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Abstract

Fetal exposure to essential and toxic metals can influence life-long health trajectories. The 

placenta regulates chemical transmission from maternal circulation to the fetus and itself exhibits a 

complex response to environmental stressors. The placenta can thus be a useful matrix to monitor 

metal exposures and stress responses in utero, but strategies to explore the biologic effects of metal 

mixtures in this organ are not well-developed. In this proof-of-concept study, we used laser 

ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to measure the distributions 

of multiple metals in placental tissue from a low-birth-weight pregnancy, and we developed an 

approach to identify the components of metal mixtures that colocalized with biological response 

markers. Our novel workflow, which includes custom-developed software tools and algorithms for 

spatial outlier identification and background subtraction in multidimensional elemental image 

stacks, enables rapid image processing and seamless integration of data from elemental imaging 

and immunohistochemistry. Using quantitative spatial statistics, we identified distinct patterns of 
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metal accumulation at sites of inflammation. Broadly, our multiplexed approach can be used to 

explore the mechanisms mediating complex metal exposures and biologic responses within 

placentae and other tissue types. Our LA-ICP-MS image processing workflow can be accessed 

through our interactive R Shiny application ‘shinyImaging’, which is available at https://

mniedz.shinyapps.io/shinyImaging/.

Graphical abstract

Keywords

laser ablation-inductively coupled plasma-mass spectrometry; mass spectrometry imaging; image 
processing; colocalization; prenatal exposures; metallomics; metal mixtures; biological response; 
placenta; humans; exposome

Introduction

The adverse health effects of metal exposures—including toxic metal exposures and 

micronutrient deficiencies and excesses—may be exacerbated or ameliorated when exposure 

occurs in the context of a mixture.1 This is of particular importance in utero, when critical 

windows of susceptibility exist for fetal programming events that may trigger negative health 

outcomes later in life.2 In exposure biology, an emerging paradigm is the concept of the 

pregnancy exposome, which seeks to understand the interactions among all environmental 

exposures that pass through or are stopped at the placenta,3 as well as simultaneously 

evaluate the physiological responses to these exposures.4,5 An ‘exposomic’ approach has the 

potential to enable new discoveries about the role of mixed-metal exposures in the fetal 

origins of disease; however, the successful application of this paradigm is predicated upon 

the development of novel biomarkers and analytic approaches for assessing multiple 

exposures simultaneously.

The exposome is a complex concept that involves not only how exposures change over time, 

but also how a given chemical distributes in the body or even within a tissue. In theory, two 

people with an identical level of exposure (i.e. dose) may have different biological 

responses. Inherent in this concept are genetic and epigenetic susceptibility; while genetics 

and epigenetics no doubt play a role in chemical distribution, many other factors, some of 

which may be stochastic, also play a role. Thus, how a chemical distributes in a tissue, 

which is a reflection of where it is binding, may be more informative than only measuring 

epigenetic or genetic factors that partially drive that distribution difference. Measuring all 

these factors together is one of the long-term goals of the exposome.
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Mass spectrometry imaging (MSI) is a powerful tool for the direct quantitative visualization 

of the distributions of multiple analytes in tissues.6 One common MSI technique, laser 

ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), allows the sensitive, 

high-resolution spatial mapping of element concentrations.7,8 MSI holds great promise for 

advancing the study of the human exposome, and we propose that multidimensional 

elemental imaging of placental tissues is a powerful approach to uncover the biologic effects 

of metal mixtures during pregnancy.9 We recognized that the widespread integration of 

elemental imaging in exposomic research, particularly in large-scale human studies, 

necessitates a workflow involving the (i) rapid and objective pre-processing of elemental 

imaging datasets, (ii) integration of data from elemental imaging with other imaging 

approaches, and (iii) rigorous statistical analysis to quantify the relationships among 

analytes measured across different imaging modalities.

With the goal to create a workflow enabling a more nuanced assessment of the biologic 

impacts of metal mixture exposures in the human placenta, we combined LA-ICP-MS 

elemental imaging10 with multiplexed immunohistochemistry (IHC) as a novel approach to 

measure element and protein distributions within tissues. Here, we present a proof-of-

principle example showing how our workflow can be used to assess the spatial associations 

between metals and markers of inflammation in the placenta.

