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Abstract

IgE-dependent mast cell activation is a major effector mechanism underlying the pathology 

associated with allergic disorders. The most dramatic of these IgE-associated disorders is the fatal 

anaphylaxis which can occur in some people who have developed IgE antibodies to otherwise 

innocuous antigens, such as those contained in certain foods and medicines. Why would such a 

highly “maladaptive” immune response develop in evolution, and be retained to the present day? 

Host defense against parasites has long been considered the only beneficial function that might be 

conferred by IgE and mast cells. However, recent studies have provided evidence that, in addition 

to participating in host resistance to certain parasites, mast cells and IgE are critical components of 

innate (mast cells) and adaptive (mast cells and IgE) immune responses that can enhance host 

defense against the toxicity of certain arthropod and animal venoms, including enhancing the 

survival of mice injected with such venoms. Yet, in some people, developing IgE antibodies to 

insect or snake venoms puts them at risk for having a potentially fatal anaphylactic reaction upon 

subsequent exposure to such venoms. Delineating the mechanisms underlying beneficial versus 

detrimental innate and adaptive immune responses associated with mast cell activation and IgE is 

likely to enhance our ability to identify potential therapeutic targets in such settings, not only for 

reducing the pathology associated with allergic disorders but perhaps also for enhancing immune 

protection against pathogens and animal venoms.

Correspondence author, Stephen J. Galli, M.D., Department of Pathology, Stanford University School of Medicine, 269 Campus 
Drive, CCSR Room 3255, Stanford, CA 94305-5176, Phone: 650-723-7975, Fax: 650-725-6902, sgalli@stanford.edu.
*Co-first authors

HHS Public Access
Author manuscript
Semin Immunopathol. Author manuscript; available in PMC 2017 September 01.

Published in final edited form as:
Semin Immunopathol. 2016 September ; 38(5): 581–603. doi:10.1007/s00281-016-0565-1.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Allergy; anaphylaxis; parasites; serine proteases; toxins; venoms

Mast cells and their potential roles in host defense

Mast cells (MCs) are of hematopoietic origin [1, 2]. Distinct from basophils and other 

granulocytes, mature MCs normally do not circulate in the blood but instead are derived 

from circulating progenitors that enter, and then complete their differentiation/maturation in, 

virtually all vascularized tissues [1, 2]. MCs are particularly abundant near cutaneous and 

mucosal body surfaces, where immune surveillance often first takes place. This tissue 

distribution has positioned MCs, along with epithelial cells, macrophages, and dendritic cells 

(DCs), as critical sentinels in sensing microbial invasion and other environment challenges. 

MCs express a wide spectrum of cell surface receptors, including immunoglobulin Fc 

receptors (FcRs), pattern recognition receptors (e.g., TLRs), and many other innate receptors 

(e.g., complement receptors, T1/ST2, CD48), which enable them to respond to endogenous 

mediators and exogenous stimuli to release potent chemical mediators and growth factors/

cytokines/chemokines [1, 3, 4]. MCs are also located in close proximity to blood vessels, 

lymphatics, nerves, and secretory glands. Therefore, MCs and MC-derived products can 

potentially influence not only innate and adaptive immune responses but also tissue 

remodeling and homeostasis [1, 4].

The most powerful trigger for MC activation for mediator release is the crosslinking of high 

affinity IgE receptors, FcεRIs, by IgE and antigen, leading to the rapid release by 

degranulation of preformed, granule-associated, biologically potent chemical mediators, 

followed by the de novo synthesis of lipid-derived mediators, cytokines and chemokines [3, 

5-7]. IgE-mediated MC mediator release can cause many of the pathological and clinical 

features associated with allergic disorders, including fatal anaphylaxis [7-9]. Other adaptive 

stimuli (e.g., IgG immune complexes) and innate stimuli (e.g., pathogens, pathogen 

products, or endogenous mediators/cytokines) also can activate MCs [1, 4]. The kinetics, 

types and amounts of different products that can be produced by activated MCs are 

determined by the nature of the stimulus (or stimuli) encountered, the presence or absence of 

co-stimulatory or inhibitory factors, and by the location and phenotype of the MCs [1, 3, 4]. 

In addition to modulating local inflammation and tissue remodeling, MC granules and 

mediators can travel to remote sites, such as draining lymph nodes, where they can influence 

immune responses [10, 11]. Many MC populations have a long life span in tissues and 

degranulated MCs are able to replenish their granule contents, which allows them to be 

activated repetitively [12, 13]. Furthermore, MC populations can expand at sites of 

inflammation via proliferation or progenitor recruitment, and MCs numbers often return 

roughly to baseline levels once the inflammation has resolved [14].

Distinct from other immune cells, which can “come and go” during inflammatory processes, 

MCs are long-lived tissue-dwelling cells, a property which permits them to participate in the 

initiation, progression and resolution of immune responses. Because of the potentially 

catastrophic effects of extensive and systemic MC activation (as seen in fatal anaphylaxis), it 
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is critical for MC activation to be tightly controlled. In allergy, MC activation can contribute 

to pathology and tissue dysfunction. In some infections, MC activation is regarded as 

beneficial, as it can enhance immunity and host defense. However, there also is evidence that 

excessive MC activation can lead to tissue damage. Potential protective vs. pathological 

roles of MCs in various bacterial [15], viral [16], and fungal [17] infections recently have 

been reviewed elsewhere. In this article, we focus on the roles of IgE and MCs in host 

defense against parasites and review evidence that MCs and IgE-associated Th2 immunity 

can enhance host defenses against animal venoms.

The role of IgE in parasite immunity

Host responses to intestinal nematode infections are typically characterized by Th2 

immunity [18-23], with elevated levels of parasite antigen-specific and non-specific IgE, 

tissue and blood eosinophilia (and sometimes increased numbers of basophils), and 

intestinal pathology, including crypt hyperplasia, goblet cell hyperplasia, and mucosal MC 

(MMC) hyperplasia [18, 19, 23]. Data from epidemiological studies suggest a protective role 

of IgE antibodies in infections with certain parasites in humans, as the levels of parasite-

specific IgE and resistance to infection correlate positively [24-26]. It is thought that IgE 

antibodies mediate their protective function by interacting with cells that express the high 

affinity IgE receptor (FcεRI) (such as MCs and basophils [in humans and mice], and 

possibly DCs and eosinophils [in humans]) or the low affinity IgE receptor (CD23) 

(including eosinophils, DCs, platelets, macrophages [in humans], and B cells [in both 

humans and mice]) [5, 27]. Although the features of such immune responses can vary 

depending on the parasite causing the infection, an increase in IgE levels occurs in many of 

them, with much of the IgE often not specific for defined parasite antigens [28, 29]. 

However, the actual contributions of antigen-specific or non-specific IgE antibodies in such 

settings, and their relevance for parasite clearance, or parasite-induced pathology, is still not 

fully understood. It is likely that binding of parasite-specific IgE and antigen to FcεRI 

receptors and the ensuing activation of effector cells, such as MCs and basophils, can result 

in the production and release of biologically active mediators that favor parasite expulsion 

[19, 30]. Another mechanism that is thought to contribute to parasite expulsion is antibody-

dependent cellular cytotoxicity (ADCC) via IgE and/or IgG receptors [31-33]. Notably, 

parasite infections are initially characterized by production of large amounts of nonspecific 

IgE while parasite-specific IgE is detectable only at later stages of primary infections or after 

multiple infections. Pritchard proposed the hypothesis that the nonspecific IgE represents an 

advantage for the parasite, rather than the host, by competing with parasite-specific IgE for 

receptor binding sites, which could interfere with the ability of IgE-mediated immunity to 

expel the parasites [28, 29]. In support of Pritchard's hypothesis, Watanabe recently showed 

that administration of non-specific IgE impaired protection against T. spiralis infection in 

mice [34].

IgE−/− mice represent a valuable model system for studying the potential contribution of 

IgE to parasite resistance (Table 1). Abnormalities in host responses to Brugia malayi, 
Heligmosomoides polygyrus, N. brasiliensis, T. spiralis and Schistosoma mansoni have been 

observed in these mice [35-38], indicating beneficial functions for IgE in these infections. 

Nevertheless, findings in IgE−/− mice are not always in accord with observations from 

Mukai et al. Page 3

Semin Immunopathol. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



experiments employing other approaches to manipulate levels of IgE or IgE signaling. For 

example, anti-IgE treatment decreased worm burden and egg production in Schistosoma 
mansoni-infected mice, supporting the possibility of detrimental, rather than benificial, roles 

for IgE in Schistosomiasis [39], whereas IgE−/− mice exhibited increased worm burdens and 

reduced granulomatous inflammation following primary infection with Schistosoma 
mansoni [35]. Furthermore, deletion of FcεRI did not alter worm burden (but was associated 

with increased granuloma volume and liver pathology) [40] and other approaches to alter 

IgE levels revealed little or no impact on Schistosomiasis in mice (reviewed in [41]). The 

contribution of IgE to resistance to Schistosomiasis is thought to mediated at least in part via 

CD23, which can facilitate parasite antigen presentation and subsequent production of 

protective IgG1 antibodies, whereas FcεRIs on MCs and basophils appear not to be critical 

for protection against Schistosomiasis [41], indeed, as noted above, they may contribute to 

granuloma volume and liver pathology [41]. Moreover, the genetic background of the host 

can influence the contributions of IgE in parasite immunity. For example, it has been shown 

that IgE-deficient SJA/9 mice were resistant to primary and secondary infections with N. 
brasiliensis or T. spiralis [42], whereas BALB/c IgE−/− mice were more susceptible to T. 
spiralis than control mice, exhibited prolonged clearance of the adult worms from the small 

intestine, and harbored higher numbers of viable T. spiralis larvae in the skeletal muscle 

after primary infection [37].

