the convergence time of synchro-
nization as the number of time units, k−1T0, needed for the coupled
oscillators to reach the stable state of synchronization that repre-
sents the stored pattern. Specifically, in this stable state, the phase
difference values of oscillators are separated into two groups repre-
Fang et al. Sci. Adv. 2016; 2 : e1601114 2 September 2016
senting the black and white pixels, with each oscillator’s phase being
within 1% of the group average.

In test 1, we initially demonstrate that the time for convergence
depends on the similarity between the stored and input patterns.
For this purpose, we compare the convergence time to the Hamming
distance, which is the sum of the element-wise differences between
two binary vectors. This parameter is a quantitative measure of the
total difference between given images of the same size. Note that
the phase dynamics and synchronization mode for the mirror (bit
complement) pattern are indistinguishable from those for the original
pattern; this can be seen from Eqs. 6 and 8, where the right-hand side
of the equation does not change when the signs of all the force po-
larities are altered simultaneously. Therefore, we effectively consider a
stored pattern and its mirror pattern in a single network.

To vary the Hamming distance between a given stored pattern
and an input, we start with the copy of the stored pattern and gen-
erate input patterns by flipping an increasing number of pixels un-
til the input pattern is transformed into the mirror pattern. In this
procedure, the input patterns are gradually less similar to the stored
Fig. 5. The stored 10 × 10 pattern and an example of the input pattern
set used in test 1. The set is generated by flipping an increasing number of
pixels until the input pattern is transformed into the mirror pattern. The
difference between the stored pattern and an image from the set is charac-
terized by the Hamming distance, which is the sum of the element-wise dif-
ferences between two binary vectors.
Fig. 6. The average convergence time obtained in test 1 (blue line) and
the Hamming distance between the stored and input images (orange
line) as functions of the number of flipped bits. The error bars show the
range of convergence times obtained from 100 runs at a given number of
flipped bits, which were selected at random from all the bits in the system.
Fig. 8. The average times of convergence to the stored patterns p1
(blue line) and p2 (orange line) obtained in test 2 as functions of the
number of flipped bits. The error bars are obtained as described in Fig. 6.
Fig. 7. An example of the 10 × 10 stored and input patterns used in
test 2. The input patterns are generated using the same strategy of flipping
bits as in test 1.
6 of 10
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pattern and more similar to the mirror pattern, as illustrated in Fig.
5. For the stored pattern shown in Fig. 5, the Hamming distance
between the stored and mirror patterns is 99. The Hamming dis-
tance between the input pattern and one of the stable states of the
system changes consecutively as 1, 2,…, 49, 50, 49,…, 2, 1.

The images in Fig. 5 represent only one particular sequence of
input patterns characterized by the above set of Hamming distances to
the stable states. In test 1, for a given Hamming distance, the bits to be
flipped are selected randomly, and the convergence time is averaged
over 100 runs, so that 99 × 100 input patterns were tested for conver-
gence. The comparison between the obtained convergence time and
Hamming distance is shown in Fig. 6. Figure 6 indicates that the time
for the coupled oscillator network to synchronize follows the trend of
the difference between input and stored patterns so that the conver-
gence time decreases with a decrease in the Hamming distance. (The
convergence time decreases after 50 bits have been flipped because, as
noted above, the phase dynamics and synchronization mode for the
mirror and stored patterns are indistinguishable.) That is, the conver-
Fang et al. Sci. Adv. 2016; 2 : e1601114 2 September 2016
gence time provides a robust measure of the DoM between the input
and stored patterns.

In the cross-pattern simulations, test 2, we explore the ability of
our system to discriminate between two distinct patterns. In this
test, we choose the two patterns, p1 and p2 shown in Fig. 7, and store
them in two oscillator networks. They share some bit values at certain
pixel positions and differ at the others. We label p0 as the set of pixels
where p1 and p2 share the same values, and px as the set of pixels
where they differ from each other. To generate the input patterns,
we use the same strategy of flipping bits as in test 1. Specifically, we
select pixel positions from px and set them to the value in p2 so that
the input pattern gradually evolves from p1 to p2. As in test 1, for
each number of pixels, the random selection is repeated 100 times.

