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SUMMARY

Beta-lactam antibiotics serve as a cornerstone in the management
of bacterial infections because of their wide spectrum of activity
and low toxicity. Since resistance rates among bacteria are contin-
uously on the rise and the pipeline for new antibiotics does not
meet this trend, an optimization of current beta-lactam treatment
is needed. This review provides an overview of optimization
through use of prolonged- and continuous-infusion dosing strat-
egies compared with more traditional intermittent infusions. In-
cluded is an overview of the scientific basis for using these nontra-
ditional prolonged- and continuous-infusion-based regimens,
with a focus on major areas in which the clinical laboratory can
support the clinical use of these regimens.

INTRODUCTION

The advent of antibiotics in the 1930s resulted in a tremendous
positive impact on the treatment of the most common bacte-

rial infectious diseases. Despite the countless benefits of antibiot-
ics observed over the decades, the effectiveness of these life-saving
drugs has been diminished by resistance, and in some scenarios
the net effect is a return to the preantibiotic era (1–3). Indeed,
antimicrobial resistance remains a global health issue as stated by
the World Health Organization (2). The Infectious Diseases of
America (IDSA) also describes a number of bacterial pathogens
that are among the most concerning from a resistance standpoint.
IDSA lists Staphylococcus aureus, Enterococcus species, Escherichia
coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acineto-
bacter baumannii as bacterial pathogens that continually evade
current antimicrobial activity (3). Alarming rates of resistance
are seen, for example, in Klebsiella species, with some countries
reporting resistance to third-generation cephalosporins in
more than 60% of isolates and resistance to carbapenems in
greater than 50% of isolates (2). In many countries, methicillin
resistance (i.e., causing resistance to most beta-lactam antibi-
otics as well as other antibiotic classes) is observed in 20% to
80% of S. aureus isolates (2).

The continual threat of these resistant bacteria is unmet by our
current antibiotic armamentarium because new drugs are not be-
ing developed at the necessary pace (1–3). Therefore, innovative
strategies that improve the “effectiveness” of currently available
antibiotics are essential. Employing pharmacokinetic/pharmaco-
dynamic (PK/PD) principles during design of dosing regimens for
various available antimicrobials could be an effective way to im-
prove the current situation (4). While exposure optimization (i.e.,
PD profiling) is already an established field of study, it has not
been fully exploited, as these technologies are not universally used
in the hospital setting. Available data suggest that for certain an-
tibiotics, PD can be utilized to augment efficacy by manipulating
the duration of the intravenous infusion (4–9). Beta-lactam anti-
biotics are highly appealing for such a strategy. These agents are
among the most commonly used in various health care settings,
have been thoroughly investigated, and are well worth preserving
as a viable treatment option due to their broad-spectrum activity
and excellent tolerability (7).

Although our understanding regarding beta-lactam PK/PD
optimization has substantially broadened, we still face major chal-
lenges in implementation of dosing based on these strategies.
First, in order to optimize therapy, we must understand the target
or “therapeutic” concentration to aim for. Since beta-lactam con-
centrations are typically referenced to the MIC of the drug needed
to inhibit bacteria, understanding the precise MIC, and in some
scenarios the genotypic presence of resistance mechanisms, for
each beta-lactam will be paramount (10). Once a target threshold
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and MIC are established, some confidence in the patient’s specific
pharmacokinetic profile is required to design an optimal and tar-
geted dose (11). Unlike the case for vancomycin and some amin-
oglycosides, however, the availability of assays to clinically test for
beta-lactam concentrations is limited. As a result, the clinical lab-
oratory plays a prominent and ever-growing part in institutional
antimicrobial stewardship (12) and therefore can offer solutions
for overcoming the above challenges.

This review will briefly introduce the concept of prolonged-
and continuous-infusion beta-lactam dosing and then discuss the
emerging opportunities for the clinical laboratory in achieving the
goal of individualized antibiotic therapy. In addition, practical
examples of optimizing beta-lactam dosing by way of nontradi-
tional infusions will be provided.

BETA-LACTAM PHARMACODYNAMICS

A comprehensive review of beta-lactam pharmacodynamics can
be found in historical publications (13). Briefly, beta-lactam anti-
biotics display concentration-independent, commonly referred to
as time-dependent, killing of bacteria. This means that once a
critical concentration is obtained, no further speed or extent of
killing is observed with increasing concentrations and that the
time that free drug concentrations remain above the MIC
(fT�MIC) becomes a better predictor of killing. The goal of ther-
apy, therefore, is to maximize the fT�MIC as a percentage of the
dosing interval. For each beta-lactam class, the percent fT�MIC
needed for maximizing efficacy is different. Maximal bacterial
killing for the penicillins, cephalosporins, carbapenems, and
monobactams, for example, occurs when the fT�MIC is approx-
imately 50 to 60%, 60 to 70% (14), 40% (15), and 50 to 60% of the
dosing interval, respectively (14). This is in contrast with concen-
tration-dependent antibiotics, including fluoroquinolones and
aminoglycosides, which exert maximal bacterial killing when their
peak concentration or area under the concentration-time curve in
a dosing period is maximized relative to the MIC (10). When given
intravenously, beta-lactams can be administered by three basic
strategies. The most prevalent is the traditional intermittent
schedule, which involves infusion of each fraction of the daily
dosage over a short time intervals, i.e., 5 to 60 min. When each
fraction of the daily dosage is infused over three or more hours,
this dosing strategy is referred to as a prolonged or extended infu-
sion. Of note, the terms prolonged and extended are used alter-
nately in the literature but are interchangeable. Finally, when all of
the drug daily dosage is administered without any interruption
over a dosing interval, the schedule is referred to as a continuous
infusion (7, 13–19). At certain MICs, prolonged and continuous
infusion schedules increase the T�MIC more than would other-
wise occur with a short intermittent infusion schedule (Fig. 1).
Additionally, a prolongation of the dosing interval would be espe-
cially beneficial when using agents with a short half-life, a charac-
teristic typical of many beta-lactam agents (13–19).