The roles of mast cells in parasite immunity

Intestinal nematodes

MCs have long been considered major sentinels in host defense against helminth infection 

[43, 44], and intestinal nematode infections in rodents are widely used to interrogate the 

contribution of MCs and other Th2 cell-associated immune response to parasite resistance 

[18, 23]. Depending on the type of parasite, there is evidence that expansion of MMCs can 

contribute importantly to host defense against certain intestinal nematodes (Table 2). For 

example, administration of exogenous IL-3 [45-47] or IL-18+IL-2 [48] which can increase 

numbers of MMCs (among other effects), can accelerate intestinal clearance in mice 

infected with T. spiralis, S. ratti or S. venezuelensis, whereas anti-SCF or anti-c-Kit 

treatments prevented MMC expansion and also delayed T. spiralis expulsion [49, 50]. IL-3-

deficient mice, which cannot produce an intestinal MMC hyperplasia response, exhibit 

increased susceptibility to S. venezuelensis infection [51]. IL-4 deficient mice have reduced 

intestinal MMC hyperplasia after infection with T. spiralis, S. ratti, H. polygyrus or N. 
brasiliensis (reviewed in [43]). These and other studies (reviewed in [43]) highlight the 

association of Th2 responses and certain specific cytokines (e.g., SCF, IL-3, IL-4, IL-9, 

IL-10, IL-18) in the induction of intestinal MMC hyperplasia and enhanced immunity to 

helminthes.

Homing of MMCs to the epithelial layer of the gut mucosa is also critical for anti-parasite 

functions of MCs. Notch 2 signaling appears to play an important role in regulating MMC 

migration and distribution in gut mucosa and thus can influence anti-parasite immunity in 

mice infected with S. venezuelensis [52]. The expulsion of T. spiralis is slower in Mcpt1−/− 

mice despite their higher numbers of MMCs in the submucosa (but not the epithelial layer) 
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of the infected intestines, suggesting an important role for this chymase in the tissue 

migration/localization of MMCs within the intestines [53].

In addition to changes in the numbers and distribution of MCs at sites of infection, 

degranulation of MCs can be observed in the vicinity of certain parasites, and activated MCs 

have the potential to contribute to anti-parasite immunity by multiple mechanisms. MC-

derived proteases and other mediators can be toxic to parasites [54], stimulate intestinal 

smooth muscle contraction (which may hasten worm expulsion) [55-57], and/or enhance 

mucosal permeability [58, 59]. MC-mediated alterations in intestinal barrier function can 

lead to enhanced influx of fluid and blood-borne antibodies into the gut lumen, thus 

contributing to an unfavorable environment for the parasites. MC granule-associated 

glycosaminoglycans have been shown to prevent adult worm attachment and invasion of 

intestinal mucosa by S. venezuelensis [60, 61]. MCs and MC-derived cytokines/chemokines/

mediators can modulate host-pathogen interactions by influencing the recruitment or 

function of other innate immune cells, and this could have positive or negative effects on the 

parasites. For example, IgE-dependent release of mMCP6 from MCs can enhance 

recruitment of eosinophils [62], which are thought to have effects (such as producing IL-10 

at early stages of infection) that favor the growth and survival of parasite larvae in skeletal 

muscle infected with T. spiralis [63]. However, leukotrienes, particularly, LTB4, can reduce 
S. venezuelensis worm burden, possibly via the recruitment of certain inflammatory cells 

[64]. Furthermore, MCs have the potential to shape parasite-associated adaptive immune 

responses via production of soluble mediators or via cell-cell interactions with DCs and 

other antigen-presenting cells [4, 44, 65]. Finally, IgE-independent MC degranulation has 

been shown to enhance early phases of Th2 immune responses following infections with 

Heligmosomoides polygyrus and Trichuris muris [44, 66].

As discussed above, MC activation is likely to contribute to intestinal worm expulsion, at 

least in some settings. However, because host-defense mechanisms often employ redundant 

or partially overlapping elements, it has been challenging to identify conclusive evidence 

that MCs, and particularly IgE-dependent MC activation, confer survival benefit to the host 

during parasite infection. In the case of infection with N. brasiliensis, basophils appear to 

play a more critical role than MCs in host resistance [38, 67, 68]. Studies in MC-deficient 

WBB6F1-KitW/W-v mice indicate that MCs make little or no contribution to the expulsion of 

N. brasiliensis during primary infections with this nematode [69], whereas a modest defect 

in expulsion of N. brasiliensis was observed in MC-deficient C57BL/6-KitW-sh/W-sh mice 

during primary but not secondary infections [68]. Furthermore, mice deficient in the mouse 

MC protease mMCP1 (Mcpt1−/− mice) remain competent to clear N. brasiliensis [53]. 

Depending on the basophil-deficient models used to analyze the responses, basophils either 

have been shown to promote defense against N. brasiliensis, especially during the secondary 

infection [67, 68], or to have no role in worm clearance or tissue eosinophilia during primary 

or secondary infections [70].

One interpretation of these apparently discordant observations is that, under certain 

conditions (e.g., depending on the animals’ microbiomes or other environmentally-

influenced factors), mechanisms that can compensate for a lack of basophils may be engaged 

that preserve immune resistance to these parasites [71]. Notably, Th2 cytokine-mediated 
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goblet cell hyperplasia and intestinal smooth muscle contraction [72, 73], but neither B cells 

nor IgE [74, 75], appear to be required for rapid expulsion of N. brasiliensis, and Schwartz et 
al. reported that IgE-dependent secretion of IL-4/IL-13 by basophils can contribute critically 

to protective immunity against this parasite [38]. Other studies employing genetically c-kit 
mutant MC-deficient mice or MC-protease-deficient mice suggest that MCs can contribute 

to resistance to infections with Strongyloides ratti [76, 77], S. venezuelensis [48, 51, 78], T. 
spiralis [53, 62, 79-82], Heligmosomoides polygyrus [44, 66] and Trichuris muris [66, 83] 

(Table 2). Increases in gastrointestinal MCs is a striking common feature of infection with 

these nematodes, except for Trichuris muris [83].

As in other nematode infections, infection with T. spiralis is associated with IgE production, 

expansion of intestinal MCs [84], and the release of MC-associated mMCP1 into the 

circulation [53]. IgE produced during T. spiralis infection is mainly bound to intestinal MCs 

and intense IgE deposition is found by immunohistochemistry around necrotic cysts. IgE−/− 

mice with primary T. spiralis infection exhibit attenuated MMC hyperplasia, enhanced 

numbers of adult worms in the intestine, and larger numbers of viable larvae in the muscle 

[37], supporting a protective function of IgE in this infection. An important contribution of 

the MC chymase, mMCP-1, in the clearance of T. spiralis was demonstrated using Mcpt1−/− 

mice, which exhibited significant delay in the intestinal expulsion of the parasite during 

primary and challenge infections [53]. The clearance of T. spiralis requires the destruction of 

larval cysts in infected muscle and the expulsion of adult worms from the intestine. While 

efficient expulsion of T. spiralis adult worms from the intestine is dependent on mMCP1, 

mMCP6 (a MC-specific tryptase) can significantly enhance both eosinophil recruitment and 

the necrosis of larvae in skeletal muscle during chronic infection with this parasite [62].

Strongyloides venezuelensis, a gastrointestinal nematode that infects rodents and is used to 

model human S. stercoralis infection [85], has a life cycle similar to N. brasiliensis [86]. S. 
venezuelensis infection induces a predominant Th2 response associated with the production 

of S. venezuelensis-specific IgE and IgG1 antibodies [75]. While MCs and antibody 

responses are not essential for host defense against N. brasiliensis, there is evidence that 

intestinal MCs [48, 51, 78, 87] and humoral responses [75] are critical for the rapid 

expulsion of S. venezuelensis from the intestines. The importance of parasite-specific 

antibodies has been demonstrated using IgG/IgE-deficient AID−/− mice which exhibit 

delayed expulsion of S. venezuelensis and harbor larger numbers of adult worms in their 

intestines; adoptive transfer of immune sera from S. venezuelensis-infected WT mice 

restores resistance in these mice [75]. This study, and the finding that FcRγ-deficient mice 

exhibited delayed expulsion of S. venezuelensis, represent evidence that IgG and IgE 

antibodies can collaboratively support expulsion of S. venezuelensis [75]. Mice that lacked 

MCs (KitW/Wv mice) or IL-3 were unable to mount an intestinal mastocytosis and also 

exhibited delays in S. venezuelensis expulsion [51], while IL-18 treatment both increased 

MMC numbers and accelerated parasite expulsion [48]. However, IL-18 treatment and 

transfer of S.v immune sera-derived IgE or IgG failed to promote worm expulsion in 

KitW/Wv mice, suggesting that antibody-dependent MC activation is required for the rapid 

expulsion of S. venezuelensis. Taken together, the available evidence indicates that FcRγ-

dependent MMC activation can importantly enhance the expulsion of S. venezuelensis from 
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the intestines [88]. In the life cycle of S. venezuelensis, third stage larvae (L3) migrate to the 

lung, where they induce pulmonary eosinophilia and goblet cell hyperplasia, effects that may 

influence host defense against S. venezuelensis. S. venezuelensis-derived chitin may 

stimulate alveolar epithelial cells to produce IL-33, which can activate lung ILC2s to 

produce IL-5 & IL-13, enhancing the survival of eosinophils in the lungs [85]. MCs [89-91], 

as well as ILC2s, can be activated by IL-33, but it is not clear whether MCs are involved in 

this innate phase of the host response to S. venezuelensis.

