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Abstract Preimplantation genetic diagnosis/screening
(PGD/PGS) aims to help couples lower the risks of trans-
mitting genetic defects to their offspring, implantation
failure, and/or miscarriage during in vitro fertilization
(IVF) cycles. However, it is still being debated with re-
gard to the practicality and diagnostic accuracy of PGD/
PGS due to the concern of invasive biopsy and the po-
tential mosaicism of embryos. Recently, several non-
invasive and high-throughput assays have been devel-
oped to help overcome the challenges encountered in
the conventional invasive biopsy and low-throughput
analysis in PGD/PGS. In this mini-review, we will sum-
marize the recent progresses of these new methods for
PGD/PGS and discuss their potential applications in IVF
clinics.
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Introduction

Preimplantation genetic diagnosis (PGD) is a procedure in
infertility clinics whereby cells from oocytes or in vitro
fertilized (IVF) embryos are examined for molecular
anomalies such as chromosomal abnormalities, mutations
in the genomic DNAe, and human leucocyte antigen
(HLA) matching [1]. The first PGD/PGS detection of
X-chromosome linked diseases was by Handyside et al.
in 1990 [2, 3]. Preimplantation genetic screening (PGS)
utilizes the methods in PGD to screen IVF embryos for
their potential success in uterine implantation to achieve a
high pregnancy rate. PGD/PGS are particularly relevant in
cases of male infertility, advanced maternal age, and
recurrent miscarriage [4]. In addition, PGD/PGS reduces
the risk of conceiving a child with genetic disorders and
thus lowering the rates of elective pregnancy termination
[5, 6]. However, conventional PGD/PGS procedures
require the invasive removal of the cells from preimplantation
embryos, which may intervene with embryonic development.
In this review, we summarize recent technologies in
PGD/PGS and highlight the new non-invasive biopsy
technologies including time-lapse technology, blastocoele
fluid (BF) sampling, and cell-free nucleic-acid collection, as
well as new breakthroughs in diagnosis methods. We also
discuss the recent and potential clinical application of these
new technologies in IVF clinic.

Capsule PGD/PGS has become a routine clinical procedure in many IVF
clinics worldwide. New techniques have been quickly adopted as embryo
selection strategies in hopes of improving live birth outcomes in human
ARTs.
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Recent perspectives on sampling approaches

In PGD/PGS, there are threemajor biopsymethods: blastocyst
biopsy, blastomere biopsy, and polar body (PB) biopsy.
Blastocyst biopsy has been more widely used than PB biopsy
and blastomere biopsy, especially in the past 5 years, due to its
low misdiagnosis rate [7, 8] and cost-effectiveness [9, 10].
Compared to the conventional biopsy methods, the newly
developed non-invasive sampling mehtods have many advan-
tages with regard to the ethical, legal, and economic issues.

BF sampling

BF is the liquid substance within the blastocyst cavity sealed
in by the TE epithelium. Palini et al. showed, for the first time,
the presence of genomic DNA in the BF by whole-genome
amplification (WGA), quantitative PCR (qPCR), and ana-
lyzed multicopy genes such as TSPY1 and TBC1D3. This
implies the possibility of using this method in sex-linked dis-
orders screening. [11, 12]. Gianaroli et al. used aCGH to eval-
uate BF biopsies for ploidy prediction in comparison with the
conventional biopsy methods, i.e., blastocyst, blastomere, and
PB biopsy, and concluded that BF biopsy was comparable to
conventional biopsy materials for chromosomal analysis [13].
Nevertheless, discordance of ploidy prediction was observed
between BF and blastocyst biopsy possibly due to the embryo
quality [14], suggesting that more experiments and clinical
trials should be performed before BF sampling is ready for
PGD/PGS.

Non-invasive technology—cell-free nucleic-acid collection
in culture medium and time-lapse technology

Inspired byBF sampling,Assou et al. collected cell-free nucleic
acids released fromembryos in the culturemediumand success-
fully determined the embryo sex by PCR [15]. Similarly, DNA
isolated from media culturing α-thalassemias–SEA carrier
embryoshadsignificantlyhigherdiagnosisefficiencycompared
toblastomerebiopsy[16].However, thismethodstill needs tobe
further validated by eliminating potential contamination and
providing more robust evidences in PGD/PGS.

Another non-invasive technology, time-lapse imaging, was
developed to select the best embryos for single-embryo trans-
fer (SET) by correlating cellular morphology and
morphokinetic parameters [17, 18]. Combining time-lapse im-
aging with comparative genomic hybridization (CGH),
Chawla et al. found that some significant morphokinetic pa-
rameters can be used as markers to predict aneuploidies [19].
Meanwhile, different assessment assays and statistical models
were applied to refine the morphokinetic variables and in-
crease the chance of predicting a top-quality blastocyst [20].
However, considering the potential technical and statistical

error in time-lapse imaging, one should be cautious in over-
interpreting the results [21–24].

