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Abstract

Autophagy is a lysosomal recycling process conserved in eukaryotes, which maintains cellular 

homeostasis during stress and starvation conditions by degrading and recycling proteins, lipids and 

carbohydrates, ultimately increasing nutrient availability. An additional function of autophagy, 

termed xenophagy, is to detect, capture and destroy invading microorganisms, such as viruses, 

bacteria and protozoa, providing autophagy with a role in innate immunity. Many intracellular 

pathogens have however developed mechanisms to avoid xenophagy, and have evolved strategies 

to take advantage of select autophagic processes to undergo their intracellular lifecycle. This 

review article will discuss the molecular mechanisms used by the intracellular bacterial pathogens 

Francisella spp. and Brucella spp. to manipulate components of the autophagic pathway, 

promoting cytosolic growth in the case of Francisella spp., and facilitating cellular egress and cell-

to-cell spread in the case of Brucella spp. These examples highlight how successful, highly 

infectious bacterial pathogens avoid or subvert host autophagy mechanisms normally employed to 

maintain eukaryotic homeostasis.
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Introduction on Autophagy

Autophagy is an essential and conserved eukaryotic process for intracellular breakdown and 

disposal of damaged organelles and protein aggregates that are too large to be degraded by 

the proteasome. Three mechanistically distinct types of autophagy occur in eukaryotic cells, 

(1) microautophagy, (2) chaperone-mediated autophagy and (3) macroautophagy [1,2]. 

Macroautophagy, commonly referred to as autophagy, is a membrane trafficking pathway 

that captures material for delivery to the lysosomal degradative compartment. Autophagy is 

initiated by the capture of cytosolic components, specifically damaged organelles, protein 

aggregates and intracellular microbes into double-membrane-bound compartments called 

autophagosomes. These autophagosomes then mature into degradative autolysosomes via 

fusion with lysosomes along the late endocytic pathway [2]. The content of the 

autolysosome is then degraded, to either regenerate nutrients or destroy invading pathogens. 

Lysosomal permeases and transporters export amino acids and other by-products of 

degradation into the cytosol, where they can be recycled and used as building blocks of 

macromolecules [2,3]. Autolysosomes are then recycled through lysosome reformation [4]. 

Autophagy is integral to human health and occurs at a basal level in eukaryotic cells to 

maintain cellular homeostasis, and imbalances in autophagy regulation have been associated 

with many diseases such as cancer, neurodegeneration, aging and microbial infection [5,6].

A Conserved Autophagic Machinery and Activation

The canonical autophagy process can be divided in six sequential steps: (1) initiation, (2) 

phagophore formation/nucleation, (3) elongation, (4) closure, (5) maturation and (6) 

recycling/lysosomal reformation (Figure 1). More than 30 autophagy-related genes (Atg) 

have been identified in yeast with homologs in humans that encode proteins, which 

coordinate autophagosome formation and maturation (Figure 2) [1]. In addition, small 
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GTPases involved in the endocytic and secretory pathways are also engaged in 

autophagosome formation and maturation [7]. Phospholipids such as phosphatidylinositol 

and phosphatidylethanolamine are also integral components of autophagy [8]. The core 

machinery of autophagy can be classified into several functional units including: the Atg1/

ULK1 complex, the transmembrane protein Atg9 cycling system, the Vps34 

phosphatidylinositol 3-kinase (PI3P / PtdIns3K) complex and two ubiquitin-like conjugating 

systems, Atg12-Atg5 and Atg8/LC3 (Figure 2). Upon autophagy initiation, a crescent-

shaped, double-membrane called the phagophore (or isolation membrane) is formed. The 

phagophore assembly site (PAS) can be derived from membranes from different organelles 

[9]. One characterized example of a PAS is the omegasome, a structure formed by extension 

of the endoplasmic reticulum (ER) that contains the protein DFCP1 [10]. Subsequently, 

Atg9, Atg18 (WIPI1/2) and VMP1 are recruited to the omegasome [11]. Atg9 is a 

transmembrane protein that promotes lipid recruitment to the expanding phagophore [12]. 