Vector-borne parasitic diseases

Malaria

Malaria, a mosquito-borne pathogen, is the most deadly parasitic disease in humans [92]. 

Most malaria-associated mortality is caused by severe anemia and/or cerebral malaria 

following uncontrolled infection with Plasmodium falciparum [93]. While the involvement 

of IgE in malaria parasite transmission and pathogenesis remains unclear and is 

controversial [94], several studies suggest both detrimental and beneficial roles for MCs in 

malaria (Table 2). It is possible that MCs can influence multiple stages of malaria infection. 

As MCs are abundant in skin, their reactions to mosquito saliva during blood feeding may 

have a ‘gate keeper’ effect on the initial stage of malaria transmission. IgE-independent and 

IgE-dependent (after repeated exposures to mosquito bites) degranulation of dermal MCs 

triggered by mosquito saliva has been shown to promote aspects of the ensuing 

inflammatory response, including local recruitment of granulocytes and induction of 

hyperplasia of draining lymph nodes [94, 95]. On the other hand, dermal MCs activated by 

mosquito saliva can down–regulate antigen-specific immune responses, probably via their 

secretion of MIP2 and IL-10 [96]. Guermonprez et al. recently provided evidence, in a 

mouse model of lethal malaria (infection with Plasmodium berghei ANKA), that MCs can 

promote disease through the activation of tissue-damaging CD8+T cells [97]. Children with 

malaria have increased plasma levels of Flt3 ligands, and Guermonprez et al. further showed 

that, in mice, uric acid crystals derived from Plasmodium berghei ANKA-infected RBCs can 

trigger MCs to release Flt3, which then can expand a unique class of DCs and favor 

subsequent activation of pathogenic CD8+T cells [97].

MCs and histamine have been implicated in the severity of malaria [94] as well as in 

increased intestinal permeability associated with malaria infection [92]. Severe malaria is 

correlated with higher levels of histamine in the blood and tissues and inhibition of 

histamine signaling confers protection against severe malaria in mice [98]. VEGF also is 

increased and has been implicated in cerebral malaria. Malaria parasite antigen(s) from 

lysates of P. falciparum (FCR-3 strain)-infected human erythrocytes has been shown to 

induce VEGF production from a human MC line (HMC1) [99], suggesting another potential 

detrimental effect of MCs in cerebral malaria. Patients infected with P. falciparum are prone 

to co-infection with intestinal bacteria and are at a higher risk of developing bacteremia and 

invasive bacteria disease, suggesting that malaria can impair intestinal barrier function. Chau 

et al. showed that P. yoelii-infected mice developed L-arginine deficiency, which was 

associated with intestinal mastocytosis, elevated levels of histamine, enhanced epithelial 

permeability, and increased bacterial translocation in the gut [100]. Nevertheless, beneficial 
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contributions of MCs in malaria have been suggested based on experiments in c-kit mutant 

MC-deficient mice. Furuta et al. showed that engraftment with TNF+/+, but not −/−, MCs 

reduced parasitemia and mortality in KitW/Wv mice after infection with P. berghei ANKA, 

suggesting that MC-derived TNF can enhance resistance [101] (although TNF has been 

implicated in both malaria protection and pathogenesis [102, 103]). Furuta et al. further 

showed that MCs can produce TNF in response to the binding of FcεRI/IgE or TLR4 to 

malaria parasite-derived peroxiredoxin [101, 104].

These studies collectively indicate that, in malaria, MCs can be activated by multiple signals, 

including exogenous stimuli from disease-vectors (e.g., mosquito saliva) and parasite 

products (e.g., peroxiredoxin), as well as by endogenous mediators (e.g., uric acid crystal) 

that are generated during infection. Moreover, MC responses to those stimuli via either 

innate (e.g., TLR4-dependent) or adaptive (e.g., FcεRI-dependent) mechanisms can have 

effects which may contribute either to parasite resistance or to pathology associated with the 

infection. It is possible that the outcome of the infection in individual hosts may reflect the 

net balance between protective vs. pathological consequences of IgE-dependent and IgE-

independent MC activation in this setting, which in turn might be influenced by the species 

of parasite, the genetic background of the hosts, and other factors that modulate MC 

phenotype and other aspects of the immune response in that subject.

Ixodid ticks

MCs have also been implicated in acquired immunity to the feeding of larval Ixodid ticks, 

which can transmit to their hosts a wide range of pathogens, including the agents of Rocky 

Mountain spotted fever (Rickettsia rickettsia), Q fever (Coxiella burnetii), tularemia 

(Francisella tularensis), granulocytic ehrlichiosis (Ehrlichia ewingii), monocytotropic 

ehrlichiosis (Ehrlichia chaffeensis), and others [105]. However, as discussed above, there can 

be substantial redundancy or overlap in the functions of various elements of host defense, 

and the relative importance of MCs vs. basophils in host resistance to the feeding of such 

ticks may depend importantly on the species of tick and species of host. In mice, there is 

evidence that basophils, more than MCs, can enhance resistance to secondary infestations 

with larval Ixodid Dermacentor variabilis ticks [106]. In guinea pigs, treatment with a rabbit 

anti-basophil serum (which markedly depleted basophils in the blood and tissues) essentially 

abrogated the ability of animals subjected to a prior primary infestation with larval Ixodid 

Amblyomma americanum ticks to exhibit resistance to the feeding of such larval ticks 

during a secondary infestation [107].

Studies in MC-deficient mice [108] and in mice genetically deficient in basophils [109] 

show that both MCs and basophils, as well as IgE, can contribute to acquired immunity to 

the feeding of Haemaphysalis longicornis ticks in mice. MC deficient KitW/Wv mice 

exhibited a defect in resistance against Haemaphysalis longicornis tick infestation. Matsuta 

et al. showed that active immune serum, but not heat-inactivated immune serum, from tick-

infested mice was able to transfer resistance to MC-engrafted KitW/Wv mice, but not to MC-

deficient KitW/Wv mice, suggesting an essential role of IgE and MCs [108]. This study 

raised the possibility that, in mediating resistance to the feeding of larval Ixodid ticks, MCs 

provide function in mice similar to those of basophils in guinea pigs [107]. A subsequent 
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study by Wada et al. using genetically engineered basophil-deficient mice [109] confirmed 

the inability of MC-deficient KitWsh/Wsh mice to exhibit acquired resistance, but also 

showed that basophils were required to establish acquired resistance against feeding of 

Haemaphysalis longicornis ticks. Furthermore, basophil recruitment to tick feeding sites 

during the secondary infestation was demonstrated by immunohistochemistry using anti-

mMCP8 (basophil-specific marker) [109]. Adoptive transfer of MCs from FcRγ—deficient 

mice was able to restore resistance in MC-deficient mice, however basophil transfer from 

FcRγ deficient mice did not restore resistance in basophil-deficient mice. These findings 

indicate that antibodies, probably IgE antibodies, play an essential role to acquired 

resistance for these ticks via interacting with Fc receptors on basophils rather than MCs. 

However, mice deficient in either MCs or basophils are eventually able to clear the tick 

larvae, albeit more slowly than in WT mice.

Taken together, work in helminthic infections, vector-borne parasitic diseases, and Ixodid 

ticks suggests that there is redundancy in the protective mechanisms which can help to guard 

against the invasion or (for ticks and probably also other exoparasites) the feeding of these 

pathogens, the detrimental effects of the pathology they induce, or their ultimate clearance 

by the host. Because basophils and MCs may have overlapping or complementary functions 

as effectors of adaptive immune responses that interfere with tick feeding or infection with 

intestinal parasites, it would be interesting to evaluate these parasite infection of tick feeding 

models in mice that lack both cell types.