HISTORICAL REVIEW

It is of interest to briefly review the nonclinical studies that formed
the basis for the current understanding of prolonged and contin-
uous dosing of antibiotics. Over 65 years ago, studies by Eagle and
coworkers and Schmidt and coworkers in various animal models
of streptococcal infection demonstrated that frequent or contin-
uous dosing of penicillin G achieved a more rapid cure of the
infected animal than infrequent (i.e., once or twice daily) dosing

(20–22). Later studies pointed out the superior effect of continu-
ous infusion of penicillin G in models that used animals that were
either immunosuppressed or venom treated (23, 24). Animal and
in vitro studies conducted during the 1980s and early 1990s have
particularly emphasized the consistently greater efficacy of con-
tinuous infusion or more frequent dosing of beta-lactams against
Gram-negative bacteria. Although this supported the potential
advantage of using continuous and prolonged infusions, the clear
superiority of these methods over intermittent dosing had yet to
be demonstrated (25–37).

Many clinical studies assessing continuous and prolonged in-
fusion were conducted through the 1990s, but only a few were
clinical randomized controlled trials, mostly addressing only
pharmacologic endpoints (38–49), and only two reported pa-
tients’ outcomes. In 1979, Bodey and colleagues found that an
antibiotic combination containing continuous-infusion cefa-
mandole achieved the greatest cure rates in 490 febrile episodes
with neutropenia (48). In contrast, Lagast and colleagues observed
no statistical difference regarding outcome in favor of continuous
cefoperazone in 45 patients with Gram-negative sepsis (49).

Although the scientific rationale and the proof of concept seem
evident given data that accumulated from the development of
penicillin through the 1990s, the lack of supportive solid clinical
evidence and major practical issues delayed the incorporation of
nontraditional infusions into common clinical practice. Indeed,
prolonged or continuous infusion may reduce patient mobility,
demands prolonged and secured intravenous access, and requires
special equipment, including infusion pumps and sets. These
methods also demand a higher level of training and are more
labor-intensive. Possible instability and degradation of the antibi-
otic at room temperature, as exemplified by the carbapenems,
should also be considered, particularly with the case of the con-
tinuous-infusion strategy (50, 51).

CONTEMPORARY STUDIES

In sharp contrast to the above description, numerous nonclinical
experiments, clinical studies, and meta-analyses have been con-
ducted over the last 15 years in the area of nontraditional beta-
lactam dosing. A significant contribution to the field was the in-
troduction of advanced PD analyses of data collected from in vitro,
animal, and human studies, which also diminishes the need for
expensive, complicated clinical trials. The latter study methodol-
ogy is conducted by computerized simulations that use probabil-

FIG 1 Schematic plot demonstrating the effects of prolonged and continuous
beta-lactam infusion dosing regimens on the concentration-time curve and
time above an MIC, compared with traditional intermittent infusion.

Grupper et al.

760 cmr.asm.org October 2016 Volume 29 Number 4Clinical Microbiology Reviews

http://cmr.asm.org


ity models. The best-known and most widely used method is the
Monte Carlo simulation (52). This simulation experiment, when
applied for antimicrobial treatment considerations, requires as its
input only the pharmacokinetic parameter estimates and their
variability from a sample target population who have previously
received the antibiotic. The software can then simulate a popula-
tion of thousands of virtual patients based on this input and the
provision of a compartmental model. The results of the former
step serve in turn for determining the probability of a specific
dosing regimen achieving the target PD exposure in the popula-
tion, for instance, a defined fT�MIC at a given MIC dilution. This
likelihood is referred as to the probability of target attainment
(PTA) (16, 52, 53). Recent Monte Carlo simulation examples in-
clude selection of a prolonged infusion of doripenem (500 mg as a
4-h infusion every 8 h [q8h]) to be investigated in a hospital-
acquired pneumonia clinical trial (52, 53), a PD analysis of criti-
cally ill patients that showed increased piperacillin-tazobactam
and meropenem exposure using extended, 3-h infusions com-
pared with 30-min intermittent infusions (16), and a study dem-
onstrating that 4-h extended infusions of piperacillin-tazobactam
doses equal to or greater than 3.375 g q8h achieved superior PTA
at an MIC equal to 16 �g/ml (54). Additional Monte Carlo simu-
lation examples can be found in a thorough review by George and
colleagues (55). Although not sufficient to replace clinical trials,
Monte Carlo simulations can provide important decision support
for which drug regimens are going to provide the greatest likeli-
hood of success during clinical studies. The results of such analy-
ses are often also used to guide clinical practice, when clinical
studies are not yet available or impractical (56).

Unfortunately, contemporary clinical comparative trials con-
ducted in the last decade do not provide clear guidance regarding
whether a traditional intermittent schedule or a continuous/ex-
tended infusion schedule is more beneficial for all patients (53,
57–87). Abdul-Aziz and colleagues (88) published a rigorous anal-
ysis of the clinical evidence and concluded that it was not sufficient
for a change in dosing regimens toward nontraditional infusions
of beta-lactams. Nonetheless, they included an in-depth discus-
sion of the limitations of the studies conducted until the time of
their publication; the vast majority of studies were found to suffer
from considerable limitations, precluding the interpretation of
their results. Noteworthy are the inclusion in the analysis of stud-
ies of antibiotics other than beta-lactams, nonoptimally designed
trials, comparison of different dosages in the different arms of
randomized controlled trials, low-MIC pathogens (so that even
the traditional dosing regimen achieved adequate fT�MIC), and
highly heterogeneous patient populations.

