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SUMMARY

HIV-1 DNA persists in infected cells despite combined antiretroviral
therapy (cART), forming viral reservoirs. Recent trials of strategies
targeting latent HIV reservoirs have rekindled hopes of curing HIV
infection, and reliable markers are thus needed to evaluate viral res-
ervoirs. Total HIV DNA quantification is simple, standardized, sen-
sitive, and reproducible. Total HIV DNA load influences the course
of the infection and is therefore clinically relevant. In particular, it is
predictive of progression to AIDS and death, independently of HIV
RNA load and the CD4 cell count. Baseline total HIV DNA load is
predictive of the response to cART. It declines during cART but re-
mains quantifiable, at a level that reflects both the history of infection
(HIV RNA zenith, CD4 cell count nadir) and treatment efficacy (re-
sidual viremia, cumulative viremia, immune restoration, immune
cell activation). Total HIV DNA load in blood is also predictive of the
presence and severity of some HIV-1-associated end-organ disorders.
It can be useful to guide individual treatment, notably, therapeutic
de-escalation. Although it does not distinguish between replication-
competent and -defective latent viruses, the total HIV DNA load in
blood, tissues, and cells provides insights into HIV pathogenesis,

probably because all viral forms participate in host cell activation and
HIV pathogenesis. Total HIV DNA is thus a biomarker of HIV res-
ervoirs, which can be defined as all infected cells and tissues contain-
ing all forms of HIV persistence that participate in pathogenesis. This
participation may occur through the production of new virions, cre-
ating new cycles of infection and disseminating infected cells; main-
tenance or amplification of reservoirs by homeostatic cell prolifera-
tion; and viral transcription and synthesis of viral proteins without
new virion production. These proteins can induce immune activa-
tion, thus participating in the vicious circle of HIV pathogenesis.
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INTRODUCTION

HIV DNA persists in infected cells during combined antiretro-
viral therapy (cART), allowing the virus to reemerge from the

reservoir if treatment is discontinued (1–3). The virus cannot cur-
rently be eradicated from the body, and treatment thus has to be
maintained indefinitely. Recent clinical studies have rekindled
hopes that HIV infection might be cured, notably by targeting
viral reservoirs (4–7). An accurate, clinically relevant marker of
HIV reservoirs is therefore needed (8).

Several markers have been proposed to quantify cell-associated
HIV reservoirs (6) but there is no consensus method (6, 9–12).
Intracellular HIV RNA load indicates the degree of ongoing HIV
replication, while coculture assay of resting infected cells indicates
their capacity to produce replication-competent virions. In con-
trast, total cell-associated HIV DNA is a global biomarker that
includes integrated and nonintegrated viral genomes coding for
both competent and defective viruses.

Total cellular HIV DNA is the focus of this review. It is easy to
measure in whole blood, cell pellets, or tissues. Here, we examine
the relevance of HIV DNA to HIV pathogenesis and persistence
during both the natural and on-treatment course of infection, as
well as its implications for tailored therapy and for trials of new
approaches targeting HIV reservoirs.

PLACE OF TOTAL HIV DNA AMONG MARKERS USED TO
EVALUATE HIV RESERVOIRS

There are many discussions and controversies concerning the best
biomarker of HIV reservoirs. Two comprehensive studies have
compared a panel of HIV reservoir biomarkers (9, 11), but such
studies are limited by the fact that large amounts of blood are
needed to test all markers in a given patient. The different ap-
proaches may be used differently according to the issue in ques-
tion, such as the overall level of HIV infection in the body, viral
persistence, reservoir activity, or the role of the HIV reservoir in
maintaining immune activation. Clearly, no single marker can
answer all these questions, but each can provide part of the
answer. Markers used to quantify and monitor the HIV reservoir
provide complementary information (6, 9).

Blankson et al. proposed to restrict the term “HIV reservoirs”
to the cells or tissues where HIV persists in latent form but can
reactivate in the form of replication-competent virus (13). This
restricts the definition to resting infected cells. An alternative,
broader definition of HIV reservoirs can also be proposed: all
infected cells and tissues containing all forms of HIV persistence
that can participate in HIV pathogenesis. This participation may
occur through the production of new virions creating new cycles
of infection and disseminating infected cells; maintenance or am-
plification of reservoirs by homeostatic cell proliferation; and viral
transcription and synthesis of viral proteins without new virion
production. These proteins can induce immune activation, thus
participating in the vicious circle of HIV pathogenesis (14) (Fig.
1). Different biomarkers are relevant to each of these definitions.

Quantitative coculture assays measure the ability of infected
cells (purified CD4� T cells or peripheral blood mononuclear cells
[PBMC]) to produce infectious virions upon stimulation (3, 15,
16, 17, 18). It is based on the limiting dilution method, and the
results are expressed as infectious units per million cells (IUPM)
(6, 9). This viral outgrowth assay requires the purification of
PBMC or resting CD4 T cells via use of magnetic beads or flow

cytometry, as well as cell activation to induce virus production
during several weeks in a secure laboratory and also quantification
of cells able to release infectious particles (10, 15). It requires a
large volume of blood (120 to 180 ml) or leukapheresis to obtain
the necessary large number of viable cells. It is difficult to apply for
frequent serial measurements in clinical studies (9, 15) because it
is labor-intensive and expensive. Its reproducibility has been esti-
mated in one laboratory in terms of the coefficient of variation
(0.95) and the confidence interval (CI) for one measurement
(�0.7 log), indicating it is unreliable for detecting small differ-
ences in the size of the HIV reservoir (9, 19, 20). Reproducibility
across laboratories has not yet been evaluated. Its limitations are
illustrated by the case of the “Mississippi child,” a perinatally HIV-
1-infected infant who experienced a viremic relapse after entering
remission; quantitative coculture remained negative (in a cumu-
lative total of 64 million resting CD4 T cells) throughout the pe-
riod of virologic remission, whereas HIV DNA was detectable in
PBMC and CD4 T cells (positive signal, �4 copies/106 cells). Her
subsequent viral rebound 27.6 months after cART discontinu-
ation proved the persistence of infectious virus somewhere in
the “Mississippi child” in blood or unsampled tissues (21).
Finally, despite its limits, this assay is certainly useful for some
research purposes, such as estimation of blood reservoir pro-
ductive activity.

Another marker is intracellular HIV RNA load, which mea-
sures HIV transcription in infected cells or viral entry. Cell-asso-
ciated HIV RNA rapidly declined after cART initiation, mimick-
ing cell-free HIV RNA decay, before reaching a plateau (22). This
plateau is explained by the fact that cART does not stop HIV
transcription. The level of this plateau does not correlate directly
with HIV replication, because of insufficient transcription or nu-
clear retention of viral RNA in resting cells, or transcription of
defective viruses (22). Cell-associated HIV RNA might be very
useful for cure research, because it quantifies a dynamic process of
transcription and reflects the activity of the HIV reservoir (22). It
can be helpful for evaluating residual, transcriptionally active in-
fected cells in patients on treatment. Several assays have been de-
veloped to quantify this intracellular HIV RNA (22), and their
reproducibility across multiple labs needs to be evaluated.