Results

Overview of elemental imaging workflow

The sample collection, preparation and imaging protocol is summarized in Figure 1; a video 

displaying the implementation of our workflow using our interactive software tool 

shinyImaging (https://mniedz.shinyapps.io/shinyImaging/) can be found in Supplementary 

Movie 1 and https://vimeo.com/156307893. Briefly, tissue was collected from the fetal side 

of the placenta, fixed in formalin, and embedded in paraffin. Tissue sections (5-μm thick) 

were affixed to glass microscope slides and imaged using a LA-ICP-MS system, and signals 

for the major (or sole) isotopes for elements of interest were collected and assembled into 

multidimensional grid stacks using our R script, which was written to accompany the R 

package ‘raster’.11 Our data reduction approach combines all individual .csv data files (or 

ablation lines) into a single file structured as a stack of matrices, with one element per 

matrix (Fig. 1). Following pre-processing (see Materials and Methods), the matrix stack is 

converted to the RasterStack file format, in which matrices are RasterLayers with identical 

grid structures (spatial extent and resolution). The element RasterStack can be further 

analyzed in R or written to a file in numerous single and multiband formats, including but 

not limited to ascii (.asc), ENVI (.envi), and GeoTiff (.tif).

In quantitative image analysis, the presence of background pixels can lead to biased results 

and should be removed prior to statistical analyses.12 Here, we devised a global thresholding 

algorithm to classify tissue and background pixels uniformly across all layers of a 

multidimensional element image stack (see Materials and Methods for an in-depth 

description of the algorithm). Briefly, our algorithm calculates the variance in element 

intensities in the overall image and within the gas-blank region to assess the ability of each 

element to differentiate between tissue and background pixels, and a composite ‘mask’ layer 
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is created by calculating the mean intensity for each pixel across all elements in the stack, 

with each element weighted on its pixel differentiation ability. Next, kernel density 

estimation, a non-parametric smoothing technique, is used to estimate the probability density 

function for the mask layer. Since the distribution is bimodal (a mixture of two component 

distributions, target and background), the algorithm determines the threshold value by 

finding the value at the first-occurring local minimum in this distribution. Then, the 

algorithm sets all pixels in the mask layer with values below the threshold to null (NA). (If 

necessary, remaining background pixels can be removed using a clump identification 

algorithm that assigns null values to small ‘clumps’ [i.e., patches of connected pixels] and/or 

manually removed using a region-of-interest selection tool.) Finally, an edge detection 

algorithm delineates tissue boundaries to create a final mask layer with edge, non-edge, and 

background pixels assigned values of 1, 0, and NA respectively (Fig. 1b). Masked element 

stacks are generated by assigning null values to all corresponding pixels classified as “NA” 

in the mask layer, consistently across each layer in the stack.

Grids then undergo a robust cleaning and smoothing procedure (Fig. 1c). We designed an 

approach for the spatial assessment of local extreme outliers that are likely to result from 

shot noise or other instrumentation-related issues, since clusters of high values identified as 

potential outliers by a global assessment may instead represent biologically-relevant areas of 

metal accumulation. As such, a moving window MAD assessment identifies pixels in 

masked grids with values that exceed the local median by a specific magnitude (here, 5 

times MAD), while ignoring outliers that are located in clusters that are likely to be 

biologically relevant (see Materials and Methods). Outliers are replaced using a focal filter 

that replaces values for outliers only. To further reduce noise and remove imaging artefact, 

grids are smoothed with a Gaussian filter, which is performed after outlier removal to 

prevent inadvertent integration of extreme outliers into the final images.

To examine the performance and speed of our workflow, we analyzed randomly-selected 

regions from the fetal and maternal sides from 5 placental samples (10 sections in total; 90 

ablation lines each). Our masking algorithm was successful for all 10 sections and 

performed excellently despite the presence of shot noise and complex tissue architectures 

(Supplementary Figures 1–10). Using our shinyImaging application, we were able to process 

all 10 samples (raw ablation file upload, background correction, masking, outlier removal, 

smoothing, and ‘cleaned’ file download) in approximately 30 minutes.