It is notable, however, that no clinical study has ever demon-
strated inferiority of a prolonged- or continuous-infusion drug
regimen to the same antibiotic given as a traditional infusion.
Nevertheless, a closer look at studies that have focused on the
more selective patient populations can be instructive. Lodise et al.
(69) conducted a retrospective investigation of piperacillin-tazo-
bactam as an extended 4-h infusion for treating documented P.
aeruginosa infections. The 4-h prolonged-infusion regimen was
administered to 102 patients, and these were compared with a
recent historical cohort who received an intermittent (i.e., tradi-
tional) infusion (n � 92 patients). For patients with acute physi-
ology and chronic health evaluation II (APACHE II) scores of
�17, the 14-day mortality rate was significantly lower when the
extended schedule was used than with the intermittent one, but

mortality was similar for the dosing strategies in the less sick pa-
tients. A later retrospective study by Bauer et al. (77), including
patients with documented P. aeruginosa pneumonia or bactere-
mia treated with extended or intermittent infusions of cefepime,
also observed a significantly lower mortality rate among those
who received the extended infusion (3% versus 20%; P � 0.03).
Importantly, the regimen design of these two studies utilized
Monte Carlo simulation to guide selection of their optimized dos-
ing regimens based on the P. aeruginosa strains most prevalent in
their hospitals, meaning that the regimens were targeted at the
institutions’ specific isolate MIC distribution. An open-label, ran-
domized trial by Roberts and colleagues (58) enrolled 57 patients
with sepsis hospitalized in the intensive care unit (ICU). Patients
received ceftriaxone at 2 g either as an intermittent infusion once
daily or as a 24-h continuous infusion. This study, one of the few
to have adequate allocation and masking, found a significantly
improved outcome in the subgroup of patients who received con-
tinuous-infusion ceftriaxone for 4 days or more. Collectively,
these studies thus represent populations with serious but not mor-
ibund disease and therefore more dependent on the efficacy of
antibiotic. In further support of these observations, Lee and col-
leagues (73) reported results of a retrospective study from 2 inten-
sive care units addressing pre- and postimplementation of a pro-
longed-infusion piperacillin-tazobactam regimen. One hundred
forty-eight patients were included; 80 received a traditional inter-
mittent-infusion regimen, and 68 received a prolonged-infusion
regimen. The majority of included patients had pneumonia, sep-
sis, or both. The investigators observed that patients receiving
prolonged infusion had significantly lower 30-day mortality
(19%) than patients receiving traditional dosing regimens (38%,
P � 0.01).

The most rigorously designed clinical studies to comparatively
investigate different beta-lactam dosing schedules are probably
the two known as BLING (beta-lactam infusion group) I and
BLING II (86, 87), both multicenter, prospective, double-blind,
randomized controlled trials. The former enrolled 60 patients, all
with severe early sepsis, allocated evenly between an intervention
arm (continuous infusions of piperacillin-tazobactam, mero-
penem, or ticarcillin-clavulanate) and a control arm (the same
drugs administered on an intermittent schedule). Clinical cure in
the intervention group was 70% and significantly exceeded that in
the control group (43%) (P � 0.037); furthermore, survival to
hospital discharge was greater (90% versus 80%) in the interven-
tion group, although this was not statistically significant. BLING II
had the same methodology as the first trial but enrolled 432 pa-
tients from 25 intensive care units across Australia, Asia, and Eu-
rope. In contrast to BLING I, the larger study did not find a dif-
ference in the primary endpoint of alive, intensive care unit-free
days at day 28, a unique endpoint relative to other studies of con-
tinuous or prolonged infusion. Nevertheless, the authors ac-
knowledged some major limitations of BLING II, including pos-
sible predominance of low-resistance pathogens, and that the
study was not powered for the detection of mortality differences
between the groups. An even larger study, targeting more resistant
bacteria, is planned. Notably, the BLING studies did not define
optimized continuous or prolonged beta-lactam dosing regimens
that targeted the bacteria at each participating site (unlike the
single-center studies described above), which may have also con-
tributed to a lack of difference. Tables 1 and 2 summarize the
findings of the main clinical studies comparing prolonged- and
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continuous-infusion beta-lactam dosing regimens to traditional
regimens.

Meta-analysis and systematic critical reviews are of special in-
terest regarding the comparison of beta-lactam infusion dosing
strategies in the face of underpowered heterogeneous studies. Al-
though quite a few of these have been conducted over time, they
differ markedly in their inclusion/exclusion criteria, thus not nec-
essarily allowing elucidation of the true effectiveness of nontradi-
tional beta-lactam dosing regimens (4, 18, 88–102). Recent meta-
analyses that focused on beta-lactams (Table 3) have mostly
concluded that existing data were favorable for the use of specific
or all beta-lactam agents by prolonged or continuous infusion in
terms of clinical outcomes. Although 2 of these studies did not
observe a clinical advantage for using continuous or extended
schedules (93, 97), the investigators acknowledged the many lim-
itations of the studies included and the need for the larger, multi-
center randomized control trials.