Every input pattern is applied to both networks (p1 and p2) so that
their convergence times can be compared. The number of different
bits, the size of px, is 32; thus, we generate 31 sets of input patterns.
Figure 8 presents the comparison of convergence times to the stored
patterns p1 and p2. As the input patterns evolve from p1 to p2, the
convergence time to p1 increases, whereas the convergence time to
p2 decreases. The results indicate that we can use the convergence time
to determine which stored pattern is close to the input pattern. It is
Fig. 11. The accuracies of the recognition test 3 for the input patterns
of the digits “1,” “3,” “5,” and “7” that are distorted with various levels
of noise. The bars are colored according to the noise level. The horizontal
axis indicates the input patterns.
Fig. 12. The difference between the average convergence times of the
winner and of the runner-up in all the hit cases in test 3 for the digits
shown in Fig. 11. The error bars show the SD obtained for each bar. The
results indicate how fast the correct, recognized winner leads the runner-
up. The other notations are the same as in Fig. 11.
Fig. 10. The imagesused in test 3. (A) Binary images (10×6) of the 10digits
used as the stored patterns. (B and C) Distorted images of the digits “3” and
“8” that are obtained by flipping 1, 5, 10, 15, 20, 25, and 30 pixels that are
randomly selected.
Fig. 9. The average times of convergence to the stored patterns p1
(blue line) and p2 (orange line) obtained in test 2 as functions of the
number of flipped bits. The two stored patterns are more similar to
each other’s mirror patterns than the stored patterns in Fig. 8. The ob-
served peaks are similar to the one in Fig. 6, the result of test 1.
7 of 10



R E S EARCH ART I C L E
only when the input pattern is equally similar to both stored patterns
(within a few bits) that the system fails to identify which one is closer.

In the cross-pattern test shown in Fig. 8, the size of px is less
than half of the total number of pixels in the image. If we select
p1 and p2 with a larger value of px, the two stored patterns become
more similar to each other’s mirror pattern, and the convergence
time should be affected. To demonstrate this point, we perform the
cross-pattern test on two different stored patterns where the size of
px = 64. Figure 9 shows the images of the two chosen patterns, and
the convergence times to both p1 and p2 as functions of the number
of flipped bits. The latter plot reveals that as the pattern distances
continue to increase, the curves are no longer monotonic. The rea-
son for this behavior is due to the presence of the mirror pattern in
each network. For example, the convergence time to p1 increases
monotonically as the input patterns become less similar to p1.
However, because the size of px is large, after 45 pixels have been
flipped, the input patterns become increasingly similar to the mir-
ror pattern of p1. Therefore, these input patterns actually converge
to the mirror pattern of p1; this behavior was also observed in Fig. 6,
the result of test 1. However, even with the interference of the mirror
patterns, the two stored patterns can be distinguished from each other
because the convergence times are distinct for the two samples, ex-
cept at a few points (between 30 and 32 flips on the x axis).

Finally, in test 3, we examine the performance of our coupled
oscillator network on a pattern recognition task that is expanded
from the one shown in Fig. 4. Now, the stored patterns are 60-pixel
binary images of digits “0” to “9” (see Fig. 10). The input patterns are
distorted images of each digit, with noise that is generated by ran-
domly flipping bits. The degree of added noise gradually increases
in the recognition tests, as 1, 5, 10, 15, 20, 25, and then 30 pixels
are randomly selected and flipped from the original digit images; here,
we perform 100 simulations for each case. Figure 10 not only shows
the stored patterns but also provides examples of the input patterns
for distorted images of digits “3” (Fig. 10B) and “8” (Fig. 10C). In each
convergence simulation, we impose an input pattern onto 10 networks
of 60 coupled oscillators; each network stores one image of a digit. A
network recognizes the input pattern yielding the shortest conver-
gence time, which corresponds to the highest DoM. If the winner is
Fang et al. Sci. Adv. 2016; 2 : e1601114 2 September 2016
the same digit as the original digit of the noisy input pattern, the re-
cognition is a hit; otherwise, it is a miss.