Proof-of-concept: metals, inflammation and low birth weight

Low birth weight (LBW; birth weight < 2500 g, regardless of gestational age) is a significant 

predictor of infant morbidity and mortality.13,14 Inflammation in the placenta is believed to 

be a major pathway of LBW in preterm pregnancies,15 but the source of this inflammation is 

not always known. As a proof-of-concept to demonstrate how our workflow could be used to 

explore the relationships between trace metals and placental inflammation in LBW—and to 

demonstrate how elemental imaging can be integrated with other imaging techniques—we 

stained for CD3, CD8, CD68, and CD66b using 3-amino-9-ethylcarbazole (AEC)-based 

multiplexed immunohistochemistry in a single tissue section sampled from the fetal side of 

the placenta from a LBW birth (2,185 g; born at 35 weeks gestation) and normal weight 
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birth (2,828 g; born at 34 weeks gestation); both infants were male and delivered via 
Cesarean section (Figure 2). Expression of inflammatory markers CD68 (marker of 

macrophages) and CD66b (marker of neutrophils) was markedly increased in the chorionic 

villi of the LBW placenta (Fig. 2a).

Visual inspection of the low-resolution stains for the LBW section identified one site of 

CD66b accumulation (Site 1) and another site of CD68 accumulation (Site 2; Fig. 2a). In an 

adjacent section in the LBW placenta, we performed LA-ICP-MS imaging (40-μm spot size; 

pixel area = 1600 μm2) for Fe, Zn, Mn, Pb, and Cd (Fig. 2b). Although Cd was below 

detection limits, we found unique distributions for the other elements that appeared to 

coincide with these inflammation sites: e.g., Mn and CD66b seemed to be found together at 

Site 1, and Zn and CD68 appeared to coincide at Site 2 (Fig. 2b).

To explore the relationships between the inflammatory markers and metals in a more 

quantitative manner, we constructed a multilayered map in which the AEC stain images and 

elemental maps were registered to the same spatial coordinate system (Fig. 2c). We aligned 

the AEC stain images using automated 2D rigid body image registration, then registered the 

element maps to the histologically stained images by manually selecting tie points 

(corresponding features) between the stains and the tissue mask layer using QGIS 2.10.1,16 

an open-source geographic information systems (GIS) program. We classified the AEC 

stains by separating the hematoxylin and AEC stains using color deconvolution and applying 

an intensity threshold algorithm to identify positive and negative pixels. Our final GIS map 

structure consisted of the AEC base images with spatially-registered elemental maps and 

AEC-positive areas for each cell surface marker that could be easily overlaid (Fig. 2c).

Based on the image overlays at Site 2, CD68-positive areas appeared to coincide with Zn 

hotspots (Fig. 2d). We identified element hotspots at Site 1 and Site 2 using site-specific 

Getis-Ord Gi* analyses, which objectively identifies areas of high and low element 

accumulation (details in Materials and Methods). We quantified the overlap between the 

CD68-positive regions and element hotspots (Getis Ord Gi* z-scores > 1.96) using the ‘cell 

surface marker fractional’ (fCDx: fraction of cell surface marker-positive pixels that were 

also classified as element hotspots) and confirmed that all CD68-positive pixels were also 

Zn hotspots (fCD68 = 1.00) at Site 2. While the CD66b-positive regions at Site 1 appeared to 

possibly colocalize with hotspots for both Mn and Zn, the fCD66b scores for the Mn and Zn 

hotspots showed less evidence of strong colocalization (Mn, fCD66b = 0.33; Zn, fCD66b = 

0.39).

Discussion

The placenta is critical in maintaining the health of the fetus, and biomarkers of placenta-

mediated changes to the intrauterine environment may serve as predictors of future health 

disorders.17,18 Recognizing the central role of the placenta in fetal development, major 

initiatives, including the Human Placenta Project of the US National Institutes of Health, 

have been instigated to develop novel methods for better understanding of how placental 

function is affected by a variety of external stressors.19,20 To uncover the role of 

environmental chemical exposures in fetal programming, it is important to characterize the 
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pathways connecting environmental exposures, often occurring as complex mixtures of 

chemicals, with the biologic responses elicited within the placenta and to the effects on the 

developing fetal systems.18 Traditional approaches to analyzing placentae have not 

considered its complex architecture but have instead analyzed bulk chemical concentrations 

in tissue segments,21 which does not uncover regional variations in placental chemical 

processing that is likely cell-specific.