Total HIV DNA, as its name suggests, includes both integrated
and unintegrated HIV DNA (that includes episomal 1-long termi-
nal repeat [1-LTR], 2-LTR, and linear HIV DNA) and reflects the
global level of the total reservoir (Fig. 1). Each of these separate
forms is difficult to quantify in the absence of a standardized,
reproducible assay (6). Total HIV DNA assay does not distinguish
between replication-competent and -defective viral genomes (9,
17). These forms of HIV DNA can coexist in infected cells. The
neosynthesized double-strand HIV DNA is linear. This form is the
prevalent form of reverse-transcribed genomes in infected cells
and constitutes a preintegrated form of latency (3, 23–25). It is
labile if it does not integrate into the host genome (26, 27). HIV
DNA can also be circularized in episomal forms with one or two
LTRs. Forms with one LTR are due to homologous recombina-
tion, whereas forms with two LTRs result from ligation of the viral
genome (28). In quiescent CD4 T cells, episomal forms represent
less than 10% of unintegrated HIV DNA (3). Two-LTR forms
represented 0.1% to 0.6% of integrated forms in cell lines and
peripheral blood mononuclear cells infected in vitro (29). Data on
2-LTR forms are conflicting. Some authors consider them labile
and to be present only during recent infection (30, 31), but in vitro
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studies that eliminated confounding factors, such as infected cell
death, and in vivo studies have demonstrated that they are stable
(32–39). The number of 1-LTR and 2-LTR HIV DNA molecules
decreases by dilution during cell division or cell death (32, 34, 40)
(Fig. 1). These forms can be renewed by viral replication (30, 41).
2-LTR forms have been quantified during trials evaluating inten-
sification with integrase inhibitors upon the hypothesis that these
antiretrovirals enhance 2-LTR HIV DNA if residual replication
occurs during cART (42). These unintegrated forms constitute an
inducible viral reservoir (43) and can participate in HIV transcrip-
tion, in the replication cycle (when they are complemented by
integrated forms), and in the integration and synthesis of new
virions (44–53). Integrated HIV DNA is the most stable form and
constitutes the postintegrated form of latency (16, 54). It persists
during cell proliferation (Fig. 1). This provirus has an estimated
frequency of 1 copy per infected blood cell (55). It contributes to

viral rebound after cART interruption. A significant percentage of
infected resting CD4 T cells harbors proviruses that are either
defective because of hypermutation or deletion or transcription-
ally silenced (17, 56). Some studies have suggested that the fre-
quency of resting HIV-infected cells, estimated by total HIV DNA
quantification among resting CD4 T cells, is considerably higher
than the frequency of infected cells capable of viral outgrowth
(differences above 2 logs) (9). Some of these transcriptionally si-
lent cells may be inducible. These data suggest that a significant
proportion of the total HIV DNA measured by PCR is not being
made into HIV RNA, protein, and viral particles. Cells harboring
defective or silent proviruses do not therefore contribute to
viremia (17, 56) but could participate in pathogenesis (Fig. 1).
Total HIV DNA load correlates with the frequency of cells con-
taining replication-competent virus (r � 0.73, P � 0.0009) (57).
Eriksson et al. also reported a correlation between total HIV

FIG 1 Several forms of HIV DNA compose the total HIV DNA and participate in HIV pathogenesis. The integrated form, the provirus, is the more persistent
form and permits production of virions when quiescent infected cells are reactivated. Virions can infect new cells and propagate infection and the HIV reservoir.
The provirus form persists in all cells during cell proliferation. Episomal forms with 1-LTR or 2-LTR persist and are diluted in some daughter cells during cell
proliferation. Linear unintegrated HIV DNA is the more labile form and is essentially present when the virus is replicating. Defective provirus, with a deletion,
nonsense mutation, or hypermutation, cannot produce new virions but can produce transcripts and viral proteins which could activate the immune system and
participate in HIV pathogenesis.
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DNA load in resting CD4� T cells (but not in PBMC) and the
quantity of replication-competent virus (r � 0.45, P � 0.08)
(9). Similar results were recently reported by Kiselinova et al.
(11). More recently, Noel et al. also reported that the low level
of total HIV DNA in cells from long-term nonprogressors (LT-
NPs) correlated with the low efficiency of virus production
after activation ex vivo (58).

By comparison with other markers, total HIV DNA has the
advantage of easy quantification by standardized, sensitive, real-
time PCR (59–68), a method suitable for analyzing large numbers
of samples with accuracy. It requires a relatively small amount of
blood and can therefore be used for HIV diagnosis in young chil-
dren, for example. It can be quantified in blood and other body
fluids, is unaffected by freeze-thawing, and is the method most
widely used to quantify the HIV reservoir in tissue biopsy speci-
mens. It produces reproducible results with small errors (59, 69).
The interassay reproducibility of real-time PCR quantification of
total HIV DNA has been evaluated in a laboratory by using two
controls, one high and one moderate, during more than a
9-month period. Means, coefficients of variation, and 95% confi-
dence intervals (CIs) were, respectively, 3.30 log copies/106 leuko-
cytes, 0.03, and �0.22 log for the high-level sample and 2.40 log
copies/106 leukocytes, 0.07, and �0.35 log for the moderate-level
sample. Figure 2 shows the high reproducibility of this assay. Re-
producibility has also been evaluated for patient samples, with
good performance (59). These values are lower than those re-
ported with the viral outgrowth assay (9, 19, 20). A kit is commer-
cially available (Biocentric, Bandol, France) that was developed
with the support of the French HIV/AIDS Research Agency
(ANRS) to facilitate comparisons of results from different labora-
tories. For example, HIV DNA load is an inclusion criterion in an
ongoing cART de-escalation trial (TRULIGHT; NCT02302547 at
ClinicalTrials.gov), in which it is quantified with the same assay
after an interlaboratory quality-control procedure. Interlabora-
tory comparisons have had good results (69). More recently, an
assay that dispenses with the extraction step has been proposed
(70). Recent technical progress has permitted the development of
HIV DNA quantification by digital droplet PCR (ddPCR), which
does not require an external quantification standard (71–77).
However, some false-positive signals have been observed with
ddPCR, which can be a problem when this method is used for
diagnosis (76). Moreover, ddPCR cannot help with quantification
of low signals, for instance in HIV controllers. In fact, quantifica-
tion of low signals follows the Poisson distribution, necessitating
study of many cells and several replicates, whatever the technology
(real-time PCR or ddPCR).

It is very unlikely that a single marker will alone provide
sufficient information on viral reservoir status (8). However,
the fact that HIV DNA shows a certain degree of correlation
with other markers, including viral outgrowth assay results,
indicates that HIV DNA may be usefully included in biomarker
panels, whatever the question in hand. Total HIV DNA load is
the most widely studied marker of the HIV reservoir, having
been measured in large patient cohorts and trials at different
stages of the infection.

SPECTRUM OF TOTAL HIV DNA LEVELS IN BLOOD

A broad range of total HIV DNA levels has been observed during
the natural and therapeutic courses of HIV infection (Fig. 3).

Total HIV DNA in Blood during Untreated Infection

Cellular HIV DNA can be detected very early after infection.
Ananworanich et al. reported that patients studied a few days after
infection had a median total blood HIV DNA load of 0.9 log10

copies/106 PBMC at Fiebig stage I (at which only HIV RNA is
detectable; 8 patients) and 2.7 log10 copies/106 PBMC at Fiebig
stage III (detection of HIV RNA and HIV-specific antibodies is
possible by enzyme-linked immunosorbent assay [ELISA] but not
by Western blotting; 15 patients) (P � 0.01) (78). This was re-
cently confirmed in a larger study (79). In the ANRS PRIMO
cohort, the median HIV DNA load was 3.30 log10 copies/106

PBMC (range, �1.84 to 4.93) at an estimated median of 47 days
after infection; it was significantly higher in patients with more
acute infection (with only 0 or 1 HIV-specific antibody) than in
patients included a bit later (with �2 antibodies), and also in
patients who had a symptomatic primary infection (80). During
the 6 months following infection, the median total HIV DNA level

FIG 2 Reproducibility of total HIV DNA quantification in two positive con-
trols by real-time PCR (59). For this experiment, two different pools of blood
cells (in EDTA) from HIV-infected patients were prepared. Aliquots were
frozen at �80°C. One aliquot of each control (high-level positive control [A]
and moderate-level positive control [B]) was tested in all assays performed
during a �9-month period to verify the assays reproducibility over time. Re-
sults presented here are for 69 quantifications performed by different techni-
cians and with different thermocyclers and with four lots of Biocentric re-
agents, for the high-level positive control (A) and moderate-level positive
control (B). Means (red lines), standard deviations, coefficients of variation,
and 95% confidence intervals were, respectively, 3.30 log copies/106 leuko-
cytes, 0.11 log, 0.03, and �0.22 log for the high-level positive-control sample
and 2.40 log copies/106 leukocytes, 0.18 log, 0.07, and �0.35 log for the mod-
erate-level positive-control sample.
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in blood was 2.8 to 3.2 log10 copies/106 PBMC among patients in
the French PRIMO cohort (Fig. 3) and the Ivorian PRIMOCI
cohort (674 and 200 patients, respectively) (80–83).