To summarize, there is a solid scientific basis and unanimous
agreement at the level of preclinical studies that nontraditional
dosing of beta-lactams is advantageous over intermittent dosing.
The accumulating clinical evidence is not yet conclusive but sug-
gests that there will be certain patient populations that may benefit

more than others. The patients who appear to benefit the most
from these dosing regimens seem to be sicker, with more severe
infections, and infected with bacteria that have higher antibiotic
MICs. Notably, many of the studies that were unable to demon-
strate superiority of nontraditional dosing have been limited by
inclusion of heterogeneous patient populations, infection with
low-MIC pathogens, small numbers, and numerous confounding
factors, including use of other antibacterials. That being said, the
concepts of nontraditional dosing advantages have been adopted
successfully by some health care organizations; furthermore, op-
timized dosing based on PD concepts is recommended in the an-
timicrobial stewardship guidelines published by the Infectious
Diseases Society of America and Society of Healthcare Epidemiol-
ogy of America (103). A recent random-sample survey among
1,000 hospital pharmacists in the United States found that 11.2%
and 5.8% of hospitals reported using continuous and extended
infusions, respectively (104). Another survey of 105 Belgian hos-
pitals reported that extended and prolonged modes of adminis-
tration were used by 10 to 44% of non-intensive care units and by
35 to 81% of the intensive care unit wards included (105).

A large-scale, adequately designed and powered study for get-
ting definite answers and defining the indications is still needed

TABLE 1 Summary of main clinical studies comparing continuous infusion with intermittent infusion of beta-lactamsa

Reference Study design No. of patients/illness
Microbiological
findings Dosing regimen Major endpoint findings

Hanes et al., 2000 (67) RCT 32/nosocomial pneumonia GNB CAZ 60 mg/kg/day CI vs
CAZ 2 g q8h II

No difference in treatment outcomes

Nicolau et al., 2001 (66) RCT 35/nosocomial pneumonia GPB � GNB CAZ 3 g/day CI vs CAZ
2 g q8h II

No difference in clinical (94% vs 83%) or
microbiological (76% vs 80%) cure
rates

Grant et al., 2002 (70) Prospective, open label,
controlled

98/mixed infections GPB � GNB TZP 8–12 g/day CI vs
TZP 3–4 g q6–8h II

No difference in clinical (94% vs 82%) or
microbiological (89% vs 73%) cure
rates

Rafati et al., 2006 (61) RCT 40/septic, critically ill GNB PIP 8 g/day CI vs PIP 3 g
q6h II

Significant reductions in severity of illness
(APACHE II)

Lau et al., 2006 (62) Randomized, multicenter,
open label

262/complicated intra-
abdominal infections

GBP � GNB TZP 12 g/day CI vs TZP
3 g q6h II

No difference in clinical (86.4% vs 88.4%)
or microbiological (83.9% vs 87.9%)
cure rates

Lorente et al., 2006 (78) Retrospective, single
center

89/VAP GNB MEM 4 g/day CI vs
MEM 1 g q6h II

Significantly greater clinical cure rate
(90.5% vs 59.6%)

Lorente et al., 2007 (79) Retrospective, single
center

121/VAP GNB CAZ 4 g/day CI vs CAZ
2 g q12h II

Significantly greater clinical cure rate
(89.3% vs 52.3%)

Roberts et al., 2007 (58) RCT 57/septic, critically ill GPB � GNB CRO 2 g/day CI vs CRO
2 g q24h II

Significantly greater clinical and
bacteriological cure rates only in
patients receiving 4 or more days of
treatment

Sakka et al., 2007 (60) RCT 20/nosocomial pneumonia GPB � GNB IMI 2 g/day CI vs IMI 1
g q8h II

No difference in mortality

van Zanten et al., 2007 (59) RCT 93/COPD exacerbation GPB � GNB CTX 2 g/day CI vs CTX
1 g q8h II

No difference in clinical cure rate (93% vs
93%)

Lorente et al., 2009 (80) Retrospective, single
center

83/VAP GNB TZP 16 g/day CI vs 4 g
q6h II

Significantly greater clinical cure rate only
when MIC of the pathogen 8–16
mg/liter

Chytra et al., 2012 (81) RCT 240/septic, critically ill GPB � GNB MEM 4 g/day CI vs 2 g
q8h II

No difference in clinical cure rate (83% vs
75%); significantly greater
microbiological rate cure (90.6% vs
78.4%)

Dulhunty et al., 2013 (86) RCT 60/septic, critically ill GPB � GNB TZP/MEM/TIM CI vs
same drugs II

Significantly greater clinical cure rate
(70% vs 43%)

Laterre et al., 2015 (82) RCT 32/septic, critically ill GNB TML 6 g/day CI vs 2 g
q8h II

No difference in clinical cure rate (93% vs
79%)

Dulhunty et al., 2015 (87) RCT 432/septic, critically ill GPB � GNB TZP/MEM/TIM CI vs
same drugs II

a Abbreviations: CAZ, ceftazidime; FEP, cefepime; CI, continuous infusion; COPD, chronic obstructive pulmonary disease; CRO, ceftriaxone; CTX, cefotaxime; II, intermittent
infusion; PIP, piperacillin; TIM, ticarcillin-clavulanate; TML, temocillin; TZP, piperacillin-tazobactam; MEM, meropenem; GPB, Gram-positive bacteria; GNB, Gram-negative
bacteria; VAP, ventilator-associated pneumonia; IMI, imipenem-cilastatin; q6h, every 6 h; RCT, randomized controlled trial; APACHE II, acute physiology and chronic health
evaluation II.
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(87). Such a study should include a dosing regimen tailored for
each recruiting site, based on the specific local MIC distribution,
and pharmacodynamic modeling. A pertinent methodological il-
lustration is the study conducted by Nicasio and colleagues (56)
implementing a clinical pathway based on pharmacodynamic
considerations and local epidemiology for empirical antibiotic se-
lection for ventilator-associated pneumonia. In this prospective,
albeit observational, nonrandomized study, a PD approach was
used to determine which antibiotic regimen would be the most
appropriate based on local P. aeruginosa MICs. An empirical treat-
ment with either 3-h infusions of cefepime at 2 g q8h or mero-
penem at 2 g q8h plus vancomycin and tobramycin was selected.
The 94 patients receiving this treatment had a 69% reduction in
infection-related mortality (8.5% versus 21.6%; P � 0.029) and a
significantly shorter length of stay compared with an historical
cohort (56). Since a project of that magnitude is not expected to be
finalized in the near future, clinicians should make contemporary
use of the evidence gathered so far for optimizing the treatment of
difficult-to-handle patients.