Challenges in defining the roles of MCs in intestinal helminth and 

Leishmania major infections

c-kit mutant MC-deficient mice have been widely used in the past three decades to 

investigate in vivo functions of MCs [110, 111], but it has been difficult to characterize 

definitely the MCs’ roles in intestinal parasite infection using these mice. The delay in 

intestinal worm clearance observed in c-kit mutant MC-deficient mice may not be fully 

explained by their lack of intestinal MCs because these mice also have abnormal gut motility 

due to their deficiency in the interstitial cells of Cajal (ICC) network [112], as well as other 

abnormalities, some of them affecting elements of immune responses in addition to MCs 

[110, 111, 113]. It is also difficult to use “MC-knock-in” mice (i.e., genetically MC-deficient 

mice engrafted with WT or genetically-altered in vitro-derived cultured MCs [110, 111]) to 

confirm the contributions of MCs to mucosal immunity because in vitro-derived cultured 

MCs generated in IL-3-containing medium do not correctly engraft into the intestinal 

mucosa after intravenous injection into c-kit mutant mice [52, 77]. Engraftment of the MMC 

compartment can be achieved and anti-helminth immunity can be repaired by bone marrow 

transplantation [44, 76, 77, 114] in c-kit mutant mice, but this approach also replaces with 

donor-derived WT cells other hematopoietic cell lineages in c-kit mutant mice. PI3K−/− 

mice, which virtually lack gastrointestinal MMCs, exhibited increased susceptibility to S. 
venezuelensis infection. In order to engraft intestinal MMCs into these mice, Fukao et al. 
injected intravenously, on days 3, 5, 7 after S. venezuelensis infection, cultured MCs that 

had or had not been primed with IL-4+IL-10; despite achieving similar anatomical 

distributions in the intestines of the recipient mice, only the IL-4+IL-10-primed MCs 
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restored anti-parasite resistance in the PI3k−/− mice [87]. Sakata-Yanagimoto et al. found 

that Notch2 signaling is required both for the normal appearance of MMCs in the small 

intestinal epithelium and the rapid expulsion of S. venezuelensis in a primary infection [52]. 

They also found that engraftment of either Notch2-deficient or wild type bone marrow-

derived cultured MCs did not restore anti-parasite immunity in KitW-sh/W-sh mice after S. 
venezuelensis infection, which they speculated might reflect the abnormal anatomical 

distribution of the MCs in the intestines of the recipient KitW-sh/W-sh mice [52]. Such studies 

highlight the potential importance of anatomical location, as well as numbers, of intestinal 

MCs in resistance to infection with some intestinal nematodes.

Given the concerns about c-kit related but MC-independent defects in c-kit mutant mice 

(reviewed in [110, 111, 113]), it is notable that the contribution of MCs to the immune 

response to S. ratti infection has recently been confirmed using c-kit independent, MC-

deficient mice. Blankenhaus et al. [115] reported that BALB/c-Cpa3Cre/+ mice, in which 

MCs are depleted due to Cre mediated-cytotoxicity, exhibited an increased parasite burden 

in the small intestine at day 6 after S. ratti inoculation. This finding is consistent with 

previous observations in WBB6F1-KitW/W-v mice which exhibited increased larval counts 

and a delay in worm expulsion during a primary infection with S. ratti. The impaired host 

response to a primary infection with S. ratti in WBB6F1-KitW/W-v mice can be corrected by 

bone marrow transplantation, but not by short-term engraftment of adoptively-transferred 

MCs, probably because of the incomplete restoration of the MMC compartment by the 

adoptive transfer of in vitro-derived cultured mature MCs (as discussed above) [76, 77]. 

Blankenhaus et al. also provided evidence that IL-9-mediated MC activation is a key 

mechanism mediating S. ratti repulsion, a process that is suppressed by Foxp3+ Treg cells in 

a non-redundant manner in the BALB/c, but not the C57BL/6, strain [115].

Findings in various MC-deficient models do not always yield consistent conclusions about 

the contributions of MCs to parasite resistance, perhaps because of differences in the other 

phenotypic abnormalities which occur in c-kit mutant vs. alternative types of MC-deficient 

mice and/or differences in experimental design or related to animal facilities (e.g., 

differences in mouse microbiomes) (reviewed in [110, 111, 113]). For example, studies in 

WBB6F1-KitW/W-v mice suggested that MCs make no contribution [116], had effects that 

increased skin lesion size [117], or enhanced protection against Leishmania major [118]. 

Upon infection with L. major, Th1 cells in resistant mice activate macrophages, which is 

thought to promote destruction of the parasite whereas Th2 cells in susceptible mice inhibit 

macrophages and thereby favor the systemic dissemination of the pathogens. Studies in c-

kit-independent MC-deficient mice that are either resistant (Th1 prone C57BL/6-Cpa3Cre/+) 

or susceptible (Th2 prone BALB/c-Cpa3Cre/+) to Leishmaniasis detected no role for MCs in 

the development of lesion size, parasite burden, cytokine production or immune responses in 

cutaneous leishmaniasis in mice [119].

Another challenge in the analysis of the roles of IgE and MCs (and basophils) in parasite 

immunity using experimental models in mice is the potential difficulty of extending the 

results directly to humans. For example, humans exhibit a broader distribution of FcεRI 

among hematopoietic cells types than is observed in WT mice [5, 27]. FcεRIs are primarily 

restricted to MCs and basophils in mice under baseline conditions, whereas FcεRIs are also 
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expressed in human eosinophils and platelets, which have been reported to be able to 

participate in parasite killing by IgE-mediated ADCC, a mechanism of defense against 

parasites that has not yet been reported in rodents [31-33, 120]. Moreover, there are 

potentially important differences in the phenotype of MC populations in mice and humans 

[121].

Potential negative functions of MCs during parasite infections

While MC activation can enhance host defense in some settings, MC mediators also can 

potentially cause pathology. For example, KitW/Wv mice are slower in T. spiralis parasite 

expulsion but also exhibit reduced Th2 responses, milder intestinal pathology/inflammation, 

less mucosal tissue damage, and attenuated body weight loss after infection (however, these 

effects are not necessarily due to their MC deficiency) [82, 114]. Mcpt1−/− mice have 

reduced immunity against T. spiralis infection, but also exhibit less intestinal pathology/

inflammation. mMCP1 released by MCs upon T. spiralis infection can potentially degrade 

occludin and other tight junction proteins, compromising intestinal barrier function and 

thereby promoting intestinal inflammation and pathology [82]. Based on studies in 

C57BL/6J WT mice, it has been proposed that MCs may contribute to the epithelial hyper-

permeability associated with reductions in tight junction proteins (occludin and zonula 

occludens 1) that is observed after infection with either S. venezuelensis or N. brasiliensis, 

and that this may enhance both systemic absorption of endotoxin through the gut and IgG 

flux into intestine lumen [122].

In some settings, MCs can even have effects which promote parasite-induced 

immunosppression. In a mouse model of chronic Schistosomiasis elicited by repetitive skin 

infection, depletion of MCs in Mcpt5iDTR mice by DT injection reduced skin IL-10 levels, 

but increased MHC-II+ cells, suggesting a possible role for MCs in down-regulating parasite 

immunity [123]. Furthermore, some effects of MCs in parasite infections might favor the 

parasite. As noted above, anti-SCF treatment diminished intestinal MMC hyperplasia in rats 

infected with N. brasiliensis or T. spiralis, but such anti-SCF treatment decreased parasite 

egg production during N. brasiliensis infection [124]. These findings were in accord with 

results from prior work reporting that, during a primary infection with N. brasiliensis, c-kit 
mutant MC-deficient Ws/Ws rats exhibited significantly less egg output in the feces at day 8 

of infection than did the corresponding wild type rats [125]. This result raised the possibility 

that some effects of SCF and/or MCs (perhaps MC-dependent enhancement of local vascular 

permeability at sites of parasite infection), actually favored parasite fecundity in this setting. 

However, neither the anti-SCF treatment nor the mutations in Ws/Ws rats exclusively 

affected MCs, so neither of these studies proved that the positive effects on parasite 

fecundity observed in animals with reduced numbers of MCs necessarily reflected an effect 

of MCs on the infection.

One hypothesis that is consistent with the divergent findings from studies investigating 

whether MCs and IgE can influence parasite immunity is that, depending on the setting, IgE 

and MCs either can have net effects favoring the host or can have net effects that favor the 

parasite. In light of the long-term co-evolution of parasites and their hosts, with each 

attempting to probe weaknesses in or to co-opt the defense mechanisms of the other, it 
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should not be surprising that the engagement of MCs and IgE during host/parasite 

interactions may not always produce results that favor the host. When viewed from the 

perspective that vertebrates have been co-evolving with parasites for millions of years, and 

that the parasites’ objectives may better be served by a viable rather than dead host, it is not 

surprising that, depending on the parasites and the particular setting, effector mechanisms 

such as IgE and MCs may be exploited by the parasties to their own advantage. For example, 

by eliciting a Th2 response that could result in IgE-dependent MC activation and release of 

vasoactive mediators in response to parasite antigens at sites of parasite infection, the 

parasite could thereby regulate local blood flow and vascular permeability in ways that can 

help to enhance the parasite's ability to derive nutrition from the host.

The good and bad sides of IgE-associated Th2 immune response

IgE-associated Th2 immune responses occur both in allergic disorders and in helminth 

infections [126, 127]. However, because most allergens do not pose a direct threat to the 

non-sensitized host, Th2 immune responses resulting in the production of antigen-specific 

IgE antibodies to such allergens are widely regarded as “misdirected/maladaptive” immune 

responses [128, 129]. Although most allergens are intrinsically innocuous, certain allergenic 

proteins possess enzymatic activity (for instance, the papaya protein papain or the major 

allergen from house dust mite Der p 1 have protease activity), and exposure to such proteins 

can impair the integrity of epithelial barriers in the skin, the lung, and possibly also the 

gastrointestinal tract [130-133]. In this regard, such allergens can be considered to be 

potentially harmful and therefore an appropriate target for a “protective” immune response 

[134]. In contrast to such potentially harmful substances, intrinsically toxic molecules, such 

as components of animal venoms, represent an obvious danger for the host, and IgE-

associated allergic reactions against a variety of venoms have been reported [135-140]. 