The total blood HIV DNA level was 2.86 log10 copies/106 PBMC
during the 6 to 24 months following infection in 271 patients
included in the ANRS SEROCO cohort (Fig. 3) (84).

During the chronic phase, the median HIV DNA level was 2.65
log10 copies/106 PBMC in 130 patients (85) and was quite stable
over time (85–87).

Patients who naturally control HIV infection (long-term non-
progressors and elite controllers) have very low and stable total
HIV DNA levels, with median values of 2.3 and 1.5 log10 copies/
106 PBMC reported in, respectively, 66 and 15 patients (88–90).
Similarly, posttreatment controllers in the VISCONTI cohort, for
whom treatment was initiated early during the primary infection
and long-term viral control after treatment interruption was
maintained, had low total HIV DNA levels (median, 1.71 log10

copies/106 PBMC; 14 patients) (91, 92) (Fig. 3).
Very few data are available for untreated AIDS patients. HIV

DNA load expressed per 106 CD4 T cells increased in one study
during infection, reflecting the increasing proportion of in-
fected cells among the depleted CD4 T cell subset (24 patients)
(87).

Infected teenagers included in the ANRS IMMIP study had HIV

DNA levels similar to those found in adults (93). Eighty-one Ivo-
rian children, studied mainly at stage B or C of HIV infection, had
a median of 3.4 log10 copies/106 PBMC (94) (Fig. 3).

Thus, a broad range of total HIV DNA levels is observed among
patients. Moreover, HIV DNA levels vary widely during the nat-
ural course of infection, especially during the first few weeks.

Decline in Total HIV DNA during cART

The decline in total blood HIV DNA in patients adherent to cART
has been extensively studied in both adults and children (57, 77,
78, 82, 95–109). This decline varies among patients. It correlates
directly with pretherapeutic HIV DNA levels (97, 102) and HIV
RNA levels (97), as well as with the baseline CD4 cell count (102),
the CD4 cell increment (97, 100), and the chance of achieving HIV
RNA loads of �2.5 copies/ml (107). Pretherapeutic HIV RNA
load was also predictive of the decline in HIV DNA load in chil-
dren, independently of pretherapeutic HIV DNA load (110). HIV
DNA load before cART was also predictive of HIV DNA load 2
years after cART initiation and of the time to aviremia in children
(111). A sharp decrease (�0.5 log) in HIV DNA levels was signif-
icantly correlated with an improvement in the CD4 T cell count
(112). A recent study of children showed lower HIV DNA levels
after cART initiation when the plasma HIV RNA level was rapidly
controlled (77).

FIG 3 Spectrum of total HIV-1 DNA levels in PBMC during HIV infection. The natural history data are from HIV DNA quantified for 552 adults at the time of
the primary infection (PRIMO cohort, ANRS) (81), for 271 patients who had seroconverted 6 to 24 months previously (SEROCO cohort, ANRS) (84), and for
121 perinatally infected children (median age, 6 years), of whom 46.6% and 20.3% were at CDC stage B and C, respectively (ANRS 1244/1278) (94). The data set
for “during antiretroviral therapy” is for HIV DNA quantified during antiretroviral therapy initiated during the primary infection and continued for 2 years (90
patients; OPTIPRIM trial, ANRS) (109) or for a median of 3.6 years, with HIV RNA levels of �50 copies/ml for a median of 3.1 years (n � 35) (123). HIV DNA
was quantified during antiretroviral therapy initiated early during the chronic phase in 116 adults (CD4 cell count, �350/mm3; plasma HIV RNA, �4.7 log
copies/ml), with antiretroviral therapy for a median of 5.3 years (SALTO trial, ANRS) (220) and in 272 adults treated later (median CD4 cell nadir, 228/mm3;
plasma HIV RNA, 5.3 log copies/ml) for a median of 7.3 years, with HIV RNA levels at �50 copies/ml for a median of 3.9 years (123). HIV DNA was quantified
in 44 adults with advanced therapeutic failure and AIDS (CD4 count, �200/mm3; HIV RNA level, �4 log; genotypic score showing two or fewer active drugs)
(ETOILE trial, ANRS) (197). For the HIV control data set, HIV DNA were quantified for patients who controlled the infection naturally (plasma HIV RNA
undetectable for �10 years in the absence of antiretroviral treatment [15 patients]) (HIV controllers cohort, ANRS) (89) or after treatment interruption (14
patients) (VISCONTI study, ANRS) (92). The same standardized assay was used in the same laboratory. A broad range of HIV DNA levels was found. Medians
and interquartile ranges are indicated.
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HIV DNA decay is also dependent on the amount of cell-asso-
ciated HIV RNA in blood and lymph nodes; residual viremia cor-
relates with slower clearance of HIV-1-infected cells, possibly
owing to infection of new cells (97). Another, larger study con-
firmed the association between HIV DNA levels during cART and
markers of the dynamics of HIV reservoirs (residual HIV RNA,
cell-associated HIV RNA, and 2-LTR HIV DNA) (113). However,
another study failed to show a correlation between the HIV DNA
slope or level on the one hand and, on the other hand, either
residual viremia or the percentage of activated CD8� T cells (av-
eraged over years 1 to 4 after cART initiation) (108). This point
therefore needs further investigation.

The rapid initial HIV DNA decay is mostly due to the decay of
linear unintegrated DNA (114). Integrated forms decay slowly
(115). 2-LTR forms decline more than integrated forms, and the
decay of 2-LTR forms and integrated forms is slower in activated
CD38 CD4 T cells than in nonactivated cells (115). In some pa-
tients on cART, total HIV DNA can be almost exclusively com-
posed of integrated HIV DNA (104, 114, 116, 117), whereas other
studies suggest that some nonintegrated HIV DNA forms can also
persist (115, 118) and that unintegrated HIV DNA forms remain
more frequent than integrated forms in quiescent CD4 T cells and
monocytes after several months of cART (119, 120, 121). Hetero-
geneity among patients could explain these discrepancies.

Time from HIV-1 Infection to Treatment Initiation
Influences Total HIV DNA Decay and Levels during cART

cART reduces the HIV DNA load more markedly when initiated
during primary HIV infection (PHI) than during chronic HIV
infection (CHI) in adults and children (Fig. 3) (57, 77, 82, 101,
105, 122, 123).