ROLE OF THE CLINICAL LABORATORY

The clinical laboratory has always held a critical responsibility in
the management of infection. This role continues to expand, now
with the emergence of antimicrobial stewardship programs at
many hospitals and a call for their presence in all acute-care facil-
ities by 2020. Clinical microbiologists and other members of the
laboratory are often members of the stewardship team, a position
well justified based on the importance of diagnostics and various
reporting strategies in identifying and managing resistant infec-
tions (103). With respect to nontraditional strategies to adminis-
ter beta-lactams, we believe that the clinical laboratory can pro-
vide additional services to assist in optimizing beta-lactam dosing.
Additionally, it is worthwhile to understand some of the implica-
tions that such dosing may have for current laboratory tests.

Blood Culture Neutralization and Time to Detection

It is notable that clinical laboratories are moving toward more
molecular tests to quickly identify specific resistant bacteria (106).
However, the standard identification techniques for isolating and
growing bacteria before further identification and susceptibility
testing will remain for some time into the future. Blood cultures,
for example, are initially tested in a number of automated systems,
such as BD Bactec (Becton, Dickinson and Company) or BacT/
Alert (bioMérieux Inc.). These systems contain various binding
resins and proprietary materials to prevent antibiotic carryover
and inhibition of bacteria. However, the concentration of antibi-
otic and the duration that concentrations remain elevated may
influence the time to positivity or overall positivity of some sys-

tems (107–111). A recent study that compared head to head the
blood culture media of BacT/Alert Fan and Bactec Plus found the
former to be superior in the ability to neutralize peak and middle
simulated concentrations of piperacillin. Moreover, in three of
nine (33%) discordant scenarios in which bacteria were recovered
only from Bactec bottles, lingering piperacillin concentrations
greater than the MIC were observed in the BacT/Alert Fan bottles,
presumably inhibiting pathogen growth (109). In another study,
time to detection for resin-containing blood culture bottles of
BacT/Alert FAN with or without defined concentrations of vari-
ous antimicrobials was investigated. Using a predefined, clinically
relevant 3-h delay in the time to positivity, it was found that pip-
eracillin-tazobactam was incompletely neutralized, and some
strains did not demonstrate growth in bottles containing the beta-
lactam antibiotics, i.e., amoxicillin-clavulanate, cefepime, cefo-
taxime, and meropenem (110). Importantly, the use of prolonged
or continuous beta-lactam administration, combined with more
aggressive doses, will result in longer intervals of higher antibiotic
concentrations than with traditional intermittent dosing (13)
(Fig. 1). Therefore, there is a much higher likelihood of collecting
a blood culture specimen that contains antibiotic concentrations
skewed to the high levels at any time point, which in turn may
result in a delay in time to detection for the blood culture bottle or
even potentially a false-negative result. Although it is difficult to
predict the implications of nontraditional dosing because no stud-
ies have been conducted at this time, it may be worthwhile for labs
to take note of any delays in positivity or declines in bacteremia
rates after initiation of prolonged- or continuous-infusion proto-
cols. Additional molecular testing may serve to supplement early
results, but again, to our knowledge, the effects of active antibiot-
ics remaining in the bottle on molecular testing have also not been
studied. This should be an area of further focus for clinical labo-
ratory research.

The Beta-Lactam MIC: Phenotypic Profiling

Knowing the MIC is crucial for the use of a more individualized,
patient-centered PK/PD approach. The MIC, as much as it is a
cornerstone as a measure of antimicrobial potency, is far from
perfect. It has an inherent weakness of being derived from an in
vitro process that incorporates a fixed drug concentration com-
bined with a standardized inoculum in broth medium that is not
representative of real life conditions (for instance, the absence of
binding proteins). Nonetheless, some of the major downsides of
the MIC, such as the inability to distinguish between antibacterials
with time-dependent bactericidal activity versus concentration-
dependent bactericidal activity, can be overcome by incorporating
PD insights into the clinical decision process (112).

The provision of susceptibility testing results in breakpoints as

TABLE 3 Summary of recent meta-analyses that focused on clinical studies of continuous infusion and prolonged infusion of beta-lactamsa

Reference Study design(s)/no. of studies
Beta-lactam
class(es)

No. of patients analyzed for each
outcome (mortality/clinical cure)

Mortality (RR/
95% CI)

Clinical cure
(RR/95% CI)

Tamma et al., 2011(93) RCT/14 Pcn, Ceph, Car 982/1,380 0.92/0.61–1.37 1.00/0.94–1.06
Falagas et al., 2013 (4) RCT/3; retrospective/8; prospective/3 Pcn, Car 1,116/557 0.59/0.41–0.83 1.13/0.99–1.28
Korbila et al., 2013 (97) RCT/10; retrospective/1 Ceph 914/496 0.96/0.8–1.15 1.14/0.94–1.37
Teo et al., 2014 (99) RCT/18; prospective/3; retrospective/8 Pcn, Ceph, Car 1,620/1,546 0.66/0.53–0.83 1.12/1.03–1.21
Yang et al., 2015 (100) RCT/5; prospective/2; retrospective/7 Pcn 1,591/718 0.67/0.5–0.89 1.88/1.29–2.73
Roberts et al. 2016 (102) RCT/3 Pcn, Car 632/632 0.74/0.56–1 1.2/1.03–1.4
a Abbreviations: RCT, randomized controlled trial; Pcn, penicillin; Ceph, cephalosporin; Car, carbapenem; RR, relative risk; CI, confidence interval.