Phagophore formation is controlled by the Unc51-like kinase 1 (ULK1) complex [13,14], 

which is composed of Atg1 (ULK1), Atg11, Atg13, Atg17, Atg29 and Atg31 in yeast and 

ULK1, ATG13, RB1CC1/FIP200 and ATG101 in mammalian cells [15,16]. Following 

amino acid starvation, the ULK1 complex activates BECN1/Beclin1, which triggers 

production of phosphatidylinositol 3-phosphate (PI3P). Vps34 phosphorylates the 

phospholipid, phosphatidylinositol (PI) to form PI3P, which is central for membrane 

trafficking processes and is the major lipid signal controlling autophagic vesicle formation 

[17]. PI3P is essential for phagophore elongation by bringing additional Atg proteins to the 

phagophore that recruit membranes to the elongating phagophore [18]. BECN1 is part of a 

core complex that contains Atg14, p150 and Vps34, a class III phosphoinositide 3-kinase 

(PI3K). A pharmacological inhibitor of autophagy called 3-methyladenine (3-MA) binds 

Vps34, thereby preventing autophagy nucleation and elongation [19]. The phagophore 

ultimately elongates and expands to engulf and sequester autophagic cargo using a ubiquitin-

like conjugation system of proteins, including Atg5-Atg12 and Atg16L1, which mediates the 

maturation and closure of the phagophore [20]. Another ubiquitin-like conjugation system 

involves Atg8 in yeasts. Mammals express three subfamilies of Atg8 proteins: (1) 

microtubule-associated protein 1A/1B-light chain 3 (MAP-LC3 or LC3), (2) γ-aminobutyric 

acid receptor-associated protein (GABARAP) and (3) Golgi-associated ATPase enhancer of 

16 kDa (GATE-16) [21]. Atg8/LC3 proteins are involved in recruiting cargo into 

autophagosomes and function in autophagosome biogenesis. The cysteine protease Atg4 

cleaves Atg8/LC3 to generate LC3-I, which is subsequently conjugated to 

phosphatidylethanolamine (PE) on the autophagosomal membranes via Atg3 and Atg7, 

forming the lipidated, membrane-associated LC3-II form. LC3-II is involved in the final 

sealing steps that allow completion of an autophagosome [22], and is considered a gold 

standard marker of autophagic compartments [8]. The newly formed autophagosome then 

fuses with the lysosome to form an acidified autophagolysosome. Autophagosomes can 

either nonspecifically engulf cytosolic matter, or selectively sequester unwanted material 

including pathogens using autophagy receptors, such as p62/SQSTM1, NDP52, NBR1 and 

optineurin, which bind to polyubiquitin-tagged proteins and to autophagosome-associated 

LC3-II [23].
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Autophagy is initiated by a complex and diverse set of stimuli. A number of triggers 

increase autophagy over basal levels, including cellular stressors such as nutrient starvation, 

hypoxia, growth factor withdrawal, ER stress and infection [24-26]. A classical trigger of 

autophagy is nutrient deprivation. When intracellular amino acid concentrations are low, 

autophagy is induced. A central regulator of autophagy is the kinase mammalian target of 

rapamycin (mTOR) (Figure 1), which inhibits autophagy in the presence of growth factors 

and abundant nutrients. When starvation conditions arise, cellular AMP levels rise and ATP 

levels drop, which in turn activates the energy sensing protein AMP-activating protein kinase 

(AMPK). AMPK can induce autophagy by phosphorylating TSC2 and RPTOR to inactivate 

mTOR, and AMPK can directly activate autophagy by phosphorylating ULK1 during 

nutrient deprivation [13]. mTOR is also a downstream target of the phosphatidylinositol 3-

kinase and Akt (PI3K/Akt) pathway. The PI3K/Akt pathway is activated by insulin and 

growth factors to promote cell growth, differentiation and survival [27]. Activation of the 

PI3K/Akt pathway inhibits autophagy via increased activation of mTOR [28]. Another 

critical regulator of autophagy is the class III PI3K, Vps34 (also known as PIK3C3) [29], 

which acts independently of the class I PI3K/Akt pathway. The IRE1α-JNK pathway is yet 

another regulator of autophagy and is activated during ER stress [30]. Eukaryotic cells deal 

with ER stress via the unfolded protein response, involving the induction of molecular 

chaperones, translation attenuation, ER-associated degradation, and the activation of 

autophagy, which are important for cell survival [30]. Cell homeostasis depends on the 

balance between the activation and inhibition of autophagy, and the signaling pathways that 

converge to control this dynamic process are complex and expanding.