In a longitudinal study of 307 patients, the decline in HIV DNA
was analyzed with a nonlinear mixed-effects model that included
�1,100 HIV DNA data points. The model showed two phases of
decay. During the first 2 years, a rapid decline in HIV DNA was
observed both in patients treated since PHI and in patients first
treated during CHI, with similar HIV DNA half-lives (113 days
and 146 days, respectively). The second decay phase was much
slower, and the half-life was significantly shorter in the PHI group
(25 years) than in the CHI group (377 years; P � 0.001). At the end
of the study, after a median duration of viral suppression of 4
years, HIV DNA levels were significantly lower in the PHI group
than in the CHI group (median, 2.15 versus 2.84 log copies/106

PBMC; P � 0.0001) (Fig. 3) (123). Logistic regression analysis
showed that starting cART during PHI (odds ratio [OR], 16; 95%
CI, 3.5 to 72.3) and a low pretherapeutic HIV DNA level (�3.3
log; OR, 4.8; 95% CI, 1.2 to 19.3) were independent predictors of
reaching “optimal viro-immunological responder status” (i.e.,
HIV DNA of �2.3 log copies/106 PBMC, associated with normal-
ization of absolute/relative CD4 T cell counts and the CD4/CD8
ratio) (123). Recently, a mixed-effects model of the ANRS PRIMO
cohort data set, using �1,300 HIV DNA values from 327 patients,
demonstrated that the timing of cART initiation during PHI could
influence the first slope of HIV DNA decline: the earlier cART was
initiated after infection, the faster HIV DNA levels fell during the
first 8 months on treatment (�0.171, �0.131, and �0.0068 log10

copies/106 PBMC per month when cART was initiated 15 days, 1
month, and 3 months after infection, respectively; P � 0.0001)
(124). Ultimately, the earliness of cART initiation impacts HIV
DNA levels observed after 5 years of effective treatment (1.62 and

2.24 log10 copies/106 PBMC, respectively, when cART is initiated
15 days and 3 months after infection; P � 0.0006) (124).

Buzon et al. reported a statistical correlation between the time
from HIV infection to treatment initiation and the total HIV DNA
level after 10 years of continuous treatment in a cohort of adults
first treated early in the infection (57). The lowest HIV DNA levels
were observed in patients who had low baseline levels and who
received early treatment (107). In children, the HIV DNA level
was markedly lower when viral control was achieved before age 1
year than between the ages of 1 and 5 years or after age 5 years (73).
This difference is linked to the duration of uncontrolled viral rep-
lication between initial infection and effective treatment. The
lower level of HIV DNA in children treated early versus late cor-
relates with a lower level of replication-competent virus (75).

Because of its impact on the HIV DNA level, antiretroviral
treatment of newborns within the first hours after infection has
consequences for diagnosis during the first months of life, a period
when maternal antibodies interfere with serological tests. Antiret-
roviral prophylaxis of mother-to-child HIV transmission both
during pregnancy and in newborns can mask the primary infec-
tion in newborns. In the French perinatal cohort, HIV DNA levels,
like viremia, were lower at age 1 month among infected infants
receiving multidrug prophylaxis (levels were sometimes near the
limit of quantification), stressing the need for highly sensitive as-
says to diagnose neonates born to HIV-infected mothers (59,
125). Under these conditions, total HIV DNA can represent an
early diagnostic marker in infants (59, 126). HIV DNA can also be
quantified in dried blood spots by real-time PCR, which can be
helpful for this diagnosis in resource-limited countries (127).

Thus, the time from HIV-1 infection to treatment initiation
strongly impacts the initial rate of decay of total HIV DNA and the
level achieved after several years of cART.

Total HIV DNA levels show a broad range of values (Fig. 3)
during the natural course of infection, during antiretroviral ther-
apy (initiated during either PHI or CHI), and also during thera-
peutic failures or AIDS. Patients who control the infection natu-
rally or after treatment interruption have very low HIV DNA
levels (37, 61, 88, 89, 91, 92, 128).

TOTAL HIV DNA LEVELS IN TISSUES AND FLUIDS REFLECT
THE SPREAD OF INFECTION THROUGH THE BODY

Measurement of total HIV DNA in tissues and fluids provides
interesting information on the pathogenesis of HIV infection, as it
indicates the spread of the virus through the body (Fig. 4).

Lymph Nodes

The lymph nodes are a major reservoir site, with a large pool of
target cells, a high level of activation, and a high level of replica-
tion, inducing infection of new cells (Fig. 4). Lymph nodes thus
play an important role in the dynamics of HIV reservoirs, in an
intricate relation with CD4 T cell dynamics. Follicular helper CD4
T cells (TFH) play an important role in the lymph node HIV res-
ervoir and are infected during their differentiation (129). A recent
study compared viral DNA levels in different cell subsets from
lymph nodes of simian controllers and progressors. It was found
that TFH, one of the most numerous subsets of effector T cells,
harbored high levels of viral DNA, similar to those observed in
non-TFH from progressors but significantly higher than those ob-
served in non-TFH from controllers (130). This was linked to pref-
erential production of replication-competent virus in B cell folli-
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cles of lymph nodes and spleens from controllers, where TFH are
localized (130). These B cell follicles were anatomically protected
from specific CD8 T cell responses in controllers, explaining the
difference in viral DNA levels between TFH and non-TFH cells
(130). Moreover, in monkeys receiving cART, infected TFH were
more strongly involved in residual replication than other T cells:
more simian immunodeficiency virus (SIV) RNA was produced
by TFH for a given SIV DNA level (130). Lymph nodes thus con-
stitute an obstacle to HIV remission, as they are not readily acces-
sible by specific immune responses (130) or antiretrovirals (131).
Phylogenetic analyses have shown viral evolution in lymphoid
tissue during cART; this reflects ongoing replication that replen-
ishes the HIV reservoir (132). When cART is interrupted, many
cells expressing different viral RNA variants are found, contribut-
ing to viral rebound (133). These new data demonstrate that
lymph node cells harboring viral DNA permit productive infec-
tion even in the presence of suppressive cART. The very rare TFH

in blood also contribute to the HIV reservoir in patients receiving
cART (134).

Gut-Associated Lymphoid Tissue

Gut-associated lymphoid tissue (GALT), which harbors 60% of
the body’s lymphocytes, plays an essential role in the pathogenesis
of HIV infection, through Th17 cell depletion, bacterial translo-
cation, and local host cell activation (facilitating HIV replication);
this has been reported both in humans and in simian models
(135–157) (Fig. 4). Gastrointestinal CD4 T cells have been shown
to harbor, on average, 13 times more HIV DNA than blood CD4 T
cells during acute and early-stage HIV infection (151, 158–160).
Non-CD4 T cells harbored less HIV DNA than CD4 T cells in the
gut, but the infection level of non-T leukocytes was higher in
GALT than in blood (161). Myeloid cells also harbor HIV DNA in

GALT (162). A recent study of patients with acute infection
showed that HIV DNA in the gut was significantly lower at Fiebig
stage I than at Fiebig stages II to IV (79). The HIV DNA load in
GALT declines after cART initiation (78) but does not disappear
(150, 158, 163, 164), and HIV DNA levels vary at different gut sites
(151, 158–161). Memory effector cells harbored the most HIV
DNA in the ileum and rectum (161). HIV DNA in the rectum
remained higher in cART-treated patients than in HIV controllers
(165). Total HIV DNA in GALT correlates with total HIV DNA
load in blood at different stages of the infection, both without and
during treatment (139, 158). This finding could partly explain the
relevance of HIV DNA to HIV pathogenesis, even when measured
only in blood, like the CD4 T cell count and HIV RNA load, two
routine follow-up markers.

Other Tissues and Fluids

The central nervous system constitutes a viral reservoir, and cir-
culating monocytes play a particular role in transferring the infec-
tion to the brain (166). HIV DNA is also detected in astrocytes
(167). cART can often control local replication, but cells harbor-
ing viral DNA persist (168, 169).

HIV DNA is quantifiable in semen in nonsperm cells (170, 171).
It can persist in the genital tract of women on long-term effective
cART (HIV RNA, �50 copies/ml at �6 months) and has been
linked to current residual viremia (OR, 3.4; 95% CI, 1.1 to 10.9)
and to a history of AIDS-defining illness (OR, 11; 95% CI, 2 to 61)
(172). The presence of HIV in genital secretions should be taken
into account when estimating the residual risk of transmission.