Grupper et al.

764 cmr.asm.org October 2016 Volume 29 Number 4Clinical Microbiology Reviews

http://cmr.asm.org


the single reporting form by high-throughput automatic systems
is the rule with most contemporary clinical laboratories (113).
Therefore, MICs across a broad range are often not available.
More recently, PD considerations have been taken into account in
the process of susceptibility breakpoint determination, as exem-
plified by the breakpoint determination for parenteral penicillin
and some oral beta-lactams against Streptococcus pneumoniae, the
lowering of piperacillin-tazobactam susceptibility for P. aerugi-
nosa from 64 �g/ml to 16 �g/ml, and the new carbapenem break-
points of �2 �g/ml against P. aeruginosa (104, 112, 114–116).
Although this is a highly desirable process which provides break-
points that are very reasonable for defining the general utility of an
antibiotic against a given organism, having a specific MIC is irre-
placeable when developing an individualized regimen. To begin
with, there are a number of different approaches for establishing
breakpoints, and there are some disagreements between the dif-
ferent agencies that determine them (117). Furthermore, having a
sensitivity or resistance breakpoint does not give the full informa-
tion to the clinician. For instance, a report of “R” in a case of
meropenem for P. aeruginosa would imply resistance (MIC, �8
�g/ml) but fails to disclose whether the MIC is indeed 8 �g/ml
(and the infection potentially treatable with a higher PD opti-
mized dosing regimen) or 64 �g/ml, for which successful treat-
ment would be unobtainable with even the most aggressive clini-
cally utilized regimens. Likewise, a report of “S,” in the same
scenario, does not reveal whether the MIC is 2 �g/ml (at the bor-
der of nonsusceptible) or 0.25 �g/ml, against which most regi-
mens should provide PD attainment. The optimization of both
empirical and specific antibiotic therapy may be compromised
when MICs are not available. In contrast, the appreciation for
misinterpretation of the MIC by an unknowledgeable prescriber
must be balanced with the clinical laboratory’s reporting strategy.

Mohr and colleagues (118) practiced the use of local MICs in a
study that involved intensive care unit patients with nosocomial
infections due to various Gram-negative bacteria. Following the
administration of empirical antibiotic therapy selected by the at-
tending physician, it was exchanged by a targeted treatment regi-
men based on PD considerations and the specific MIC of the cul-
prit bacteria of each of the 19 subjects included in the study.
Improved clinical and microbiological responses were observed in
this group of moderately to moderately severely ill patients. Al-
though the interpretation of the findings is limited due to the lack
of a control group, the study highlights that the empirical therapy
administered before the intervention was suboptimal in many sce-
narios and that optimal therapy can be designed with the methods
described.

A second look at the study by Nicasio and colleagues (56) men-
tioned above can exemplify these points in the case of optimizing
beta-lactam therapy by nontraditional infusions. The incentive of
the researchers for developing and successfully implementing a
PD-based ventilator-associated pneumonia clinical pathway in
our institution’s ICUs was a challenging situation: the etiology of
an unusually high proportion of all pneumonia episodes was mul-
tidrug-resistant bacteria. Using Monte Carlo simulation and
broth dilution-based MICs of the causative bacteria, concentra-
tion-time curves were derived for standard dosing regimens of
several antibiotics, mostly beta-lactams (cefepime, ceftazidime,
meropenem, and piperacillin-tazobactam), as well as nontradi-
tional, higher antibiotic doses combined with prolonged- or con-
tinuous-infusion regimens. After obtaining 5,000 steady-state

profiles, a calculation of the specific PTA for each beta-lactam was
conducted. Importantly to the point in issue, the PTA was
weighted by the MIC distribution of P. aeruginosa in each of the
intensive care units investigated, for targeting the most resistant
bacteria in developing an empirical regimen. This approach re-
sulted in the use of nontraditional regimens, including extended-
infusion cefepime and meropenem and the continuous infusion
of piperacillin-tazobactam empirically. Because the MIC distribu-
tion was different in each of the ICUs, a different empirical regi-
men was employed in each. In the surgical and neurotrauma in-
tensive care units, cefepime at 2 g q8h as a prolonged infusion was
selected as the first-line regimen, whereas a prolonged infusion of
meropenem at 2 g q8h was required in the medical intensive care
unit. Thus, an optimal highest probability of treatment success
against the local pathogens could be attained. Moreover, the use of
specific MICs instead of breakpoints, combined with the PK/PD
considerations as discussed above, resulted in successful combi-
nation treatments, containing nontraditional beta-lactam regi-
mens, of several patients that had a documented infection with a
resistant (according to CLSI breakpoints at the time) P. aeruginosa
strain. That subgroup of patients would need a much more toxic
and less reliable treatment if the strain was declared resistant by
use of the standard breakpoints (e.g., the successful treatment of a
78-year-old patient using cefepime at 2 g q8h as a prolonged in-
fusion against a P. aeruginosa strain with a cefepime MIC of 16
�g/ml).