Advanced techniques of genetic analysis
in PGD/PGS

After biopsy, PGD/PGS can be performed at either DNA or
chromosome level. Polymerase chain reaction (PCR) is the first
technique in PGD and had been developed to detect many ge-
netic abnormalities such as single-gene mutations [3, 25–27],
chromosomal imbalances [28], and mitochondrial mutations
[29]. Likewise, fluorescence in-situ hybridization (FISH) had
been performed to screen aneuploidy and chromosomal trans-
location for many years [30–36]. However, these twomethods
become obsolete due to their limitations, e.g., incapability of
detecting de-novo genetic mutations, contamination, and sensi-
tivity issues that lead to the false positive or negative. New
diagnosis methods, such as array-comparative genomic hybrid-
ization (aCGH), single-nucleotide polymorphism (SNP) micro-
array, multiplex quantitative PCR (qPCR), karyomapping, and
next generation screening (NGS) are developed to improve
clinical efficiency and outcomes [37–39]. We will elaborate
these new methods in detail below.

Multiplex qPCR

Recently, PCR has been adapted for chromosome copy number
analysis [40]. This technique requires a high-order multiplex
reaction after pre-amplification is conducted to amplify at least
two sequences on each arm of each chromosome for rapid
quantification and comparison of each product across the
genome within 4–6 h [41, 42]. This qPCR technology has been
investigated in PGS and shown improvement in implantation
and live birth rates in IVF cycles [41]. It is reliable in determin-
ing aneuploidy, but not ideal for detecting structural chromo-
somal aberrations or uniparental disomy [43].

Microarray-based methods

Microarray-based CGH has higher resolution, throughput,
and speed than conventional CGH [44, 45] and has been
successfully adopted in the field of PGD/PGS [46]. With the
differential labelled DNA hybridized onto the microarray
which contains BAC DNA probes or long oligonucleotides
[47], aCGH can assess chromosomal abnormalities such as
copy number and unbalanced translocations [48]. It is com-
patible with sampling methods, i.e., blastocyst biopsy
[49–53], blastomere biopsy [37, 46, 48, 52–54], and PB biop-
sy [54, 55], as well as BF sampling [56]. Most importantly,
two independent clinical studies were conducted almost at the
same time and both achieved healthy offsprings after PGD by
aCGH [48, 57].
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SNP array was initially designed for genome-wide associa-
tion studies (GWAS) before its first application in PGD/PGS in
2011 [58].Withmillions of probes covering thewhole genome,
the SNP array has relatively high resolution in detecting single-
gene disorders, balanced or imbalanced translocation [59–61],
aswellasaneuploidyincludingtriploidyanduniparentaldisomy
[61]. Li et al. utilized a dense SNP microarray that detected
approximately 300,000 genetic markers which made them ca-
pable of identifying all parental translocation imbalances in em-
bryos [61]. These two array platform-based methods could
strongly increase the reliability and stability in PGS, but they
still need to be optimized for their future applications.

To expand and improve the diagnosis spectrum of the well-
establishedaCGHandSNParraymethods,Handyside et al. first
proposed the term Bkaryomap,^ which, in contrast to
Bkaryotype,^ identifies theoffspring’sSNPgenotypesfromfour
possible inherited haplotypes in all the chromosomes and thus
reveals potential chromosomal abnormalities, CNVs, and
single-genemutations [62]. In the studyof two families carrying
cystic fibrosis transmembrane receptor (CFTR) mutations,
Handyside et al. reported that karyomapping has the power to
determineCFTRmutationandevendistinguishmonosomyand
uniparental disomy [62]. Karyomapping is compatible with
many different biopsy methods such as blastocyst biopsy [62,
63] and blastomere biopsy [62, 64, 65]. It was successfully
adapted to a 24-h clinical timeframe in PGD of Marfan syn-
drome [64] and was performed to screen embryos of the parent
with a de-novo mutation related to tuberous sclerosis [66]. The
technical improvement resulted in the success of live births in
several reports via aCGH, SNP array, and DNA fingerprinting
[63–66].

Next generation sequencing (NGS)

NGS is based on ultra-high throughput parallel DNA sequenc-
ing that achieves genome-scale sequencing within days, or
even within 24 h. It can detect genetic mutations at single-
nucleotide level, with the capacity of detecting aneuploidy
such as triploidy and uniparental disomy. Many studies also
showed that NGS has become an efficient and robust technol-
ogy for PGD/PGS [67–69]. For example, one study reported
24 healthy births after NGS testing [70] and another one
resulting in a healthy birth to the parents carrying
Robertsonian translocation after NGS-based PGD [71]. It
has been tested following different biopsy methods in PGD/
PGS, e.g., blastocyst biopsy [70, 72], blastomere biopsy [55,
69, 73], and PB biopsy [74]. We expect that it will soon be
combined with the new non-invasive sampling methods in the
near future. With advent of the third generation sequencing
that generates longer, and more accurate single reads in even
faster mode, NGS will bring new excitement and revolution-
ize the clinical application of PGD/PGS.