HIV DNA is also useful for detecting infection of kidney grafts
in HIV-infected recipients who had undetectable plasma HIV
RNA at the time of transplantation (173). HIV was found to infect
the kidney allograft in 68% of cases and might influence graft
survival. Detection of HIV DNA and HIV RNA in a patient’s urine
is a noninvasive way of monitoring kidney graft infection (173,
174).

In the context of stem cell transplantation for AIDS-related
lymphoma, total HIV DNA load in the autograft predicts the post-
transplant HIV peripheral reservoir size in patients on continuous
highly active antiretroviral treatment (175).

Recently, adipose tissue, and particularly memory CD4 T cells
in this tissue, has been identified as a potentially important HIV
reservoir, with the detection of total viral DNA in untreated ma-
caques but also in patients on effective treatment (176, 177). This
reservoir is inducible by ex vivo activation.

In the future, measurement of total HIV DNA in different tis-
sues and fluids may help to evaluate therapeutic strategies de-
signed to eradicate viral reservoirs.

TOTAL HIV DNA: A CLINICALLY RELEVANT MARKER

Total HIV DNA Load Is Predictive of the Natural Disease
Course, Independently of HIV RNA Load and the CD4 T Cell
Count

Total HIV DNA load in PBMC varies widely among untreated
HIV-infected adults and children (82, 85, 102, 110, 178, 179), even
during PHI, with an interquartile range of 2.7 to 3.5 log10 copies/
106 PBMC (Fig. 3) (81). The range of HIV DNA levels was smaller
than the range of HIV RNA levels, but nonetheless identified sev-
eral patient subgroups in large cohorts; in particular, LTNPs and
elite controllers had significantly lower HIV DNA levels than pro-

FIG 4 Anatomical HIV reservoirs. Reservoir cells are highly disseminated.
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gressors (61, 88–90) (Fig. 3). Likewise, symptomatic patients had
significantly higher HIV DNA loads than asymptomatic patients
during CHI (179). This heterogeneity of HIV DNA loads has note-
worthy implications for the course of infection.

Total HIV DNA load in the first 6 months following serocon-
version is predictive of immunologic progression, independently
of HIV RNA load and the CD4 T cell count (81, 106, 180). In the
ANRS PRIMO cohort, patients who progressed rapidly had a me-
dian total HIV DNA load of 3.3 log, compared to 3.0 log in other
patients (81). Similar results were obtained in the first 19 or 24
months after seroconversion (83, 84), with higher HIV DNA levels
having major independent prognostic value for progression to
clinical AIDS, �200 CD4 cells/mm3, and death. Patients who had
not progressed more than 5 years after seroconversion had signif-
icantly lower HIV DNA load in the months following seroconver-
sion than patients who did not control the infection (2.02 log
versus 2.90 log) (181). LTNPs with HIV DNA loads of �1.85 log at
seroconversion and a large increase in HIV DNA over time had an
increased risk of losing their LTNP status (182). These data show
that even small differences in HIV DNA levels influence the course
of HIV infection.

The predictive value of HIV DNA load for progression to AIDS
and death was confirmed during CHI, independently of age at
seroconversion, the CD4 cell count, and HIV RNA load (85).

A meta-analysis of six studies with a total of 1,074 participants
indicated that total HIV DNA was a strong predictive marker of
AIDS (relative risk [RR], 3.01, 95% CI, 1.88 to 4.82) and of all-
cause mortality (RR, 3.49; 95% CI, 2.06 to 5.89) (183). It was a
significantly better predictor for progression to AIDS than was
HIV RNA (ratio of RRs, 1.47; 95% CI, 1.05 to 2.07) and for a
combined endpoint of AIDS and death (ratio of RRs, 1.51; 95%
CI, 1.11 to 2.05) (183).

In summary, HIV DNA levels vary among patients during the
course of the infection and have high predictive value for disease
progression (Fig. 3).

Pretherapeutic Total HIV DNA Levels in PBMC Are
Predictive of Virologic, Immunologic, and Clinical
Responses to Antiretroviral Therapy

HIV DNA load is predictive of the long-term success of cART.
Indeed, patients with lower blood HIV DNA loads at cART initi-
ation have better virologic and immunologic responses to treat-
ment and longer survival (179).

Lower baseline HIV DNA levels were predictive of achieving an
undetectable HIV RNA load on cART (103, 178, 184–186), while
high HIV DNA load was associated with persistent residual HIV
RNA below 50 copies/ml during cART, independent of baseline
HIV RNA load (185). This was confirmed by Parisi et al., who
showed that baseline HIV DNA load predicted the residual HIV
RNA plasma level during effective cART (107).

Pretherapeutic HIV DNA load has been linked to immune cell
activation status during cART, correlating positively with the
number of Ki-67� CD8 T cells after 6 months of treatment (187).

Baseline HIV DNA load was predictive of overall survival
among patients with relapsing or refractory HIV-related lym-
phoma treated with high-dose chemotherapy followed by autolo-
gous stem cell transplantation (188).

Total HIV DNA Load during cART Is Informative of Patient
Pretherapeutic and Therapeutic History

HIV DNA load during treatment correlated with blood HIV DNA
load at cART initiation in adults and children (82, 103, 110). In
adults, HIV DNA load at years 4, 7, and 10 of antiretroviral treat-
ment correlated positively with the pretherapeutic HIV DNA level
(108). Likewise, Ananworanich et al. showed that total blood HIV
DNA at cART initiation predicted the HIV reservoir size at week
24 of treatment that was started during PHI (P � 0.001) (78). The
plasma HIV RNA zenith and the CD4 cell nadir were predictive of
HIV DNA load during cART in patients whose plasma HIV RNA
remained below the detection limit for more than 3 years; HIV
DNA load during cART correlated positively with pretherapeutic
HIV RNA load and negatively with the CD4 cell nadir (189, 190,
191, 192). Total HIV DNA load, measured 6 weeks after cART
initiation, was the strongest independent predictor of the pre-
therapeutic HIV RNA level (193). Thus, total HIV DNA load dur-
ing cART reflects pretherapeutic characteristics of HIV infection,
including HIV DNA load, the plasma HIV RNA zenith, and the
CD4 cell nadir.

Multivariate analysis indicated that low HIV DNA load in pa-
tients with cART for a median of 25 months was significantly
associated with prolonged HIV RNA suppression on cART (194).
HIV DNA load during cART was independently associated with
cumulative HIV RNA viremia over the previous 5 years (93, 192).
HIV DNA load could therefore reflect therapeutic adherence over
time. Furthermore, in patients on effective cART, total HIV DNA
correlated with residual plasma viremia, measured with an ultra-
sensitive assay (115, 190, 191, 195). Total HIV DNA load, mea-
sured 6 weeks after cART initiation, was predictive of virologic
outcome in asymptomatic, chronically HIV-1-infected persons
(193). Median HIV DNA load was 2.20 log copies/106 cells (range,
0.70 to 2.80) in patients treated for at least 10 years without ART
interruptions or immunomodulatory therapy and selected on the
basis of undetectable HIV RNA throughout follow-up, with at
least one yearly HIV RNA measurement, and a total of more than
20 measurements (196). Conversely, in patients with advanced
therapeutic failure and AIDS, median HIV DNA load was 3.44 log
copies/106 PBMC (197) (Fig. 3). cART-treated patients with X4-
tropic viruses in HIV DNA, reflecting more advanced disease, had
higher levels of HIV DNA than patients with R5-tropic viruses
(198).