Although using the gold-standard broth microdilution tech-
nique, for full-range MIC elucidation would definitely be optimal,
it is labor-intensive and unlikely to be implemented in most clin-
ical laboratories. Automated systems can produce, at times with
an accessory panel, an abbreviated range MIC range for each an-
tibiotic (a dilution or two above or typically below the break-
points) (119–122), but as discussed above, this is not sufficient for
every needed scenario. An appropriate tool could be the Etest
(123), which provides a full MIC range and is more feasible in the
clinical setting. We would like to suggest the approach of initially
conduct testing with the automated system in regular use and then
using supplemental Etest MICs for cases in need that test out on
the high range of the automated MIC or where a multidrug-resis-
tant phenotypic profile is observed.

Beyond the MIC: Genotypic Profiling

A promising novel field for the clinical laboratory, which is in
direct discordance with application of traditional MIC break-
points, is the application of genotypic profiling and dissociation
between in vitro and in vivo resistance. Recently, Ghazi and col-
leagues (124) observed that despite a high MIC indicative of mero-
penem resistance due to Verona integrin-encoded metallo-beta-
lactamase (VIM) in Enterobacteriaceae, treatment with this
antibiotic resulted in unexpected bactericidal activity when used
in a humanized high-dose regimen in a murine infection model.
Additional examples with gram-negative bacteria harboring the
New Delhi metallo-beta-lactamase (NDM) have also been pub-
lished and supported by a review of the clinical literature sur-
rounding successful treatment with carbapenems for NDM infec-
tions (125).

In contrast to the above examples, a genotypic test identifying a
Klebsiella-producing carbapenemase (KPC) could also lead to
avoidance of carbapenem therapies, not only because of pheno-
typic resistance but because the PD target may be different from
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that of non-KPC producing isolates, unattainable, or both. For
example, a prolonged infusion of high-dose meropenem (2 g q8h,
with each dose infused over 3 h) achieves a high likelihood of
obtaining a 40% ƒT�MIC against bacteria with MICs of �16
�g/ml. Theoretically, therefore, this meropenem regimen should
kill KPC-producing bacteria with MICs of 16 �g/ml or less. How-
ever, this hypothesis was not proven accurate in an in vitro exper-
iment simulating human exposures to this regimen. While mero-
penem did achieve a �3-log CFU reduction over the initial 6 h
against the KPC isolates, regrowth followed in 9 of the 11 isolates.
In comparison, significantly greater CFU reductions were ob-
served and maintained against the 6 P. aeruginosa isolates matched
by MIC (126). A similar result was observed in another in vitro
pharmacodynamic study, in which monotherapy with prolonged-
infusion meropenem failed to preserve bactericidal reductions in
CFU over 48 h when tested against 5 KPC-producing isolates,
including 4 with meropenem MICs of 8 to 16 �g/ml (127). The
combination regimen of meropenem plus tigecycline achieved
significantly delayed regrowth comparatively. These data collec-
tively suggest that the PD exposure required for KPC-producing
bacteria may be different from that for non-KPC organisms and
that monotherapy with a carbapenem for KPC-producing bacte-
ria, at least at doses of �6 g/day, should be avoided.

Rapid, automated tools for identification of resistance genes of
Gram-negative bacteria are already FDA approved and available.
These include the FilmArray blood culture identification panel
(BioFire Diagnostics LLC, Salt Lake City, UT) (128), the Verigene
Gram-negative blood culture test (Nanosphere Inc., Northbrook,
IL) (129), and more recently, the Xpert Carba-R test (Cepheid
Inc., Sunnyvale, CA) (130). While the first assay can detect solely
the presence of blaKPC, the two other systems are able to detect
additional drug resistance genes, among them the blaNDM gene
and the blaVIM gene mentioned above (128–130). Although fur-
ther research is needed, these results suggest that laboratory test-
ing and finding of certain resistance genotypes would imply that
the phenotypic resistance is different; thus, antibiotics that are
considered “unusable” may in fact be clinically useful, especially
when administered as nontraditional doses.

It is clear from the above discussion that for optimally designing
the treatment regimen in complicated cases, availability of the
local MIC, and at times the genotypic profile, would be helpful.

Therapeutic Drug Monitoring

After considering MIC, the other half of the PK/PD equation is
antibiotic concentration, as dictated by the individual pharmaco-
kinetics of the patient. Empirical dosing schedules almost always
originate from studies in healthy volunteers, and these regimens
are not always representative of different real-world infected pa-
tient populations. In critically ill patients, there are marked patho-
physiological changes that affect pharmacokinetics. An extensive
review of this subject was recently published by Roberts and col-
leagues (11), but several pertinent examples follow. Systemic in-
flammatory response syndrome results in third-space sequestra-
tion, with resulting hypotension, leading in many cases to
administration of large infusion volumes for resuscitation, all of
which culminate in increased interstitial volume. For hydrophilic
antibiotics such as the beta-lactams, these increases may result in
lower intravascular drug concentrations (i.e., larger volumes of
distribution) than in patients who are not critically ill and there-
fore may lead to underdosing (131). Renal and hepatic dysfunc-

tions are usually accounted for when dosing antibiotics, with re-
duction of the doses, but an opposite phenomenon may be
observed in some severely ill patients who develop augmented
renal clearance and eliminate some antibiotics more quickly
(132). These patients, in theory, may require doses greater than
the standard regimen used with normal kidney function. Utilizing
PD considerations, such as prolonged and continuous infusion,
and the local and individual pathogen MIC is a worthwhile means
toward that ultimate goal of treatment optimization. Neverthe-
less, for overcoming the aforementioned obstacles, the incorpora-
tion of drug concentration results through therapeutic drug mon-
itoring (TDM) makes it possible to confirm that exposure
thresholds are achieved and adjust dosing regimens as required
based on individual pharmacokinetics.