The application of single-cell genomics in PGD/PGS

Recently, we have witnessed fast development of single-cell
genomics which offers higher resolution for PGD/PGS with
limited sample size. Single-cell genomics consists of two ma-
jor steps: whole-genome amplification (WGA) and high-
throughput analysis. WGA aims to amplify DNA from a sin-
gle cell and generate sufficient template for either microarray
or NGS assays. Many WGA methods were developed based
on the principles of PCR, including primer extension PCR
(PEP) [75], degenerate oligonucleotide primed PCR (DOP-
PCR) [76] and multiple displacement amplification (MDA)
which employs ϕ29 DNA polymerase instead of Taq DNA
polymerase to increase enrichment of genes and reduce PCR
bias [77]. However, these WGA methods were limited by the
technical obstacle of non-linear amplification. To solve this
issue, a new approach called multiple annealing and
looping-based amplification cycles (MALBAC) was recently
introduced. This approach achieves quasi-linear amplification
by initiating the reaction with random primers evenly binding
to the template [78]. Thus, MALBAC showed a significant
higher coverage of genome than that of the prevailing MDA
[78]. Furthermore, the same group successfully examined the
crossovers and aneuploidy in single sperm cells byMALBAC
[79]. Similarly, Hou et al. also reported MALBAC-based se-
quencing could simultaneously detect maternal aneuploidy
and monogenic disorders of oocytes and polar bodies with
higher consistency and resolution than MDA-based aCGH
[77]. Though it is not totally free of amplification bias [80],
MALBAC-based sequencing is widely used in single-cell ge-
nomics tailored for PGD/PGS [81, 82] and shown to be highly
sensitive, specific, and reproducible [77–79, 83].

Single-cell genomics has been applied to comprehensively
study the genome and transcriptome of individual cells to
select an optimal embryo in IVF. Since Tang et al.’s seminal
work [84], single-cell RNA sequencing (RNA-seq) has been
developed, by many groups including our labs [82, 84–87], to
study the transcriptional regulation of IVF embryos at the
single-cell level. Combined with exome sequencing of paren-
tal genotype, we showed that single-cell RNA-seq was capa-
ble of uncovering monoallelic expression patterns and screen-
ing for single-nucleotide variants (SNVs), which would be
useful for future PGS/PGD [87]. More recently, Dey et al.
reported the method of conducting genome DNA and
mRNA sequencing simultaneously in single cells and discov-
ered the transcriptional variation related to copy number var-
iations (CNVs) [88]. The so-called gDNA-mRNA sequencing
(DR-seq) showed consistent results with genomic DNA se-
quencing by MALBAC-seq and RNA-seq via Cell
Expression by Linear amplification and sequencing (CEL-
seq). Meanwhile, Macaulay et al. developed another new ap-
proach called genome and transcriptome sequencing (G&T-
seq) which can detect both genetic alteration and subsequent
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perturbation in transcriptional regulation [89]. Together, these
new techniques offer promising tools for detecting the genetic
variants and elucidating the regulatory mechanisms in preim-
plantation embryos, therefore, improving the quality of PGD/
PGS. The successful use of NGS-based PGD/PGS in IVF
clinic is reported in 2014 in China after MALBAC-based
NGS PGD/PGS [90]. Yan et al. reported that an NGS-based
PGD/PGS procedure simultaneously detected a single-gene
disorder and aneuploidy by low coverage whole-genome se-
quencing for euploidy validation and targeted single allele
deep-sequencing of amplicons [91].

Summary

Over the years, PGD/PGS has been increasingly performed in
IVF clinic, which helps thousands of patients give healthy
births. With the fast development in biotechnologies, new
methods will reduce adverse impact on embryo development
and increase the accuracy and efficiency of PGD/PGS. As
discussed, blastocyst biopsy method is significantly improved
and considered as the best choice among the three conventional
biopsy methods, i.e., blastocyst, blastomere, and PB biopsy.
Meanwhile, several new non-invasive samplingmethods were
introduced into the field, including time-lapse imaging technol-
ogy, BF sampling, and cell-free nucleic-acid collection.
However, these methods inevitably have limitations despite
their advantages and would require further examination and
validation for their clinical use. On the other hand, state-of-
the-art technologies including aCGH, SNP array, and NGS an-
alyzing genetic materials have revolutionized PGS/PGD in the
post-genomicera.Becauseof thequickemergenceofnew tech-
nologies, therearestill very limited randomizedcontrolledtrials
(RCTs)toevaluate theclinicalefficacysuchas implantationand
pregnancy rates [4]. So the level of evidence should be further
thoroughly assessed before the application of these new tech-
nologies. Nevertheless, we anticipate that the combination of
non-invasive sampling and powerful genomic analysis will
bring PGD/PGS to higher levels in the near future.
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