High HIV DNA load in PBMC is associated with intermittent
HIV shedding in the semen of men who have sex with men and
who have been on successful antiretroviral therapy for �6
months: after multivariable adjustments, total HIV DNA (OR of
2.6 and 95% confidence interval [CI] of 1.2 to 6.0 for �2.5 log10

copies/106 PBMC; P � 0.02) and cannabis use accompanying sex-
ual intercourse (OR of 2.8, CI of 1.2 to 6.7; P � 0.02) were the two
factors significantly associated with HIV RNA detection in semi-
nal plasma (199).

Moreover, multivariate analysis showed that low total HIV
DNA loads in patients on long-term suppressive antiretroviral
treatment were clearly associated with concomitant residual
plasma viremia of �1 copy/ml, a high CD4/CD8 cell ratio, and a
high CD4 T cell percentage (P � 0.0001) (191). Several studies
have shown that a lower HIV DNA load during cART is associated
with better immune recovery (194, 200, 201). Similarly, a low HIV
DNA load was found to be predictive of better immune restora-
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tion in children on cART (202) and was associated with CD4 cell
count dynamics during cART combined with interleukin-2 (203).
In patients with advanced therapeutic failure and AIDS, a larger
viral reservoir was associated with poorer CD4 cell recovery dur-
ing optimized background therapy (197). This was confirmed by
Hatano et al., who showed that high HIV DNA levels during cART
were associated with low CD4 cell counts (204).

Overall, total HIV DNA loads in blood, which are influenced by
the timing of cART initiation, have been linked to multiple out-
comes during cART: cumulative HIV RNA viremia, which reflects
therapeutic failure; residual viremia; immune recovery.

Although it is beyond the scope of this review, several studies
have investigated the value of analyzing genotypic resistance on
HIV DNA, which could detect archived resistant quasispecies
(205–207).

In conclusion, total HIV DNA in PBMC or blood can be used as
a virologic marker in patients on long-term effective cART. As
observed during the natural history of HIV infection, total HIV
DNA reflects the dynamics of HIV infection and the HIV reservoir
during cART. It is the most easily quantifiable virologic marker in
patients on cART, and several studies have shown that it is related
to the history of infection and to therapeutic efficacy.

Total HIV DNA in PBMC Is Predictive of the Presence and
Severity of Some HIV-Associated Disorders

HIV DNA has an important role in the pathogenesis of neurologic
disorders. Indeed, total HIV DNA load in PBMC is predictive of
HIV-associated dementia and correlates with the severity of HIV-
associated neurocognitive disorders (208, 209). Monocyte HIV
DNA load at treatment initiation can predict cognitive perfor-
mance at 48 weeks (210).

TOTAL HIV DNA CAN HELP GUIDE THERAPEUTIC
STRATEGIES

Biological markers are needed to evaluate strategies such as de-
escalation (to reduce drug exposure and toxicity) and structured
treatment interruption. Several studies have shown that HIV
DNA load can be useful in this setting.

De-escalation Therapy

Baseline HIV DNA was found to be predictive of the virologic
response to treatment induction with (211) or a treatment switch
to (212) ritonavir-boosted protease inhibitor monotherapy. The
MONARK study showed that nonresponders to first-line ritona-
vir-boosted lopinavir (LPV/r) monotherapy had significantly
higher baseline HIV DNA levels (3.16 log10 copies/106 PBMC)
than responders (2.86 log10 copies/106 PBMC) (211). Multivariate
analysis of the MONOI study data set reported that the HIV DNA
level at the time of a switch to ritonavir-boosted darunavir
(DRV/r) monotherapy predicted the risk of viral rebound at week
96 (odds ratio, 2.66; P � 0.04) in patients with plasma HIV RNA
levels of �400 copies/ml for the previous 18 months and �50
copies/ml at screening, with no history of virologic failure on a
protease inhibitor-containing regimen, a CD4 lymphocyte nadir
of �50 cells/mm3, no history of HIV-related neurological disease,
and no hepatitis B virus coinfection (212). This was confirmed in
the MONET randomized study of the switch to DRV/r mono-
therapy in patients on stable cART for at least 6 months with
plasma HIV RNA levels of �50 copies/ml and no history of viro-
logic failure (213). Geretti et al. showed that baseline HIV-1 DNA

levels were higher in patients who had at least one HIV RNA result
of �50 copies/ml during 144 weeks of follow-up (P � 0.05) (213).
With the risk of virologic failure being higher during DRV/r or
LPV/r monotherapy than during triple therapy (214), boosted PI
monotherapy should only be proposed to carefully selected pa-
tients, and baseline HIV DNA levels might prove helpful for
choosing the best candidates (213). Recent French HIV/AIDS
management guidelines state that HIV DNA levels of �2.3 log
copies/106 PBMC are associated with the success of such strategies
(215).

Trials of de-escalation strategies with protease inhibitor-spar-
ing regimens have led to similar results. Low baseline HIV DNA
levels (below 2.35 log copies/106 PBMC) were independently as-
sociated with a lower risk of virologic failure or viral blips when a
protease inhibitor was replaced by a nucleoside or nonnucleoside
reverse transcriptase inhibitor (216). Another study showed that
patients undergoing de-escalation with a nucleoside reverse trans-
criptase inhibitor dual combination had sustained an HIV RNA
load of �50 copies/ml if they had received early treatment (me-
dian CD4 nadir, 340/mm3), had a low HIV RNA zenith (median,
3.9 log/ml), and had a low HIV DNA level (median, 2.5 log copies/
106 PBMC) (217).

De-escalation strategies should be avoided in patients with high
HIV DNA levels, as mentioned in the recent French guidelines
(215). The HIV DNA level is being used for inclusion in an ongo-
ing randomized trial of a reductive antiretroviral strategy based on
nucleoside reverse transcriptase inhibitor dual combination after
triple therapy (TRULIGHT) (study NCT02302547 at Clinical-
Trials.gov) for instance. This study is enrolling patients with HIV
DNA levels below 2.7 log copies/106 PBMC. More work is needed
to identify clinically relevant total HIV DNA cutoffs for use in
de-escalation strategies.

Structured Treatment Interruption

The HIV DNA load in PBMC at structured treatment interruption
was the only biomarker predictive of the time to plasma HIV RNA
rebound after treatment interruption, notably in the SPARTAC
trial (106, 218), and also of the viral setpoint in patients first
treated during PHI (218) or during CHI in the SALTO and other
trials (219, 220, 221). HIV DNA load was lower after cART cessa-
tion if patients were treated within 60 days after infection, and the
viral setpoint was lower in patients who were treated early (222).
HIV DNA was recently reported to be the only predictor of pro-
gression following treatment interruption (106). A high HIV
DNA load in PBMC at cART interruption predicted a shorter time
to antiretroviral resumption, independently of the CD4 nadir
(220, 221).

The total HIV DNA level in blood at the time of structured
treatment interruption also predicted CD8 and CD4 T cell activa-
tion status after 12 months off treatment (187). HIV DNA levels
12 months after interruption correlated strongly with the propor-
tion of CD38-expressing CD8 and CD4 T cells (187).

Other Therapeutic Strategies

In a phase III trial of alpha interferon administration during struc-
tured cART interruption, the probability of resuming treatment
was higher among patients in the interferon arm who had a low
CD4 nadir and high baseline HIV-DNA load, suggesting that in-
terferon is less beneficial in patients with a large HIV reservoir or
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that the effect of treatment differs because the initial pool of HIV-
infected cells is larger (223).

The impacts of therapeutic vaccine strategies can be evaluated
by studying viral reservoirs in terms of total HIV DNA. In the
ACTG5197 trial, Li et al. reported that a therapeutic rAd5 HIV gag
vaccine had no impact on HIV DNA levels and that a higher HIV
DNA load was associated with viral rebound after treatment in-
terruption (224).