Some of them, for instance those against components of the venoms of hymenoptera like the 

honeybee or the yellow jacket, have a high prevalence [141], whereas fewer cases of allergic 

reactions to components of snake or jellyfish venoms, have been reported [136, 142], 

perhaps because of lower rates of exposure to such toxins.

In 1991, Margie Profet proposed her provocative “toxin hypothesis”, by postulating that 

acute allergic reactions, manifested as immediately occurring signs and symptoms in 

response to allergen exposure (such as sneezing, coughing, vomiting or diarrhea), evolved as 

a defense mechanism allowing the sensitized host to respond promptly to, and to expel, 

neutralize and/or avoid, noxious substances which might be indicative of potentially life-

threatening situations [143]. She noted that most allergens are either themselves toxins (e.g., 

venoms) or could originate from sources that can contain toxic chemical substances (e.g. 

tree nuts or sea foods) and thereby might function as carriers of such toxins [143]. The 

immune response would then be initiated not only against the dangerous toxic compound 

itself (e.g., venom components), but also against associated proteins in the toxin-containing 

food [143]. In a mechanism termed “sensing by proxy” by Palm et al. in their recent update 

of the “toxin hypothesis” [144], a strong pre-emptive effector immune reaction would then 

be initiated upon subsequent sensing of proteins that are associated with or bound to toxins, 

even in the absence of the actually harmful (toxic) agent. This hypothesis could explain why 

potentially dangerous allergic immune responses can be generated against seemingly 
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harmless proteins [143, 144]. A similar idea was raised by James Stebbings, Jr. 17 years 

before Profet's paper was published. Stebbings hypothesized that “a major function of the 

immediate hypersensitivity reactions has been the protection of terrestrial vertebrates from 

the bites of, or invasion by, arthropods” [145]. Such reactions not only could help the host to 

resist the pathological effects of toxins contained in arthropod saliva, but also, by inducing 

the bitten host to scratch or otherwise attempt to remove the arthropod, could help to reduce 

the transmission of arthropod-borne infections. However, until recently, Profet's “toxin 

hypothesis” was largely ignored by the scientific community [144]; Stebbings’ paper was 

mentioned even less in the literature. Evidence that supports Stebbing's and Profet's 

hypotheses has recently been uncovered by experimental data showing that key effector 

elements of allergic diseases also can contribute to defense against arthropod and animal 

venoms [146-148].

Evidence from animal studies

The idea that key elements of what is now sometimes called the “allergy module of 

immunity” (specifically, IgE and MCs) could be beneficial in host defense against 

components of venoms was suggested in 1965 and 1971 by the results of two studies led by 

R.D. Higginbotham. Higginbotham showed that subcutaneous injection of Russell's viper 

venom or the honeybee venom induced degranulation of skin MCs in mice [149, 150]. Mast 

cell granules contain large amounts of heparin, a highly anionic compound that can bind to 

certain cationic venom components. Higginbotham showed that the toxicity of such venoms 

was significantly reduced if the venom was mixed with heparin prior to its injection into 

mice. These findings provided evidence that MCs can be activated by venoms in vivo and 

that subsequently released heparin could contribute to host defense by neutralizing toxic 

venom components [149, 150]. However, since animals that genetically lack MCs were not 

described until many years after Higginbotham's studies [110, 111], the importance of MCs 

in conferring protection against venom-induced toxicity could not be tested directly.

More than 40 years after Higginbotham's discoveries, our group used genetically MC-

deficient mice to provide direct experimental evidence that MCs can contribute importantly 

to innate resistance against the venoms of certain snakes, including the Israeli mole viper, 

the Western diamondback rattle snake and the Southern Copperhead snake [151], as well as 

the venoms of the Gila monster [152], two species of scorpions [152], and the European 

honeybee [146, 151]. Experiments using pharmacological inhibitors of MC-associated 

proteases and engraftment of MC-deficient animals with MCs treated with shRNA to knock 

down their levels of carboxypeptidase A3 (CPA-3) indicated that MC-mediated resistance 

against the venom of the Israeli mole viper and one of its important toxins, sarafotoxin 6b, 

was largely dependent on release of the MC-associated CPA-3 [151]. Elegant genetic and 

biochemical studies by Hans-Reimer Rodewald and colleagues showed that CPA-3 is indeed 

the critical MC-derived protease that detoxifies sarafotoxin 6b, by removing its C-terminal 

tryptophan [153]. Studies by our lab [151, 152] and others [153] with various mice 

genetically deficient in MCs or MC-specific proteases revealed that, depending on the 

species of venomous animal, either CPA-3 [151] or the chymase mMCP4 [152] can reduce 

the toxicity of either whole venoms [151, 152] or individual toxic components of such 

venoms [151-153]. Because these same MC-derived proteases also can degrade certain 
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endogenous peptides that are structurally related to toxins in certain venoms, such as 

endothelin 1 (which is similar to sarafotoxin 6b) and vasoactive intestinal polypeptide 

(which is similar to helodermin in Gila monster venom), we have suggested that an 

additional function of such MC-derived proteases is to limit the pathology observed when 

high levels of such endogenous peptides are produced during diseases or at sites of 

inflammatory or immune responses (reviewed in [154]).

It seems plausible that the ability of MCs to enhance host resistance to environmental toxins 

by responding to them by releasing proteases which can degrade such compounds is an 

ancient property of MCs. Tunicates, which arose in evolution before the development of 

classical adaptive immunity [155], contain cells called test cells which are present in large 

numbers beneath surfaces exposed to the environment and which share morphological, 

ultrastructural and functional features of vertebrate MCs [156, 157]. Such features include 

containing abundant cytoplasmic granules that contain heparin, histamine and serine 

proteases, and being able to degranulate in response to compounds such as compound 48/80 

[156, 157]. If the MC lineage (represented in tunicates by test cells) learned long ago to 

respond to and de-toxify certain dangerous compounds, then is there evidence that this host 

defense function of MCs can be enhanced by their ability to respond to such toxins via 

mechanisms dependent on adaptive immunity and specifically those involving IgE? Given 

that the aggregation of FcεRI-bound IgE by specific antigen is among the strongest of MC 

activation stimuli [3, 5, 6, 27], it is tempting to speculate that venom-specific IgE antibodies 

could increase the detoxifying potential of MCs by permitting them to be activated more 

rapidly and extensively than would be the case upon the host's first exposure to that venom. 

However, reports about the development of IgE antibodies to components of snake, 

honeybee, jellyfish and scorpion venoms have mainly called attention to the risk of 

anaphylaxis in subjects containing IgE against such venom components [135-137, 140, 141].

The possibility that anti-venom IgE antibodies might confer benefit in host responses to 

venoms has only recently been investigated [146-148]. Complementary studies of Ruslan 

Medzhitov's group [147] and our lab [146, 148] have provided experimental evidence that 

IgE antibodies can play a beneficial role in acquired host defense against whole honeybee 

venom (BV) [146], Russell's viper venom (RVV) [148], or an allergenic component of 

honeybee venom, bee venom phospholipase A2 (bvPLA2) [147]. This work recently has 

been reviewed in detail [153]. We will comment here on some of the important results and 

implications of these studies.

Palm et al. focused mainly on the characterization of the acquired immune response against 

bvPLA2 [147], which constitutes ~12% of total BV protein and is one of the major BV 

allergens [158, 159]. They showed that repeated intraperitoneal immunization with bvPLA2 

could increase the resistance of wild type animals to challenge with a near lethal dose of 

bvPLA2, as assessed by changes in body temperature. This resistance was significantly 

reduced when the immunized mice were deficient in B cells or in FcεRIα (the IgE-binding 

component of the high affinity IgE receptor FcεRI [27]), providing evidence that this 

protective immune response was antibody-mediated, most likely by IgE antibodies. 

However, bvPLA2-immunized MyD88-deficient mice acquired a similar degree of resistance 

against bvPLA2 challenge as did control mice, suggesting that additional pathways 
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independent of MyD88 and IL-33 signaling (which they implicated in the initial Th2 cell-

associated response to bvPLA2, also can contribute to the protective type 2 antibody 

response against bvPLA2 [147].