Non-Canonical Autophagy

Canonical autophagy requires the sequential activity of defined molecular complexes, whose 

roles and importance have been defined [9]. However, recent evidence has revealed that 

formation of functional autophagosomes can bypass certain steps, eliminating the use of 

particular molecular autophagy complexes [9]. LC3 conversion still occurs in ulk1/(atg1) 
and ulk2 knockout mouse embryonic fibroblasts (MEFs) [31], and at a reduced level in 

rb1cc1/fip200(atg17) knockout MEFs [32], suggesting that the ULK1 complex is not 

essential for activation of the LC3 conjugation machinery and that the autophagy cascade 

can be initiated in an ULK1-independent manner [13]. Atg5- and Atg7-independent 

autophagy has also been recently described, which is not associated with LC3 processing 

and appears to specifically involve formation of autophagosomes from late endosomes and 

the trans-Golgi network [33]. The discovery of alternative, non-canonical autophagy 

pathways argues that autophagic processes are more diverse than initially anticipated. 

Depending on the stimuli and cellular context, only a subset of autophagy-related functional 

complexes may be activated at one time to degrade and recycle material.

Xenophagic capture of invading bacteria

Xenophagy is an autophagic process that specifically targets bacterial, viral and protozoan 

parasites for destruction [34]. Key aspects of xenophagy rely on sensing invading 

microorganisms and directing them towards autophagic degradation [35]. Mammalian cells 

express a variety of cell surface and cytosolic pattern recognition receptors (PRR), such as 

Miller and Celli Page 4

J Mol Biol. Author manuscript; available in PMC 2017 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Toll-like receptors (TLRs) or cytosolic nucleotide-binding oligomerization domains, (NOD)-

like receptors (NLRs) to detect invading pathogens [36]. These PRRs recognize specific 

bacterial pathogen-associated molecular patterns (PAMPs), including lipopolysaccharides 

(LPS), peptidoglycan, flagella and bacterial DNA [37], and likely play important roles in 

initiating xenophagy. Bacterial PAMPs also activate inflammasome components, which 

coordinate autophagy and pyroptosis to control infection [38,39]. Galectin 8 is a cytosolic 

lectin that acts as a versatile danger receptor that restricts bacterial proliferation by binding 

NDP52 and activating antibacterial autophagy [40]. Upon their detection, intracellular 

microbes undergo surface polyubiquitination, which is in turn recognized by various adaptor 

proteins or autophagy receptors, such as p62/SQSTM1, NDP52 and optineurin, which 

mediate selective autophagy of ubiquitinated pathogens by binding LC3 and recruiting the 

autophagic machinery [41-43]. Despite the importance of pathogen tagging via 

ubiquitination in the xenophagic process, the actual microbial targets of ubiquitination are 

unknown, and LRSAM1 is the only E3 ubiquitin ligase known so far to specifically target 

bacteria and contribute to xenophagy [44]. Given the antimicrobial function of xenophagy, it 

is not surprising that many intracellular bacterial pathogens have evolved to prevent or 

interrupt this cytosolic innate immune defense mechanism, by either preventing their 

detection or delivery to degradative lysosomes [45].

The Intracellular Niches of Francisella spp. and Brucella spp

Bacteria of the Francisella and Brucella genera include zoonotic pathogens of global 

importance, which cause tularemia and brucellosis, respectively. Francisella spp. and 

Brucella spp. are Gram-negative facultative intracellular bacteria that have evolved elaborate 

mechanisms to infect various eukaryotic cell types and grow within specific intracellular 

niches. The genus Francisella includes several species, such as F. tularensis, F. novicida, F. 
noatunensis, and F. philomiragia, which differ in virulence in humans and animals. Human 

tularemia is caused predominantly by F. tularensis [46]. Two subspecies of F. tularensis, 

subsp. tularensis and subsp. holarctica, display distinct geographical distribution and disease 

severity [47]. F. tularensis subspecies tularensis is the most virulent subspecies and causes a 

lethal disease in humans after exposure to as few as 10 inhaled bacteria [48]. Bacteria of the 

genus Brucella infect a variety of mammals, among which Brucella abortus, Brucella 
melitensis and Brucella suis can cause disease in humans [49]. Brucellosis is the most 

common bacterial zoonotic disease worldwide [50], with over a half-million reported human 

cases annually. Brucella spp. have a particular tropism for the reproductive system in 

animals, often leading to abortion and sterility [51]. In both humans and animals, brucellosis 

can become chronic with persistent relapses [52].

Francisella species grow efficiently in the cytosol of a plethora of cell types and in a diverse 

array of organisms [53]. Following internalization, Francisella spp. initially resides in a 

vacuole that sequentially acquires markers of early and late endosomes [54] (Figure 3). 

Francisella tularensis escape its original phagosome before lysosomal fusion to reach the 

cytosol where it undergoes rapid replication, a hallmark of its intracellular life cycle [55]. 