HIV DNA load could therefore be useful for evaluating thera-
peutic strategies.

TOTAL HIV DNA CAN BE USED TO EVALUATE TREATMENT
STRATEGIES, INCLUDING THOSE TARGETING HIV
RESERVOIRS

Total HIV DNA measurement could help to evaluate innovative
therapeutic strategies such as intensification, stem cell transplan-
tation, chemotherapy, immune modulation, and antilatency
agents.

Different strategies have been compared for their ability to
reduce total HIV DNA levels. The OPTIPRIM randomized trial, in
which total HIV DNA decay was the primary endpoint, recently
showed that standard triple-drug therapy reduced total HIV DNA
load in PBMC as effectively as a five-drug regimen when initiated
during PHI (109). No decrease in total HIV DNA levels has been
observed with intensification strategies using the integrase inhib-
itor raltegravir, for example, in patients treated during CHI with
controlled plasma viremia (42, 225). Similar declines in total HIV
DNA in blood were observed in patients for whom standard tri-
ple-drug therapy or LPV/r monotherapy were initiated in the
MONARK trial (211).

Stem cell transplantation for hematologic disorders can impact
HIV reservoirs. The “Berlin patient,” suffering from acute my-
eloid leukemia, received myeloablative conditioning, two sessions
of total body irradiation, and two allogeneic stem cell transplants
from a donor who was homozygous for the CCR5 Delta32 dele-
tion. His long-term control of HIV was evaluated more than 8
years after treatment interruption. HIV DNA and cell-associated
HIV RNA remained undetectable in PBMC, ileum, lymph nodes,
and spinal fluid, but HIV DNA was detected at low levels in the
rectum and low HIV RNA signals were detected in plasma (4,
226). These signals could correspond to false positives or to defec-
tive viruses; their functional significance is unclear, as the patient
had no viral rebound (226). Unfortunately, this result has not yet
been reproduced.

The impact of chemotherapy on HIV DNA load in lymphoma
patients receiving cART has been evaluated in a small study of 9
patients and showed no beneficial effect (227). Some types of an-
ticancer chemotherapy can have antilatency effects (228, 229).
Further studies are needed to evaluate the effects of chemotherapy
on HIV reservoirs.

The effects of immune modulators such as cytokines can also
be appreciated through their impact on total HIV DNA levels. The
effect of interleukin-7, which enhances T cell recovery in HIV-
infected patients, was evaluated for the HIV reservoir: there were
no changes in the frequency of infected cells among target cells
(when total HIV DNA levels were expressed as log copies per 106

PBMC or 106 CD4 T cells) at week 12. In contrast, when expressed
as the log10 copies per milliliter of blood, the HIV DNA load in-
creased significantly in individuals treated with 30 �g/kg of body
weight interleukin-7 (median change, �0.51 log10 copies/�l; P �

0.006, compared with day 0 level), reflecting the augmentation of
the absolute number of infected cells in the body (230, 231). In-
terleukin-7 induced proliferation of CD4 T cells, including la-
tently infected cells (232). These results indicate that interleukin-7
does not modify the proportion of infected cells but increases the
total number of infected cells.

Regarding antilatency agents, no decrease in total HIV DNA
was observed with valproic acid, a histone deacetylase inhibitor
that activates viral transcription, when added to a cART regimen
(233). Similar results were recently obtained with vorinostat, an-
other histone deacetylase inhibitor (234). Those authors con-
cluded that, even if vorinostat triggered a significant and sustained
increase in HIV transcription from latent cells in most patients,
additional interventions would be needed to obtain quantitative
virus production and eventually clear latently infected cells (234).

STUDIES OF HIV DNA HELP TO UNDERSTAND HIV
PATHOGENESIS AND PERSISTENCE

Total HIV DNA load correlates with immune responses. In
LTNPs, total HIV DNA load correlates negatively with p24-spe-
cific CD4 Th1 cell proliferation, gamma interferon (IFN-	) pro-
duction, and IFN-	-producing cell frequencies and positively
with Gag-specific IFN-	-producing CD8 T cell frequencies (88).
In untreated children, lower HIV DNA levels were associated with
higher HIV-specific CD8 T lymphocyte frequencies (235) and
with less abundant T cell receptor excision circles (TREC), which
reflect the circulating reserve of naive T lymphocytes (236). After
cART initiation, a more rapid HIV DNA decline was observed in
children with higher baseline TREC levels, indicating that the pool
of naive T lymphocytes influences changes in the reservoir size in
patients on cART (236).

HIV DNA load has also been linked to systemic immune acti-
vation. High HIV DNA levels in patients on cART were associated
with higher frequencies of CD4 T cells expressing CD38, HLA-
DR, CCR5, and/or PD-1, reflecting immune activation (204). This
correlation between HIV burden and cell activation was also
found in the sigmoid colon of patients on cART (237). The HIV
DNA level in the sigmoid colon was also positively associated with
bacterial translocation (quantified in a lipopolysaccharide assay)
and with poor Th17 reconstitution, reflecting mucosal barrier
damage (156), both of which are key elements in HIV pathogen-
esis (147, 154, 157). Cytomegalovirus replication in blood and
semen, participating in immune activation, was correlated with
higher levels of HIV DNA in PBMC of antiretroviral-naive pa-
tients (238). This was recently confirmed; in a multivariate anal-
ysis, shedding of cytomegalovirus DNA in semen, which is asso-
ciated with increased activation and proliferation of T cells in
blood, was predictive of higher blood HIV DNA load (239).

Quantification of total HIV DNA in blood CD4 T lymphocyte
subsets sorted by flow cytometry according to their differentiation
status provided information on the viral reservoir distribution.
Central memory and transitional memory CD4 T cells have been
identified as the main contributors to the HIV blood reservoir in
chronic patients first treated during CHI (104). These long-lived
memory cells with a high proliferative capacity contribute to the
stability of the HIV reservoir. On the contrary, in patients with
primary HIV infection, the contributions of T cell subsets to the
reservoir are different. In the context of high-level activation, ef-
fector memory T cells are the main contributors to the blood
reservoir, with central memory T cells being relatively protected
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(240, 241). Similarly, when treatment is started during PHI, long-
lived central memory cells contribute little to the HIV reservoir in
comparison to more highly differentiated and shorter-lived T cells
(242). cART initiated during PHI diminished the level of infection
of each CD4 T cell subset but did not affect the contribution of
each subset; the pattern observed at the time of PHI was similar to
that seen after 2 years of early cART (240, 242). It was also similar
to the pattern observed in LTNPs harboring the protective human
leukocyte antigen allele B27 or B57 (243) and in posttreatment
controllers (92).

The observation that the HIV reservoir resides mainly in short-
lived CD4 T cells when treatment is initiated during PHI could
explain the sharper reduction in total HIV DNA in patients
treated during primary infection than in patients treated during
CHI. Short-lived CD4 T cells have a low proliferative capacity but
are able to give rise to infected daughter cells or to produce repli-
cation-competent virus that infects new cells and contributes to
HIV persistence. Detection of viral clusters in effector memory
CD4 T cells in blood and lymph nodes suggests that the prolifer-
ation of these cells helps to maintain the viral reservoir (244). The
small fraction of central memory CD4 T cells participating in the
HIV reservoir during the primary infection, or after cART initi-
ated in PHI, have a long half-life and high proliferative capacity.
They also contribute to the stability of the small reservoir in pa-
tients treated during the acute phase of infection. Moreover, cen-
tral memory T cells play a major role in immune responses, and
their protection against HIV infection by very early cART initia-
tion could partly explain the clinical, immunologic, and virologic
benefits of early treatment.