Our studies focused on the immune response against whole venoms [146, 148]. Consistent 

with the study of Palm et al., we observed that wild type mice immunized subcutaneously 

with a sub-lethal amount of BV developed BV-specific Th2 cells and BV-specific IgG1 and 

IgE antibodies. Mice immunized with BV were significantly more resistant to challenge 

with a potentially lethal dose of that venom, as assessed by body temperature and survival of 

the mice. Several lines of evidence support the critical contribution of IgE antibodies and 

FcεRI to the acquired resistance and enhanced survival of BV-immunized mice, including 

data from serum transfer studies. For example, IgE-depleted immune sera failed to confer 

enhanced resistance to BV to naïve WT mice, and immunization with BV did not enhance 

acquired resistance to BV in mice that can't produce IgE (IgE−/− mice) or respond to IgE via 

the FcεRI, (i.e., FcεRIγ−/− and FcεRIα−/− mice) [146]. By, contrast, IgE−/− mice were 

capable of passively acquiring enhanced resistance to BV-induced morbidity and mortality 

when injected with BV immune serum from wild type mice [146]. Passive immunization 

experiments using C57BL/6 Kitw-sh/w-sh mice (these mice lack MCs but have increased 

levels of basophils [160]) and C57BL/6 Cpa3-Cre; Mcl-1fl/fl mice (these animals are 

markedly deficient in MCs, despite having normal c-kit, and have reduced levels of 

basophils [161]) provided evidence that MCs, but not basophils, likely contribute to 

protective IgE-mediated immunity against BV [146].

Subsequently, we found that the acquired enhanced resistance to RVV observed in mice that 

had developed type 2 immune responses to that snake venom also was highly dependent on 

IgE (Fig. 1) and FcεRIα (Fig. 2 A-F), could be effectively transferred by immune serum 

into control mice (Fig. 1 F-J), but not into C57BL/6-Cpa3-Cre;Mcl-1fl/fl mice that are 

markedly deficient in MCs and have a substantial reduction in numbers of basophils (Fig. 2 
F-H) [148]. Notably, two different types of genetically MC-deficient mice (i.e., Kitw-sh/w-sh 

mice and Cpa3-Cre; Mcl-1fl/fl mice) also exhibited significantly diminished innate resistance 

to the toxicity and lethality of RVV (Fig. 3 A-C, E & F), supporting Higginbotham's 

hypothesis that MCs can contribute to enhanced innate resistance to this venom [149]. 

Compared to the corresponding MC-sufficient mice, such naïve MC-deficient mice also 

exhibited many fewer attempts to scratch sites of RVV injection (Fig. 3 D & G). The latter 

finding supports the idea proposed by both Stebbings [145] and Profet [143] that elements of 

allergic responses, in this case, MCs, can confer benefit to hosts experiencing attacks by 

arthropods [145] or other sources of toxins [143] by altering the host's behavior in ways that 

would help to eliminate, or at least permit the host to become aware of, the threat. Finally, 

we found that pre-sensitization with anti-DNP IgE (but not with the same amounts of anti-

DNP IgG1 or IgG2b, DNP-specific IgG isotypes with the capacity to activate effector cells 

via FcγR receptors) significantly increased the resistance of mice to challenge with a 

potentially lethal amount of RVV admixed with a small amount of DNP-HSA (a 1:75 ratio 

by weight of DNP-HSA to RVV) [148]. These findings show that local tissue responses 

mediated by IgE and antigen can enhance host resistance to RVV even when the antigen 

eliciting MC activation at such sites is not a native constituent of the venom and constitutes a 
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small amount of the injected material. This result is consistent with the general idea that the 

host needs only to generate an IgE response against a limited number of the components of a 

complex venom (perhaps as few as one component) in order to manifest enhanced acquired 

resistance to the morbidity and mortality induce by that venom.

The extent to which Th2 cell and IgE-associated adaptive immune responses can enhance 

resistance to other venoms or different types of environmental toxins remains to be 

determined. Similarly, it is not clear why, in some species or individuals, exposure to the 

same venom or venom component may induce either a protective Th2 cell-associated and 

IgE- and FcεRI-dependent adaptive immune response (as shown in mouse studies 

[146-148]) or a catastrophic and potentially fatal reaction (i.e., anaphylaxis). This question is 

of high interest for basic and clinical research.

Potential roles of IgE in host defense against venoms in humans

Tissue injury, irrespective of the causative agent, seems to be a major trigger of Th2 immune 

responses in mammals, including humans [21, 127]. Such Th2 responses, which occur in 

many different mammalian species (including humans, mice, cats, and dogs [162]), may 

serve a general function in host defense, including as a protective mechanism against venom 

toxins and other dangerous noxious substances, as well as in the setting of acquired 

immunity to helminths [143, 144] and perhaps other pathogens [15-17]. Most animal 

venoms are complex mixtures of biologically active amines, peptides and enzymes and often 

have neurotoxic and/or hemotoxic activity [163]. However, many venoms also contain 

compounds that cause tissue damage. The tissue damage induced by venoms could therefore 

generate the key danger signals sensed by the immune system that initiates type 2 immunity 

and directs development of IgE antibodies. For instance, the intrinsic Th2 adjuvant effect of 

BV seems to be related, at least in part, to the cytolytic BV component melittin [158, 164, 

165]. Remarkably, many venoms contain one or more isoforms of PLA2 [163]. The key 

enzymatic activity of PLA2 is the hydrolysis of membrane phospholipids and the generation 

of arachidonic acid and lysophospholipids [166]. Such lysophospholipids can integrate into 

the phospholipid bilayer membrane of mammalian cells and result in cell lysis [166], and 

Palm et al. showed that subcutaneous injection of OVA together with either bvPLA2 or 

lysophospholipids can induce the generation of OVA-specific Th2 cells [147].

In humans, it is possible that, in most individuals, the tissue damage induced by the venom 

contained in a single honey bee sting can be sufficient to induce a Th2 response which may 

be beneficial, rather than detrimental, and which could increase tissue resistance to 

subsequent BV challenge. Indeed, although many humans have been stung by bees or wasps 

at some point in their life and many of such individuals exhibit IgE antibodies to BV or wasp 

venom, only a very small proportion develop clinically detrimental immune responses upon 

subsequent exposure to such venoms (anaphylaxis represents the most extreme form of such 

adverse reactions) [167]. And in two studies, of 525 [168] or 220 [169] subjects, patients 

with Hymenoptera venom allergy and high levels of total IgE (≥ 100 kU/l [168] or ≥250 

kU/l [169]) were significantly less likely to develop grade III reactions to venom (i.e., those 

associated with full shock [168] or with bronchoconstriction, emesis, anaphylactic shock or 

loss of consciousness [169]) than were those with lower levels of total IgE. In one of the 
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studies, serum levels of venom-specific IgE also correlated inversely to the clinical reaction 

grades, but this trend did not achieve statistical significance (P = 0.083) [169].

While there might be a variety of reasons for the occurrence of such associations beyond just 

levels of total and venom-specific IgE [168, 169], these findings support the conclusion that 

the connection in humans between the development of IgE responses to venom and serious 

IgE-induced pathology upon a subsequent exposure to venom is complex. Moreover, Th2 

responses are subject to substantial immune regulation, which in turn can diminish the 

pathology induced by exposure to the inducing antigen. For example, beekeepers, who are 

frequently exposed to bee venom, can exhibit high levels of BV-specific IgG and IgE, 

associated, in some of these individuals, with the danger of anaphylaxis [170]. However, in 

many beekeepers, exposure to multiple bee stings during the beekeeping season induces the 

development of BV-specific, IL-10-producing, inducible type 1 T regulatory (TR1) cells, 

which suppress T cell responses to BV in vitro and which, in vivo, may contribute to the 

observed reduction in cutaneous late phase responses to bee stings which occur as the 

beekeeping season progresses [171]. Mechanisms of antigen-induced, regulatory T cell-

dependent immune tolerance also are thought to contribute to the success of venom specific 

immunotherapy in patients with hymenoptera venom allergy [172].

Given the findings of our group [146] and of Palm et al. [147], it is tempting to speculate 

that IgE-dependent enhanced resistance to the toxicity of BV or bvPLA2 may represent an 

initial phase of a beneficial adaptive immune response to BV which, in most individuals 

frequently exposed to the venom, then can be supplemented or supplanted by T regulatory 

cell-dependent immune tolerance to BV, one important function of which is to restrain the 

development of overly excessive, and therefore potentially dangerous, IgE responses to BV. 

In this scenario, we propose that anaphylaxis (as observed in a small fraction of people with 

IgE antibodies to BV) represents only the most extreme and maladaptive end of a spectrum 

of acquired Th2 immunity to venom, and that in most individuals appropriately regulated 

Th2 immune responses can actually enhance resistance, rather than susceptibility, to 

venoms. The reasons why certain unfortunate individuals exhibit severe IgE-dependent 

responses to venom (including anaphylaxis) may be complex, perhaps reflecting a 

combination of genetic and environmental factors which inordinately enhance (and/or 

diminish negative regulation of) IgE-dependent effector responses [149, 173, 174]. In fact, 

one can speculate that the dangerous potential of allergic Th2 responses in some individuals 

may represent the price paid to maintain, for the species, the benefits of IgE-associated Th2 

immune protection.

Conclusions

While there is no doubt that mast cells and IgE can contribute to pathology and mortality in 

the setting of allergic diseases, this can't be the main evolutionary driver for the development 

of either mast cells or IgE. As a result, there has been a long standing interest in identifying 

beneficial roles for mast cells and IgE as well as a suspicion that, in light of the risk incurred 

when mast cells are extensively activated, the beneficial roles of mast cells and IgE may be 

substantial. In this article, we have reviewed evidence that, in some settings, mast cells and 

IgE can contribute to host defense against certain parasites, particularly helminths. However, 
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in other settings mast cells and/or IgE may have net effects that contribute to the pathology 

associated with such infections, and/or that favor the survival or fecundity of the parasite. 