The Francisella pathogenicity island (FPI), a cluster of genes that share homology with type 

VI secretion systems [56], is essential for intracellular growth and escape from the vacuole 

[56,57]. The FPI-encoded apparatus is thought to deliver effector proteins into host cells that 
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may modulate host functions to allow Francisella spp. to evade lysosomal fusion and escape 

from the vacuole, yet direct evidence of bacterial effectors playing a role in these critical 

steps of the intracellular lifecycle is lacking.

Unlike Francisella spp., Brucella spp. remain within a membrane bound compartment, the 

Brucella-containing vacuole (BCV), and exploit functions of the host secretory pathway to 

convert its original, endosomal BCV (eBCV) into a replicative BCV (rBCV) that is derived 

form the host ER (Figure 3). One virulence factor necessary for Brucella spp. to generate the 

rBCV, grow intracellularly and establish infection is the VirB type IV secretion system 

(T4SS) [58,59], a membrane-spanning apparatus that delivers effector proteins into the host 

cell [60-63]. Protein effectors are thought to modulate host functions to promote rBCV 

biogenesis. Upon internalization, Brucella spp. traffics along the endocytic pathway in 

BCVs that acquire markers of early then late endosomes such as the lysosomal glycoprotein 

LAMP-1 [64-67]. The BCV partially fuses with lysosomes, consistent with the role of the 

lysosomal small GTPase Rab7 in BCV maturation [67], but subsequently excludes 

endosomal markers from the BCV membrane, via a process initiated when the BCV 

intersects with the secretory pathway at endoplasmic reticulum exit sites (ERES) [68]. The 

small GTPase Sar1 is required for the association between the BCVs and ERES [68], 

consistent with its role in ERES integrity and functions. Rab2, a small GTPase that controls 

Golgi to ER transport, is also required for rBCV biogenesis [69]. The Brucella VirB type IV 

secretion system (T4SS) is required for sustained interactions between BCVs and ERES, 

which promotes accretion of ER-derived membranes, culminating in the biogenesis of the 

ER-derived, replication-permissive rBCV [68].

Hence, both Francisella spp. and Brucella spp. have evolved mechanisms to reach or 

generate a specific intracellular niche, the cytosol in the case of Francisella spp., and the ER-

derived rBCV in the case of Brucella spp. Each specific environment provides Francisella 
spp. and Brucella spp. with replication-permissive conditions that support their intracellular 

proliferation (Figure 3).

Francisella avoidance of xenophagy

Cytosolic replication places Francisella spp. in an ideal location for autophagic recognition 

and capture. Yet, these bacteria undergo unrestricted replication, suggesting they can avoid 

xenophagy. Consistently, the highly virulent strain F. tularensis subsp. tularensis SchuS4 

avoids autophagic recognition and capture, ascytosolic SchuS4 does not become 

ubiquitinated and less than 5% is recognized by the autophagy receptors p62/SQSTM1 and 

NBR1, suggesting SchuS4 prevents ubiquitin tagging and impairs recruitment of the 

autophagic machinery [70]. However, another study showed early (1 hr pi) and transient 

recruitment of p62/SQSTM1 and LC3 on intracellular Francisella tularensis subsp. 
holarctica live vaccine strain (LVS) [71], an attenuated strain of Francisella [72]. The 

inability of LVS to prevent early recruitment of autophagic machinery may relate to the 

strain's attenuation. While wild type SchuS4 bacteria are not targeted by autophagy, various 

replication-deficient mutants of SchuS4 that die in the cytosol are eventually tagged with 

ubiquitin and captured into autophagosomes in an Atg5-, LC3- and p62/SQSTM1-dependent 

manner [70], further suggesting that F. tularensis actively avoids xenophagic recognition. 
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Additionally, autophagy-related genes including BECN1, ATG5, ATG12, ATG16L1, ATG7 
and ATG4a are down regulated at 24 hours post infection in human monocytes with the 

virulent strain F. tularensis SchuS4 and the less virulent strain F. novicida [73,74]. A recent 

study proposed a mechanism of xenophagic avoidance by F. tularensis [75]. A library of F. 
tularensis subsp. tularensis transposon mutant in GFP-LC3-expressing murine macrophages 

was screened by fluorescence microscopy and 11 mutants were identified that are rapidly 

captured by autophagy (by 6 hours post infection) [75]. These mutants all grouped within 

four genetic loci involved in lipopolysaccharide and capsular O-antigen biosynthesis, 

indicating that F. tularensis surface O-antigen prevents xenophagic recognition and clearance 

[75]. These findings suggest that F. tularensis polysaccharidic O-antigen could act as a shield 

on cytosolic bacteria, preventing their detection and tagging of PAMPs that would otherwise 

activate the xenophagic cascade.