To conclude, early cART reduces the contribution of long-
lived central memory CD4 T cells to the total HIV reservoir (240,
242), at similar levels to those observed in patients who naturally
control HIV without treatment (243). Early cART has a greater
impact on HIV reservoirs than later cART. However, a certain
amount of total HIV DNA persists despite cART (16), even if
treatment is initiated within the first 6 months after infection and
is continued for �10 years. Latently infected long-lived memory
CD4 T cells (central memory and T memory stem cells) persist in
most early-treated individuals (57). Additional interventions will
thus be required to eliminate all cells capable of producing repli-
cation-competent virus, but treatment initiation during primary
infection may be the critical first step to contain HIV reservoirs
(92, 245).

DISCUSSION AND CONCLUSIONS

Many studies have shown the clinical relevance of total HIV DNA
load. This marker has been used most extensively in studies of
HIV reservoir dynamics in both treated and untreated patients. It
provides complementary information to standard markers (CD4
T cell count and HIV RNA level) and has predictive value in many
settings and at different stages of HIV infection. When measured
during cART, it can provide information on the pretherapeutic
history (pretherapeutic HIV DNA load, plasma HIV RNA zenith,
CD4 T cell nadir) and can predict several treatment outcomes,
such as residual viremia, immune recovery, and cell activation
status. Finally, it can help to evaluate HIV infection in tissues and
body fluids and the impact of new antiretrovirals on tissue reser-
voirs.

Total HIV DNA load can also help with the choice of therapeu-

tic strategies such as de-escalation, as recently acknowledged in
the French guidelines (215).

Total HIV DNA levels, together with other markers, can help
to identify candidates for intervention studies aimed at inducing
drug-free remission (246). HIV DNA load will not be the only
marker used for this purpose, as some individuals with low HIV
DNA levels are unable to control the infection after treatment
interruption. As each marker of HIV reservoirs provides different
information, HIV DNA could be used in combination with other
markers. It would also be informative to study immunologic
markers of activation, inflammation, and/or T cell exhaustion.
Total HIV DNA load could thus be useful for identifying patients
who might respond to such cure strategies, among patients with a
relatively competent immune system. Changes in reservoir size
can be easily monitored by total HIV DNA assay, for example, in
large clinical trials of strategies designed to eradicate HIV or to
induce a functional cure. Other methods to measure changes in
HIV reservoirs during such trials should be included, such as the
Tat/Rev-induced limiting dilution assay (TILDA) and/or mea-
surement of cell-associated HIV RNA, in addition to HIV DNA
measurements, as some of the observed changes in HIV DNA
levels could be due partly to depletion of HIV DNA forms not
capable of reinitiating infection. The total HIV DNA level also
helps increase understanding the pathogenesis of HIV infection,
as shown by studies of CD4 T cell subsets.

One limitation of total HIV DNA as a reservoir marker is that it
includes defective and more labile, unintegrated forms. However,
unintegrated genomes or defective viruses might also contribute
to HIV pathogenesis, by increasing the antigenic load responsible
for T cell activation and exhaustion (247, 248). Several studies
have shown that unintegrated HIV DNA can participate in HIV
transcription and in the synthesis of viral proteins and infectious
virus (44-53, 249). A recent study pointed out the role of 1-LTR
forms among these unintegrated HIV DNA species (250). These
synthesis activities of viral RNA and proteins are at lower levels
than those produced by integrated HIV DNA forms, but they are
sufficient to induce T cell activation (46). Recently, Siliciano’s
group showed that defective HIV proviruses can be transcribed
during latency reversal (251). Replication can be blocked after this
transcription, without production of viral proteins, because of
insufficient transcription levels and/or mislocalization of viral
RNA (22). Blockade can also occur later. O’Doherty’s group re-
cently found that infected resting CD4 cells express low levels of
viral protein due to nascent LTR-driven transcription, without
releasing infectious viruses, raising the possibility that reservoirs,
including defective proviruses, may express HIV proteins and
thus be visible to the immune system (252, 253). In untreated
patients with abundant unintegrated HIV DNA, total HIV DNA
loads in blood cells correlate strongly with the level of CD8 and
CD4 T cell activation (187). In antiretroviral-treated adults, total
HIV DNA in resting CD4 T cells is strongly associated with CD4
and CD8 T cell activation, whereas there is no association between
cell activation and integrated DNA or IUPM coculture results
(254). Cell-associated HIV RNA load, which reflects the level of
viral transcription, including abortive transcription, also corre-
lates with immune activation in untreated patients, patients on
cART, and natural controllers (204, 255, 256, 257). In patients on
cART with undetectable viremia, HIV transcript loads correlate
negatively with the CD4 T cell count (257) and positively with
lymphoproliferative responses to HIV p24 antigen (258). Activa-
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tion stimulates transcription of persistent virus (257). These data
suggest that defective proviruses might also produce antigens even
if they do not produce replication-competent viruses. They could
thereby play a role in HIV pathogenesis. Overall, the activity of the
viral reservoir contributes to antigenic stimulation of the immune
system (22). Several studies have examined the mechanisms of
correlation between HIV DNA or cell-associated HIV RNA and
activation and HIV pathogenesis. These mechanisms involve pat-
tern recognition receptors: membrane-bound Toll-like receptor
(TLR), cytosolic sensors like DNA-dependent activators of IFN
regulatory factors, or triggered intrinsic cell defenses. HIV DNA
would be particularly more likely to contribute to immune acti-
vation if it was transcribed, and especially if it was translated into
viral proteins that could then be processed into peptides and pre-
sented. For example, cell-associated viral RNA interacts with
TLR-7 to stimulate plasmacytoid dendritic cells, leading to 
-IFN
production that enhances antigen presentation (259). More re-
cently, it was reported that incomplete HIV DNA accumulates in
the cytosol before integration and activates apoptotic and inflam-
matory mechanisms (260, 261). These mechanisms contribute to
HIV pathogenesis in infected cells unable to produce new virions
(260, 261). Interferon gamma-inducible protein 16 (IFI16) serves
as a link to unintegrated double-strand HIV DNA and acts as a
sensor, resulting in pyroptosis and CD4 T cell depletion (261,
262). IFI16 expression correlates with CD4 T cell activation (263).
HIV DNA can also interact with other sensors prior to integration
(264, 265). Links between HIV DNA and activation during effec-
tive cART are less clear, but the higher the HIV DNA load, the
more likely it is to partially reactivate and produce viral RNA that
could contribute to inflammation. It could also induce cell prolif-
eration by integration in specific genes (266), and these genes are
likely to produce cytokines and increase activation. Finally, HIV
proteins like the capsid can interact with sensors, inducing matu-
ration of dendritic cells and innate and T immune activation, for
example (267, 268). HIV DNA, HIV RNA, and proteins constitute
pathogen-associated molecular patterns (PAMP) recognized by
innate immune sensors and could impact activation, inflamma-
tion, and pathogenesis. This supports the utility of quantifying all
forms of HIV DNA, including defective and silent forms that can
be transcribed or translated without producing infectious virus.
This may explain the clinical relevance of total HIV DNA.

In conclusion, the results discussed in this review show that
total HIV DNA has clinical relevance as a marker of HIV reservoirs
and that its level influences the course of the infection, even if it
does not distinguish between replication-competent and -defec-
tive viral forms. Total HIV DNA measurement is the simplest and
most sensitive, reproducible, and standardized approach for HIV
reservoir measurement and can be performed routinely in clinical
practice. It can be useful, together with HIV RNA load and CD4 T
cell count, for adapting treatments to specific patient subgroups. It
is also a promising additional biomarker for monitoring the effi-
cacy of antiretroviral treatments and novel strategies aiming at
reducing or eliminating HIV reservoirs.
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