Clinical laboratories and clinicians are accustomed to relate
TDM to aminoglycosides and vancomycin. TDM is used for both
optimal dosing and toxicity monitoring of these drugs but is tra-
ditionally perceived mainly as related to the latter. Because beta-
lactams generally have an excellent safety profile, beside some
concerns regarding convulsive promotion at very high dosages
(133), the optimization of exposure would be the main incentive
for using TDM. In the DALI study, it was demonstrated that beta-
lactam concentrations in many intensive care unit patients (up to
50%) fell below PD targets (134). Although this was a point-prev-
alence study without interventional optimal beta-lactam dosing,
its conclusions can undoubtedly be extended to support the need
for monitoring antibiotic levels even when individual PK/PD con-
siderations are employed. Patel and colleagues found in a prospec-
tive study including 50 burn patients that the trough concentra-
tions of beta-lactams were less than the target MIC in 60% of the
patients, thus suggesting the need for dose adjustment (135). An-
other prospective study by Aubert and colleagues reported that
serum ceftazidime concentrations among 92 ICU patients were
lower than target MICs in 37% of patients and excessive in 27% of
them (136).

While TDM for beta-lactams is appealing, it has not come into
significant practical use. A recent survey approached 11 institu-
tions worldwide that were known to practice these methods and
found high diversity regarding the specific beta-lactam measured,
types of patients tested, and drug assay method (137); moreover,
the total number of hospitals routinely performing beta-lactam
TDM worldwide was estimated to be as few as 30 centers (138).
The reason for these figures is multifactorial. First, there is yet no
solid proof for a clinical advantage of using beta-lactam serum
levels for guiding treatment. Second, the analysis of the serum
concentrations of these drugs is carried out by chromatograph-
based methods (139, 140), with downsides of relatively long turn-
around time (6 to 24 h) and expensive equipment requiring skilled
operators (138–140). To illustrate, the cost of measuring one beta-
lactam serum concentration was recently estimated at around 30
U.S. dollars per assay (approximately 20 euros) in a central labo-
ratory (138). Despite the apparent obstacles that are shared with
the incorporation of most new medical technologies and proce-
dures, clinical laboratories striving to optimize the ultimate goal
of patient treatment should not be discouraged. Rather, TDM of
beta-lactams is something to consider when bringing on the non-
traditional dosing regimens in order to maximize efficacy. A cat-
alyst for using beta-lactam TDM is the apparent advancement in
computer software that enables clinicians to use drug concentra-
tion data to the greatest benefits possible, without exhaustive pre-
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vious training. Using Bayesian or nonlinear regression, one can
use the patient’s own data for adjusting beta-lactam dosage, and
some programs allow even the incorporation of population phar-
macokinetic data, including local data, to optimize performance
(11, 141). Notably, interpretation of levels produced by the labo-
ratory should be by collaboration with clinicians knowledgeable
in PD concepts and, ideally, with consideration of the MIC.

We demonstrate the use of all the above-described tools using
both a formal flowchart (Fig. 2) and a vivid example of a real case
that was treated at our institute. The patient was an adult male
with cystic fibrosis admitted with an acute pulmonary exacerba-
tion, presumably due to a multidrug-resistant Burkholderia cepa-
cia strain according to latest respiratory cultures, including a
meropenem MIC of 16 �g/ml and no effective synergistic or ad-
ditive antibiotic combination. Given the clinical scenario, an op-
timized dosing regimen was designed based on the patient’s indi-
vidual pharmacokinetic profile (i.e., TDM), resulting in the
eventual administration of meropenem at 2 g q8h as a prolonged
3-h infusion. The patient had a prompt response to treatment,
with a clinical improvement beginning on the second day of his
hospitalization. The selected meropenem dosing regimen resulted
in attainment of a 40% T�MIC at the MIC of 16 �g/ml. Sputum
cultures confirmed infection with B. cepacia, with a meropenem
MIC of 8 �g/ml (defined as intermediate at the time) and no
synergism or additive antibiotic combination efficacy. The
T�MIC achieved with the prolonged-infusion meropenem regi-
men was recalculated to be 52%, further supporting the selected
regimen (142).

CONCLUSIONS

Prolonged- and continuous-infusion dosing regimens for beta-
lactams have a strong scientific basis that is supported by in vitro,
in vivo animal, and human clinical trials. For achieving optimal
exposure with these dosing strategies, coordination between cli-
nicians, the pharmacy, and, importantly, the clinical laboratory is
needed. The clinical laboratory can play a pertinent role by ana-

lyzing and providing data needed throughout all stages, including
microbiological (exact MICs and resistance) and pharmacological
(drug concentrations) data. It is imperative that the ultimate in-
terpretation and optimal use of the data reported by the clinical
laboratory at the patient bedside relies on a coordinated, seamless
process which involves every member of the antimicrobial stew-
ardship team.

Although the implementation of prolonged- and continuous-
infusion beta-lactam dosing regimens may be challenging in the
hospital setting, it rewards the population that is most at need, i.e.,
critically ill patients with the greatest risk of multidrug-resistant
organisms and fluctuations in PK. The use of these dosing regi-
mens is congruent with focused efforts for a more personalized
medicine. Future research in this field should concentrate on fur-
ther defining benefits in specific clinical populations. As knowl-
edge of the pathogen MIC and individual pharmacokinetics is
paramount to optimization of these dosing regimens, the clinical
laboratory will continue to play a vital role in successful utiliza-
tion.
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