Mechanisms of Autophagy Exploitation by Francisella

F. tularensis replicates up to 1000 fold in the cytosol of infected cells within 24 hours 

[76-78]. To achieve such rapid intracellular growth, these bacteria must efficiently scavenge 

energy and nutrients from the host cell, in addition to evading cytosolic surveillance systems 

such as xenophagy. Steele et al. recently found that F. tularensis infection induces autophagy 

through an Atg5-independent pathway that provides amino acids and bulk carbon to the 

bacterium [76]. F. tularensis infection of human monocytes also leads to a decrease in 

expression of the PI3K/Akt pathway, which inhibits pro-inflammatory gene transcription 

[73], in addition to activating autophagy. Supplementation of non-essential amino acids or 

pyruvate during infection rescued F. tularensis growth during autophagy inhibition [76], 

demonstrating that amino acids scavenged from autophagy are used for protein synthesis and 

are metabolized as a major carbon source [76]. Consistently, F. tularensis is commonly 

found adjacent to autophagosomes during their replication in mouse embryonic fibroblasts 

(MEFs) and J774A.1 mouse macrophage-like cells [76]. Hence, Francisella spp. can avoid 

xenophagic detection early during infection, and use autophagy to acquire amino acids 

during replication. Additionally, bacteria were observed late during infection in large 

autophagic Francisella-containing vacuoles (FCVs) in murine BMMs, following extensive 

cytosolic replication [79]. FCV formation was blocked by chloramphenicol, suggesting 

bacterial proteins are responsible for this process [79]. Yet, FCV formation is specific to 

mouse cells and does not occur in human macrophages [80,81], so it remains unclear 

whether the FCV plays a role in the intracellular cycle of Francisella spp. Future studies 

addressing which bacterial factors modulate autophagy will be important in further defining 

how Francisella takes advantage of the autophagic process for nutritional purposes.

Mechanisms of Autophagy Exploitation by Brucella

Pizarro et al. originally reported structural features of BCVs [82] that were consistent with 

autophagosomes in HeLa epithelial cells infected with B. abortus for 24 hours. This led to 

the proposal that autophagy was required for the biogenesis of the replicative BCVs early 

during infection [65,82]. However the marker monodansylcadaverine (MDC) used in these 

early studies to identify autophagic vacuoles lacks specificity, as it also accumulates in 

lysosomes and does not colocalize with the autophagic marker LC3 [83]. Additional studies 

also found that MDC does not accumulate in BCVs during the initial 24 hours of infection 
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with B. abortus in either bone marrow derived macrophages (BMMs) or J774A.1 

macrophage-like cells [66,84]. Based on the use of LC3-II recruitment to membranes, a 

more specific marker for autophagosome formation [8], subsequent studies found that BCVs 

do not associate with LC3-II [85]. B. abortus or B. melitensis infections do not increase 

LC3-II protein levels [86], arguing against autophagy induction during infection. Despite 

these early inconsistencies, additional studies have recently provided a potential link 

between autophagy and Brucella infection, via activation of one arm of the unfolded protein 

response (UPR) [87-90]. The UPR aims to restore ER homeostasis upon ER stress through 

tight control of transcription of genes involved in promoting ER functions, including lipid 

synthesis, ER-associated degradation (ERAD) and protein chaperones [91]. UPR pathways 

are controlled by three ER-associated receptors that sense ER stress, (1) inositol-requiring 

enzyme-1 (IRE-1α), (2) protein kinase RNA-like ER kinase (PERK) and (3) activating 

transcription factor 6 (ATF6) [92]. Autophagy is also activated upon ER stress to restore 

homeostasis and promote cell survival [30], and accumulating evidence suggests that UPR-

dependent autophagy can also be beneficial for some intracellular pathogens during 

infection [93]. Smith et al. recently proposed that the UPR is required for B. melitensis 
replication, since it was induced upon B. melitensis infection and treatment of macrophages 

with tauroursodeoxycholic acid (TUDCA), a pharmacologic chaperone that counteracts the 

UPR by assisting protein folding, decreased B. melitensis growth [88]. However, B. suis 
replication was significantly inhibited at 24 hours post infection in goat trophoblasts in 

which ER stress was induced using tunicamycin, but restored with the addition of a 

pharmacologic chaperone 4 phenyl butyric acid (4-PBA) or expression of the chaperone 