Given the long periods of co-evolution between parasites and their vertebrate hosts, and 

given that it not in the parasite's interest quickly to kill its host, it is not surprising that the 

relationship between elements of the host's innate and immune defenses and various 

parasites can be quite complex.

In addition to their role in responses to parasites, mast cells and IgE also can have prominent 

roles in innate and adaptive immune responses to venoms. In some unfortunate people who 

have developed IgE to components of venom, subsequent exposure to tiny amounts of that 

venom can induce anaphylaxis – a dramatically maladaptive response. However, most 

people who have IgE antibodies to components of venom have no history of anaphylactic 

reactions to such venoms. In mice, it is now clear that mast cells can be critically important 

components of innate responses that enhance resistance to the morbidity and mortality 

induced by diverse reptile or arthropod venoms, and that this reflects the ability of mast cells 

to release proteases that can degrade and detoxify key components of the venoms. In the 

case of honey bee venom and Russell's viper venom, IgE, and probably mast cells, also can 

significantly increase the resistance of mice to the pathology and mortality associated with 

exposure to otherwise lethal amounts of such venom.

There are multiple other mechanisms of host defense against venoms besides mast cells and 

IgE, and the roles of mast cells and IgE in host responses to venoms have been evaluated for 

the venoms of only a small number of venomous species. However, the findings obtained to 

date in mice support the hypotheses of Stebbings and Profet that components of “allergic 

defenses”, in this case mast cells and IgE, can be critical components of defenses against 

both arthropods and venomous animals. Given the long period of co-evolution of vertebrates 

with venomous reptiles (estimated by the fossil record to be ~200M years [175]) and the 

much longer existence during evolution of venomous arthropods [176], we propose that 

enhancing innate and adaptive immune responses that increase resistance to venoms may be 

ancient and fundamental beneficial roles of mast cells and IgE. And while anaphylaxis is 

always maladaptive if it is induced by small amounts of venom that otherwise would 

produce little pathology, the extensive systemic IgE-dependent activation of mast cells 

(resulting in the systemic release of venom-destroying proteases) may be beneficial to 

animals envenomated with potentially lethal amounts of venom. In that context even 

anaphylaxis can be adaptive, assuming of course that the envenomated animal survives the 

episode.
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Fig 1. 
IgE can contribute to acquired resistance to RVV. A Outline of experiments with IgE-

deficient (Igh-7−/−) and control (Igh-7+/+) C57BL/6 mice (B-E). B and C, Serum RVV-

specific IgG1 (B) and total IgE (C). D and E, Body temperature (D) and survival (E). F, 

Outline of serum transfer experiments in C57BL/6 mice (G-J). G and H, Serum RVV-

specific IgG1 (G) and total IgE (H). I and J, Body temperature (I) and survival (J). Data 

were pooled from 3-4 experiments (n= 9-25/group). In B, C, G and H, data are shown as 

individual values and mean±SEM. P values were determined as follows: Mann-Whitney test 

(B, C, G, and H), Student t test (D and I) and Mantel-Cox test (E and J). *P<0.05, ** 

P<0.01, and *** P<0.001. n.d., Not detectable. This is a reproduction of Fig. 3 from Starkl P, 
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Marichal T, Gaudenzio N, Reber LL, Sibilano R, Tsai M, Galli SJ. IgE antibodies, FcεRIα 
and IgE-mediated local anaphylaxis can limit snake venom toxicity. J Allergy Clin Immunol, 
2016; 137: 246-57 (ref. [148]), reprinted with the permission of the publisher, Elsevier.
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Fig 2. 
FcεRIα and FcεRIα-bearing cells can contribute to acquired resistance to RVV. A, Outline 

of experiments with Fcer1a−/− and control (Fcer1a+/+) C57BL/6 mice (panels B-E). B and 

C, Serum RVV-specific IgG1 (B) and total IgE (C) levels. D and E, Body temperature (D) 

and survival (E). F, Outline of serum transfer experiments involving MC-deficient C57BL/6 

mice (G and H). G and H, Body temperature (G) and survival (H). Data were pooled from 3 

experiments (n=9-17/group). In B and C, data are shown as individual values and mean

±SEM. P values were determined as follows: Mann-Whitney test (B and C); Student t test 

(D and G); Mantel-Cox test (E and H). *P<0.05, ** P<0.01, and *** P<0.001. n.d., Not 
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detectable. This is a reproduction of Fig. 4 from Starkl P, Marichal T, Gaudenzio N, Reber 

LL, Sibilano R, Tsai M, Galli SJ. IgE antibodies, FcεRIα and IgE-mediated local 

anaphylaxis can limit snake venom toxicity. J Allergy Clin Immunol, 2016; 137: 246-57 (ref. 

[148]), reprinted with the permission of the publisher, Elsevier.
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Fig 3. 
MCs can contribute to innate resistance and behavioral responses to RVV. Experimental 

outline (A), body temperature (B and E), survival (C and F), and scratching attempts (D and 

G) of MC-deficient Cpa3-Cre+; Mcl-1fl/fl (B-D) and KitW-sh/W-sh (E-G) mice and 

corresponding control mice after RVV injection. In D and G, data are shown as individual 

values and mean±SEM. P values were determined as follows: Student t test (B, D, E, and G) 

and Mantel-Cox test (C and F). Data were pooled from 2-4 experiments (n=5-21/group). 

*P<0.05, ** P<0.01, and *** P<0.001. This is a reproduction of Fig. 2 from Starkl P, 

Marichal T, Gaudenzio N, Reber LL, Sibilano R, Tsai M, Galli SJ. IgE antibodies, FcεRIα 

Mukai et al. Page 34

Semin Immunopathol. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and IgE-mediated local anaphylaxis can limit snake venom toxicity. J Allergy Clin Immunol, 
2016; 137: 246-57 (ref. [148]), reprinted with the permission of the publisher, Elsevier.
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Table 1

Potential contribution of IgE to parasite resistance

Model Results References

Nematodes

Trichinella spiralis Treatment/ Model Worms Muscle Larvae Reference

Anti-IgE treatment in Wistar/Lewis rats N.D Increased (2-3 fold) (~week 4) [177]

IgE and T cell transfer in Albino Oxford rats Decreased (by 
~40%) (24 h 
after infection)

N.D. [178]

SJA/9 mice (genetically IgE-deficient mice) N.D No effect (week 4 or 9 in 
primary, week 4 in secondary)

[42]

Transfer of IgE without parasite specificity into 
(BALB/c × SJL/J) F1, (C57BL/6 × DBA/2) F1, 
BALB/c, and SJL/J mice

N.D Increased (~1.5 fold) except in 
IgE-low responder SJL/J (week 
5)

[34]

BALB/c IgE-deficient mice Increased from 
days 7-28

Increased (~2 fold, day 28) [37]

Trichinella muris Model Worms

C57BL/6 FcRγ-deficient mice No effect throughout the experiments from days 10-35 [179]

C57BL/6 μMT mice Increased at day 35 (worms are expelled by day 35 in wild-type mice) [180]

Angiostrongylus costaricensis Model Worms

SJA/9 mice No effect on day 45 [181]

Nippostrongylus brasiliensis Model Worms Egg production

BALB/c JHD mice No effect (day 7 in primary or day 7 
in secondary)

No effect (day 7 in primary 
or day 7 in secondary)

[74]

C57BL/6 AID-deficient mice No effect (days 6 or 10) N.D. [75]

SJA/9 mice No effect (day 7 or 14 in primary, day 
7 in secondary)

N.D. [42]

Heligmosomoides polygyrus Model Worms Egg production

BALB/c JHD mice No effect (day 14 in primary or day 14 in 
secondary)

No effect (day 14 in 
primary or day 14 in 
secondary)

[74]

BALB/c IgE-deficient mice No effect (days 14-20 in secondary 
infection)

N.D. [182]

C57BL/6 JHD mice Unable to mount a protective immune 
response (days 14-20 in secondary 
infection)

N.D.

C57BL/6 AID-deficient mice

C57BL/6 FcRγ-deficient mice Partially able to mount a protective 
immune response (at days 14-20 in the 
secondary infection, there were <10% the 
number of worms vs. in the primary 
infection in wild-type mice vs. 30% in 
FcRγ-deficient mice)

N.D.

Strongyloides venezuelensis Treatment/ Model Worms Egg production

C57BL/6 AID-deficient mice No effect on day 8 but 3-4 
fold higher on day 10

9 day delay in clearance [75]
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Strongyloides venezuelensis Treatment/ Model Worms Egg production

BALB/c FcεRIα-deficient mice N.D. No effect on clearance

Anti-IgE antibody injection into wild-type 
mice

No effect N.D.

Serum injection from S.v. infected mice 
(IgE, IgG, or IgE + IgG) into C57BL/6 
AID-deficient mice

Lower worm burden on day 
7 (~50% reduction after 
IgE, or IgG injections, 
80-90% reduction after IgG 
+ IgE injections)

N.D.