Figure 11 is a bar graph of the recognition accuracy for the cases
of stored digit patterns “1,” “3,” “5,” and “7.” As the noise increases,
the recognition accuracies decrease. The cases of 30 flipped bits are
not shown because when half of the bits are flipped, the recognition
accuracies drop to zero. The reason for the latter behavior is that the
input patterns for these cases are actually further from the original
digit pattern than they are from the others. Among the four patterns
shown here, “3” produces the worst recognition performance because
this digitized image is very close to “6,” “8,” and “9” with very few dif-
ferent pixels (see Fig. 10). The performance data for the full test can be
found in the Supplementary Materials.

Further, each column in Fig. 12 represents the difference between
the convergence times for the winner and the runner-up for all the hit
cases. The height of the column is a measure of the robustness of the
recognition task; the data are plotted for the different degrees of noise.
The results indicate that when the degree of noise is increased, the
time lag between the runner-up and the winner becomes shorter
and, hence, it becomes more difficult for the oscillator system to dif-
ferentiate the correct pattern in an efficient manner.

In summary, we designed a materials system that can sense, actu-
ate, communicate, and compute in a self-organized manner. This
functionality is enabled by the unique properties of the BZ gels, which
do not require external power sources to drive their oscillatory mo-
tion. [As indicated above, the gels can continue to oscillate with the
addition of reagents when these chemicals are consumed (8).] More-
over, these BZ gels are responsive to mechanical input from the
overlying PZ materials. The PZs also play a crucial and distinctive role
through their interconversion of mechanical and electrical energy,
where the deformation of the cantilevers provides the voltage that
flows through the system. We then used these hybrid gel-PZ units
to couple local chemomechanical oscillations over long distances
through electrical connections. This coupling allowed the oscillations
of BZ-PZ units to become synchronized; in a network where the units
are connected in series, the units with the same force polarity are syn-
chronized in-phase and the ones with opposite force polarities are syn-
chronized out-of-phase. Taking advantage of the distinct synchronization
behavior of these chemomechanical networks, we leveraged concepts
from oscillator-based computing to use our coupled BZ-PZ oscillators
in performing pattern recognition tasks. In particular, we imposed a
collection of input patterns onto different BZ-PZ networks, where
each network encompassed a distinct stored pattern. The network en-
compassing the stored pattern closest to the input pattern exhibited
the fastest convergence time to stable synchronization behavior and
could be identified as the winner. In this way, the networks of coupled
BZ-PZ oscillators achieved pattern recognition. We demonstrated that
the convergence time to stable synchronization provides a robust mea-
sure of the DoM between the input and stored patterns. Through
these studies, we laid out fundamental and experimentally realizable
design rules for creating materials that compute.
MATERIALS AND METHODS

Phase dynamics
To facilitate our investigation of synchronization in the BZ-PZ os-
cillator networks, we used the phase dynamics approach developed for
Fig. 13. The connection function H(q) used in the equations of the phase
dynamics (Eqs. 8 and 9). The connection function is periodic at q ∈ [0, 1].
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weakly coupled oscillators (22, 23). This technique allows us to signifi-
cantly simplify the analysis of the dynamics of the oscillator networks
because the interaction between weakly coupled oscillators only results
in the time-dependent deviation of phase in each oscillator. If known,
the function that describes the oscillator phase response can be used to
simulate a coupled oscillator system in the phase domain and thus re-
duce the complexity of the simulation as compared to the original non-
linear oscillator equations (Eqs. 1 to 5). For networks of identical BZ-PZ
oscillators, this function was numerically determined by Yashin et al.
(5). It was shown that the phase dynamics in the serially connected
network (see Fig. 2 and Eq. 6) is described by the following equation

k�1dφi=dt ¼ Hð0Þ � n�1∑
n

j¼1
eiejHðφj � φiÞ ð8Þ

For the parallel connection (see Fig. 2 and Eq. 7), the phase dynam-
ics equation is