GRP78, which both alleviate ER stress-induced apoptosis [94]. These conflicting results 

may reflect cell type differences but will need to be reconciled to unequivocally establish the 

effect of the UPR on Brucella replication. It is also unclear whether Brucella infection 

triggers a complete or partial UPR response. B. abortus and B. suis only activate IRE1α 
[87,94], which has been linked to host cell sensing of T4SS secretion [87], while B. 
melitensis induces ER stress by triggering all three arms of the UPR (IRE1α, PERK and 

ATF6-dependent pathways) via the secreted effector TcpB [88]. A number of additional 

effectors including BspC, BspG, BspH and BspK also trigger ER stress when expressed in 

epithelial cells, suggesting that the mechanisms of UPR induction by B. abortus are complex 

and involve a growing list of bacterial and host proteins [63]. There is however consensual 

support that IRE1α is activated by Brucella infection in macrophages, trophoblasts and 

epithelial cells [87-89,94]. IRE1α is a transmembrane kinase that regulates the UPR, which 

plays an important role in cell survival after ER stress, and also promotes ER-associated 

autophagosome biogenesis [30]. B. abortus replication is attenuated in both IRE1α-depleted 

Drosophila melanogaster S2 cells and IRE1α knockout (KO) murine embryonic fibroblasts 

(MEFs) [90]. Taguchi et al. (2015) detected IRE1α activation as early as 4 hours post-

infection [89], suggesting a role of this UPR component early during the Brucella 
intracellular cycle. IRE1α activation occurs via the host protein Yip1a, which binds to and 

phosphorylates IRE1α, triggering XBP-1 dependent transcription [89]. Yip1a activation of 

IRE1α was associated with an up-regulation of the GTPase Sar1 and subunits of the COPII 

coat complex [89], which are essential components of ERES and early secretory trafficking, 

and required for rBCV biogenesis [68]. While it is unclear how up-regulation of COPII 

components and the GTPase Sar1 benefit Brucella, it may enhance ERES functions and 
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consequently increase ER-derived vesicle budding to promote ER membrane acquisition for 

rBCV biogenesis. In support of this hypothesis, Yip1A activation of IRE1α triggers 

formation of large vacuoles, which is dependent on the autophagy associated proteins ATG9 

and WIPI [89]. Depletion of either ATG9 or WIPI impairs rBCV biogenesis, suggesting that 

B. abortus hijacks these components of the autophagic cascade to promote rBCV biogenesis 

[89].

In addition to the subversion of autophagy components for rBCV biogenesis, B. abortus 
selectively subverts other components of the autophagic cascade for egress and cell-to-cell 

spread during late stages of infection [85]. After extensive replication in the ER, some 

rBCVs are engulfed by autophagosome-like structures and converted into multimembrane 

vacuoles called aBCVs, for autophagic BCVs [85]. Formation of these newly discovered 

aBCVs does not however require canonical autophagy, as the elongation complexes 

including ATG5, ATG16L1, ATG4B, ATG7 and LC3B are not recruited during, or required 

for, aBCV formation [85]. Biogenesis of the aBCV however requires BECN1, ATG14L and 

ULK1, three autophagy-associated proteins involved in autophagy initiation. In addition, 

PI3P was detected on the aBCV [85], consistent with the role of a class III PI3K activity 

associated with the BECN1-VPS34 autophagy initiation complex, and treatment of infected 

cells with 3-MA, an inhibitor of class III PI3K, decreased aBCV formation [85]. 

Additionally, miRNA expression profiles of the autophagy genes ampk, ulk3 and vps34 are 

altered in late stages of Brucella-infected macrophages [95], suggesting that the bacterium 

may alter expression of autophagy-related genes it subverts for aBCV formation. However, 

additional studies are required to substantiate possible links between aBCV formation and 

these observations. These recent findings support the concept that Brucella subverts a subset 

of molecular machineries associated with autophagy at a late stage of infection to promote 

spread to neighboring cells, and may typify pathogenic mechanisms employed by other 

microorganisms to modulate specific stages of their intracellular cycle. Altogether, these 

studies reveal a picture of subversion of discrete autophagy-associated membrane trafficking 

processes by Brucella, whereby the bacterium likely uses a given subset of autophagy 

associated proteins to acquire ER derived membranes for rBCV biogenesis, and coopts 

another subset of autophagic proteins to spread form cell-to-cell, in processes that 

functionally differ from canonical autophagy. Further understanding of these steps of the 

Brucella intracellular cycle requires the identification and characterization of the bacterial 

factors that modulate autophagy-associated processes.