C57BL/6 FcRγ-deficient mice No effect on day 8 but 
increased on day 13

Increased (days 9-13) [61]

Brugia malayi Model Worms

BALB/c IgE-deficient mice Increased at peak (2-3 fold, weeks 2 to 6 in primary infection); no effect in 
secondary infection

[36]

C57BL/6 μMT mice More microfilariae in blood (3-15 fold, between days 56-93) [183]

C57BL/6 FcRγ-deficient mice More microfilariae in blood (8-10 fold on day 60)

Brugia pahangi Model Worms

C57BL/6 μMT mice Unable to mount protective immune response on secondary infection (day 14) [184]

BALB/c JHD mice Increased (weeks 3 and 12)

Malaria

Plasmodium berghei (PbANKA) Treatment/ Model Parasitemia Survival

Anti-IgE treatment in C57BL/6 wild-
type mice

Increased (~2 fold on 
days 6 and 7)

Shorter (at least 2 days) [104]

C57BL/6 FcεRIα-deficient mice Lower (between days 
18-22)

Higher survival rate after 
day 15

[185]

C57BL/6 IgE-deficient mice N.D. 3-4 weeks longer

Other parasites

Schistosoma mansoni Treatment/ Model Worms Egg production Granuloma size

129/terSv IgE-deficient mice Increased adult 
worms (by 
50% at week 
8)

N.D. Smaller (by ~40% at 
week 8)

[35]

BALB/c FcεRIα-deficient mice No effect 
(week 8)

No effect (eggs in 
tissues, week 8)

Larger (by ~25% at 
week 8 )

[40]

Anti-IgE treatment in BALB/c 
wild-type mice

Decreased (by 
~50% at week 
8)

Decreased eggs in liver 
(by ~80% at week 8); 
Decreased egg 
production per worm (by 
~60% at week 8)

Smaller (week 8) [39]

C57BL/6 μMT mice No effect 
(week 8)

No effect on eggs in liver 
or intestine (week 8); 
lower egg excretion (by 
~70% at week 8)

Larger (by 42% at 
week 8, 50% at 
week16)

[186]

C57BL/6 FcRγ-deficient mice N.D. No effect (week 8) Larger (by ~20% at 
week 8, ~50% at week 
16)

SJA/9 mice No effect 
(week 8)

No effect (week 8) N.D [187]
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Shistosoma japonicum Model Worms Granuloma size

SJA/9 mice No effect (week 8) Smaller (by 40-50%) on week 8 [188]

Ticks

Haemaphyasalis longicornis Treatment/ Model Resistance

Serum transfer to WBB6F1-KitW/W-v mice IgE and mast cells were required for serum transfer of 
resistance to secondary infestation

[108]

C57BL/6 FcRγ-deficient mice No resistance to secondary infestation [109]
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Table 2

Potential contribution of mast cells to parasite resistance

Model Results References

Nematodes

Trichinella spiralis Treatment/Model Worms Muscle Larvae

Anti-c-Kit antibody treatment in NIH mice Increased (3 fold on day 10) N.D. [49]

Anti-c-Kit or anti-SCF antibody treatments 
in NIH mice

Increased (5-15 fold on day 
10) after injections of either 
anti-c-Kit or anti-SCF 
antibodies

N.D. [50]

WBB6F1-KitW/W-v mice Delay in expulsion (at least 7 
days)

~2 fold increase [80]

WBB6F1-KitW/W-v mice and WCB6F1-
MgfSl/Sl-d mice

Increased (KitW/W-v mice: 8-9 
fold, MgfSl/Sl-d mice: 3-4 fold) 
on day 12

N.D. [81]

WBB6F1-KitW/W-v mice 9-13 day delay in expulsion N.D. [79]

WBB6F1-KitW/W-v mice 3-4 fold increase on day 13 N.D. [82]

BALB/c mMCP-1-deficient mice 10-15 fold increase on days 
15-16

Increased on day 30 [53]

C57BL/6 mMCP-6-deficient mice No effect from days 4-18 % necrotic larvae 
decreased (week 5)

[62]

Trichinella muris Treatment/ Model Worms

Anti-c-Kit antibody treatment in BALB/c or C57BL/6 mice Lower (~20% on day18) [179]

C57BL/6-KitW-sh/W-sh mice Increased (~3 fold on day 21) [66]

Nippostrongylus brasiliensis Treatment/ Model Worms Egg production

MF-1 mMCP-1-deficient mice Increased on day 8, but 
no effect on day 10

No effect [189]

SCF/anti-SCF antibody injections in Wistar 
rats

N.D. SCF: increased; Anti-
SCF: decreased

[124]

WBB6F1-KitW/W-v mice No effect (days 7 or 14) N.D. [69]

C57BL/6-KitW-sh/W-sh mice ~4 day delay in 
expulsion in primary, 
but no effect in 
secondary

N.D. [68]

BALB/c mMCP-1 deficient mice N.D. No effect [53]

BN-DonryuF1-KitW-s/W-s rats N.D. Decreased on day 8 
(~25-30%) but no effect 
on day 11

[125]

BALB/c IL-3-deficient mice N.D. No effect [190]

IL-3-deficient KitW/W-v mice (mixed 
background of C57BL/6 & WBB6)

N.D. No effect

Heligmosomoides polygyrus Worms Egg production

WBB6F1-KitW/W-v mice No effect (weeks 3 or 9) N.D. [191]

WBB6F1-KitW/W-v mice and 
C57BL/6-KitW-sh/W-sh mice

Increased (~2 fold at week 3 in 
primary; ~10-20 fold in 
secondary)

Increased (2-3 fold on 
days 14-18)

[66]
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Strongyloides venezuelensis Worms Egg production

C57BL/6 and BALB/c IL-3-deficient 
mice

N.D. 2-3 day delay in expulsion; 
increased egg numbers at peak

[51]

WBB6F1-KitW/W-v mice N.D. 12 day delay in expulsion; 
increased egg numbers at peak

IL-3-deficient KitW/W-v mice (mixed 
background of C57BL/6 & WBB6)

Increased (~500 fold on 
days 18 and 19)

35 day delay in expulsion; 
increased egg numbers at peak

WBB6F1-KitW/W-v mice Increased (day 14) 7-10 day delay in expulsion [78]

129 5-lipoxygenase (5-LO)-deficient 
mice

Increased (2-3 fold on 
days 9-14)

Increased (2-3 fold on days 
7-14)

[64]

IL-2 + IL-18 injections into C57BL/6 
wild-type mice

Rapid expulsion after 
implantation of adult 
worms

N.D. [48]

WBB6F1-KitW/W-v mice N.D. 6-7 day delay in expulsion; 
increased egg numbers at peak

BALB/c PI3K-deficient mice Increased (~200-250 fold 
on day 13)

11 day delay in expulsion; 
increased egg numbers at peak

[87]

Strongyloides ratti Worms Egg production

IL-3 administration into Wistar 
rats and C57BL/6 wild type mice

Decreased (IL-3 dose-dependently) N.D. [46]

WBB6F1-KitW/W-v mice Increased larvae (2-3 fold on day 2) and ≥3 day delay 
in expulsion assessed by counts of larvae

N.D. [76]

BALB/c Cpa3Cre mice Increased (by 3-4 fold on day 6) N.D. [115]

Malaria

Plasmodium yoelii Parasitemia Survival

WBB6F1-KitW/W-v mice Increased on day 3 but no effect thereafter (co-infection with Salmonella 
typhimurium on day 10)

N.D. [92]

Plasmodium berghei (PbANKA)

C57BL/6-KitW-sh/W-sh mice No effect No effect [185]

WBB6F1-KitW/W-v mice Increased (~3 fold) 1-2 weeks shorter [192]

C57BL/6 Histidine 
decarboxylase (HDC)-deficient 
mice

Decreased (after either 
mosquito bites or injections 
of infected erythrocytes)

~13 day longer survival 
(after either mosquito bites 
or injections of infected 
erythrocytes)

[98]

WBB6F1-KitW/W-v mice Increased (days 7-9) N.D. [101]

Other parasites

Schistosoma japonica Worms Granuloma size

WBB6F1-KitW/W-v mice No effect (week 7) Smaller (by 20-40%, week 7) [193]

Leishmania major Cutaneous Leishmaniasis Parasite Burden

WBB6F1-KitW/W-v mice No effect on histopathological features (up to 
day 150)

N.D. [116]

WBB6F1-KitW/W-v mice and 
WCB6F1-MgfSl/Sl-d mice

Reduced size of cutaneous lesions in each 
type of mouse (throughout the experiments)

No effect [117]
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Leishmania major Cutaneous Leishmaniasis Parasite Burden

WBB6F1-KitW/W-v mice Larger size of lesions (weeks 2-10) Larger number (spleen, 
weeks 1 & 3; ear, week 
4)

[118]

C57BL/6 and BALB/c Cpa3Cre 

mice
No effect (throughout the experiments) No effect [119]

Ticks

Haemaphyasalis longicornis Resistance

WBB6F1-KitW/W-v mice No resistance on secondary or third infestation [194]

C57BL/6-KitW-sh/W-sh mice No resistance on secondary infestation [109]

Dermacentor variabilis Resistance

WBB6F1-KitW/W-v mice No resistance on primary or secondary infestation, but acquired resistance was 
observed on third and fourth infestations

[195]
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