k�1dφi=dt ¼ n�1∑
n

j¼1
eiejHðφj � φiÞ ð9Þ

The oscillation phase normalization in Eqs. 8 and 9 is such that 0 ≤
φi≤ 1 and i = 1, 2,…, n. The function H(φj − φi) (connection function)
characterizes the rate of the phase shift for the oscillator i due to the
interaction with the oscillator j at their relative phase difference of
φj − φi. The connection function H(q) is periodic at q ∈ [0, 1] and
determined by the intrinsic properties of the oscillators described by
Eqs. 1 to 3.

Figure 13 shows the plot of the connection function obtained by
Yashin et al. (5). It is evident that the phase response of a BZ-PZ
oscillator to an external action is quite complicated. The interaction
between the oscillators can cause both positive and negative phase
shifts depending on the phase difference, and this results in a va-
riety of stable phase synchronization modes exhibited by the BZ-PZ
oscillator networks (5). For any set of initial phases for the individual
oscillators, the system dynamics converge to one of the stable synchro-
nization modes.

Materials
The connection function H(q) shown in Fig. 13 was numerically
obtained by Yashin et al. (5) for the set of materials and model
parameters specified below (see the Supplementary Materials for
more details). We assumed that the BZ gel is formed from poly(N-
isopropylacrylamide) (PNIPAAm) chains containing grafted rutheni-
um metal-ion catalysts (7). The model parameters are the same as in
the study by Yashin et al. (5). The volume fraction of polymer and the
cross-link density in the undeformed BZ gel are f0 = 0.16 and c0 = 4 ×
10−4, respectively. The interaction parameter c∗, which accounts for
the hydrating effect of the oxidized catalyst, is c∗ = 0.105. The un-
deformed gel size is h0 = 0.5 mm. The values of l⊥ and of the offset
l∗ are l⊥ = l∗ ≈ 1.65, which corresponds to the steady-state value for
the isotropic (unrestricted) swelling of the BZ gel (5).

The cantilever was assumed to be fabricated from polarized lead
zirconate titanate (PZT) ceramics, one of the most commonly used
PZs (24). The length and width of the PZ bimorph plate are 1 mm,
and the layer thickness is 10 mm. We assumed that the PZ cantilevers
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are fabricated using advanced processing methods (25, 26), which
yield a twofold increase in the PZ constant relative to a typical
PZT. At the model parameter values used for the calculations, the
strength of coupling is k ≈ 0.206. For the chosen model parameters,
the period of oscillation of the uncoupled oscillators is T0 ~ 1 min (5).

Feasibility of fabricating the system
Recent advances in the fabrication of hybrid gel-PZ systems indicate
the feasibility of creating the BZ-PZ oscillator networks described here.
In particular, studies have demonstrated that the deformation of a
humidity-responsive polymer network on a PZ film could generate
measurable voltages (27). It has also been shown that arrays of millimeter-
sized PZ actuator-sensor systems, which are laminated on soft
biological materials, could monitor the mechanical properties of the
underlying material (28). Hence, current state-of-the-art manufacturing
techniques allow researchers to fabricate millimeter-sized gel-PZ
elements, which generate strong electric signals.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/9/e1601114/DC1
Kinetics of the BZ reaction in a polymer gel.
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Stability of the synchronization mode.
Complete set of results for test 3.
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fig. S1. The phase differences plotted in the ranges [0, 1] and [0, 0.5].
fig. S2. The phase difference y between the two groups of oscillators.
fig. S3. The accuracies of the recognition test 3 for the input patterns of all 10 digits distorted
with various levels of noise.
fig. S4. The height of the bars represents the average convergence time difference between
the winner and the runner-up in all the hit cases in test 3.
fig. S5. The accuracy in recognizing the digit “7” as a function of the number of flipped pixels
in the case where 60 pixels are used to represent the digit.
fig. S6. The phase dynamics for the uniform distribution DT/T0 ∈ [−s, s] for various values of s.
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