Concluding Remarks and Perspectives

Autophagy research has expanded into innate immunity, driven by contemporary recognition 

of its significance during bacterial infection [45]. Brucella and Francisella are two examples 

of bacterial pathogens that have evolved unique mechanisms to avoid xenophagy and also 

exploit selective autophagic machineries to promote their intracellular cycles. The O-antigen 

polysaccharide of cytosolic Francisella could act as a shield, preventing xenophagic 

detection [75]. Atg5-independent autophagy is essential for both Francisella nutrient 

acquisition during replication [76] and for Brucella vacuole acquisition for aBCV biogenesis 

and egress [85], although it is unclear whether the same non-canonical processes are invoked 

on both cases. Additionally, Brucella hijacks the autophagy components ATG9 and WIPI to 
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generate the replication-permissive rBCV [89]. A number of intracellular pathogens have 

been shown to hijack a select set of autophagic components [76,86,96-98]. The next decade 

of research needs to uncover the microbial effectors responsible for hijacking autophagic 

components and their mechanisms of action need to be characterized. Limited studies on 

Coxiella burnetii, Helicobacter pylori and Anaplasma phagocytophilum have begun to 

uncover such bacterial effectors [93,99-101]. The C. burnetii T4SS effector, Cig2, recruits 

LC3 to the parasitophoruous vacuole (PV) to aid in maintenance of the PV membrane [101], 

while A. phagocytophilum T4SS effector Ats-1 binds BECN1 and recruits Atg14L to 

promote autophagosome nucleation at the bacterial vacuole membrane [99]. Brucella 
requires BECN1 for aBCV formation [85], so future directions should examine whether the 

bacterium expresses effectors that directly target this autophagic protein.

Discovering what host factors are involved in phagophore elongation in the absence of the 

ubiquitin-like conjugation systems during Brucella and Francisella infection will provide 

important insight into non-canonical autophagic processes. The Atg17/31/29 complex 

involved in autophagy initiation and found at the phagophore assembly site, is also involved 

in autophagosome closure [102]. It will be interesting to determine if this complex is 

required during Francisella and Brucella infections for autophagosome closure in lieu of the 

Atg5 and LC3 ubiquitin-like conjugation systems. Understanding how pathogens hijack 

specific non-canonical autophagy machineries may uncover targets for disease prevention, 

while preserving functions of the canonical autophagy pathway for maintenance of 

eukaryotic cellular homeostasis. It will therefore be important to expand our knowledge on 

how autophagosome formation occurs when specific autophagy complexes are bypassed, 

and whether bacterial effectors drive these processes. Both Brucella and Francisella are 

useful tools to understand pathogenic manipulation of autophagy, and future research should 

be directed at resolving the many mechanisms by which intracellular pathogens exploit 

autophagy.
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Abbreviations

3-MA 3-methyladenine

AMPK AMP-activating protein kinase

ATF6 activating transcription factor 6

ATG autophagy-related genes

BCV Brucella-containing vacuole

BECN1 Beclin1

BMM Bone marrow-derived macrophages
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ER endoplasmic reticulum

ERAD endoplasmic reticulum-associated degradation

ERES endoplasmic reticulum exit sites

FPI Francisella pathogenicity island

GABARAP γ-aminobutyric acid receptor-associated protein

GATE-16 Golgi-associated ATPase enhancer of 16 kDa

LC3 microtubule-associated protein 1A/1B-light chain 3

LPS Lipopolysaccharide

LVS Francisella tularensis subspecies holarctica live vaccine strain

MEF mouse embryonic fibroblast cells

mTOR kinase mammalian target of rapamycin

PAMP Pathogen-associated molecular patterns

PAS phagophore assembly site

PE phosphatidylethanolamine

PERK protein kinase RNA-like ER kinase

PI3K phosphoinositide 3-kinase

PI3P phosphatidylinositol 3-phosphate

PI phosphatidylinositol

pi post infection

PtdIns3K phosphatidylinositol 3-kinase

T4SS Type IV Secretion System

TLR Toll-like receptor

UPR unfolded protein response

UBL ubiquitin-like protein
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Highlights

• Background Contents

○ Xenophagy is a host process of pathogen clearance, 

which is hijacked by Francisella spp. and Brucella spp. for 

replication purposes and cell-to-cell spread, respectively.

• Conceptual Advances

○ F. tularensis capsular and lipopolysaccharide O-antigen 

is an essential component of xenophagy avoidance.

○ F. tularensis acquires amino acids generated via 

autophagy to grow unrestricted in the host cell cytosol.

○ B. abortus requires the autophagy proteins ATG9 and 

WIPI, for biogenesis of the replicative vacuole.

○ B. abortus selectively subverts several autophagy 

initiation complexes to generate an autophagic vacuole 

important for egress and cell-to-cell spread.

• Perspectives

○ The molecular mechanisms by which Francisella spp. 
and Brucella spp modulate their interactions with 

autophagic machinery pathway need to be elucidated.
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Figure 1. Sequential steps of canonical autophagy
In the presence of amino acids, growth factors and energy, the mTOR complex represses 

autophagy by inhibiting the kinase activity of ULK1. The PI3K/Akt pathway inhibits 

autophagy, while AMPK activates autophagy by controlling mTOR activation under 

nutrient-limiting conditions. Upon autophagy induction (1), the ULK1 complex activates the 

BECN1/VPS34 complex to initiate (2) phagophore formation and nucleation. BECN1 can 

be activated directly by the IRE1α/JNK pathway or inhibited by the pharmacological drug 

3-methyladenine (3-MA). Phagophore elongation (3) proceeds to engulf and sequester 

autophagic cargo and the phagophore membrane acquires LC3. Ubiquitin-like conjugation 

systems mediate the closure of the autophagosome (4). Maturation of the autophagosome (5) 

occurs via fusion with late endocytic/lysosomal compartments, forming the autolysosome 

where material is degraded. Autolysosomes are then recycled in a process that allows for 

lysosome reformation (6).
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Figure 2. Autophagy complexes that coordinate autophagosome formation
The ULK1 complex includes ULK1/Atg1, Atg17/RB1CC1/FIP200, Atg29, Atg31, Atg13, 

Atg11 and Atg101. Atg13 and Atg17/RB1CC1/FIP200 are substrates of ULK1 kinase 

activity. In addition to autophagy initiation, Atg17, Atg29 and Atg31 are also involved in 

phagophore closure. The transmembrane protein Atg9 cycling system mediates membrane 

recruitment during nucleation and elongation and involves interactions between the 

phosphoinositide PI3P, Atg9, Atg18/WIPI, VMP1 and Atg2 on the phagophore membrane. 

The Vps34 phosphatidylinositol 3-kinase (PI3P/PtdIns3K/PI3C3) complex includes, either 

PI3P, Vps15/PIK3R4/p150, BECN1/Atg6 and Atg14L or UVRAG. The Vps34 complex is 

required for the nucleation of autophagosomal membranes. Two ubiquitin-like conjugating 

systems, Atg12-Atg5-Atg16L1 and Atg8/LC3, are required for maturation and closure of the 

autophagosomal membrane. The cysteine protease Atg4 cleaves LC3 to generate LC3-I; 

Atg3 and Atg7 subsequently conjugate LC3-I to phosphatidylethanolamine (PE), forming 

the membrane-associated LC3-II. All membranes depicted represent the phagophore 

membrane.
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Figure 3. Intracellular niches of Francisella spp. and Brucella spp
(A) Following internalization, Francisella resides in a vacuole that sequentially acquires 

markers of early endosomes (EE) and late endosomes (LE). Francisella escapes the original 

vacuole before lysosomal fusion to reach the cytosol. Once in the cytosol, the F. tularensis 
capsular and lipopolysaccharide O-antigen is an essential component of xenophagy 

avoidance. Francisella replicates rapidly in the cytosol of host cells and is found adjacent to 

autophagosomes. F. tularensis acquires amino acids generated via autophagy in an Atg5 

independent manner. After extensive replication in murine macrophages, some bacteria are 

found in Francisella-containing vacuoles (FCVs). (B) Brucella exploits functions of the host 

secretory pathway to grow within membrane bound compartments called Brucella-

containing vacuoles (BCV) throughout its intracellular life cycle. Brucella first traffics along 

the endocytic pathway in an endosomal BCV (eBCV), which acquires early endosomal (EE) 

markers then late endosomal (LE) markers, and partially fuses with lysosomes. Brucella then 

accesses the secretory pathway via interactions with endoplasmic reticulum (ER) exit sites 

(ERES) to access the ER. B. abortus requires the autophagy proteins ATG9 and WIPI, for 

biogenesis of the replicative BCV (rBCV) derived from ER membranes. After extensive 

replication, some rBCV are engulfed by autophagosome-like structures to become 

autophagic BCVs (aBCVs), which are involved in bacterial release and cell-to-cell spread. 

B. abortus selectively subverts several autophagy initiation complexes containing ULK1, 

BECN1, VPS34 and PI3P to generate an autophagic vacuole important for egress and cell-

to-cell spread.
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