To overcome this barrier—and as a step toward the integration of MSI in human exposomic 

research—we developed a rapid and automated elemental image processing workflow for 

the quantitative assessment of the biologic impacts of complex metal mixtures. Our 

overarching goal was to develop an approach to consider the spatial distributions of metal 

exposures with cellular response proteins in human placental tissues. By doing so, we 

believe additional information on chemical effects can be deciphered when compared to 

standard methods that use whole tissues to measure chemical exposures or protein 

expression.

To demonstrate the potential of our method in health outcome research, we investigated the 

associations between metals and inflammatory markers in placental sections from a LBW 

case and a typical birth weight control. We also display the versatility of our workflow, 

which readily integrates multielemental MSI imaging with data generated from other 

modalities (chromogen-based stains in this case). Using quantitative spatial statistics, we 

observed that sites of inflammation coincided with variations in Fe, Mn and Zn. While we 

intended for this sample to serve as a proof-of-concept of our workflow and thus do not 

draw any biological conclusions from the metal/protein associations, we note that previous 

reports have observed complex relationships of Zn and Mn with neutrophil and macrophage 

activities.22,23 Although no inferences can be drawn from the current study, we propose that 

the integration of elemental imaging with immune marker detection has the potential to 

provide insight into the roles of these metals in the immune response in future studies. We 

used formalin-fixed, paraffin-embedded tissues to test the applicability of this method for 

banked human samples. However, our workflow can be readily applied to tissues prepared 

with other methods, such as frozen sections, when there are concerns that fixation may 

perturb elemental signatures.24–26

Conclusions

Broadly, the workflow we present here can be used to quantitatively explore the 

relationships between metal mixture exposures and biologic response mediators in placenta 

and other tissues. The multiplexed nature of these assays make them amenable to data-driven 

computational approaches to identify disease-relevant interactions between metals and 

physiologic pathways, and are a crucial step towards the application of MSI in uncovering 

the role of the placental exposome in fetal programming of life-long health trajectories.
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Materials and Methods

Sample collection and processing

Samples were collected from mother-child dyads enrolled from hospitals in Mexico City, 

Mexico. All subjects provided informed consent, and study protocols were approved by the 

Institutional Review Boards of all participating institutions. Placental tissues were sampled 

immediately after birth and placed in 4% neutral formaldehyde for transport. After arrival at 

the laboratory, the maternal, maternal decidua, and fetal zones were identified, and a small 

fragment from each zone was collected and fixed in 4% neutral formaldehyde overnight. The 

fragments were embedded in paraffin, cut to 5-um sections, and affixed to glass microscope 

slides, which were preserved at 4°C until use.

Cell surface marker immunohistochemistry

Placental sections were dewaxed in xylene and rehydrated in decreased concentrations of 

ethanol (EtOH) to pure water. Sections were incubated in Target Retrieval Solution pH 9.0 

(Dako, S2367) for antigen retrieval (95°C, 30 minutes). Sections were incubated with 3% 

hydrogen peroxide and protein block serum-free (Dako, X0909) before adding primary 

antibody (CD3, clone 2GV6) followed by secondary antibody coupled with biotin. The 

binding of biotinylated antibodies was revealed by streptavidin-horseradish peroxidase, and 

peroxidase activity was revealed using 3-amino-9-ethylcarbazole (AEC, Vector, SK-4200). 

Tissue sections were then counterstained with hematoxylin Harris modified (Sigma, HHS16) 

and the slides mounted with aqueous mounting medium. Images were acquired using an 

Olympus whole-slide scanner operated with Olyvia software. After scanning, the CD3 

staining was bleached and the slides subjected to another cycle of tagging (MICSSS method, 

Remark et al., submitted). Thus, the same slides were stained for CD8 (clone C8/144b) 

using Target Retrieval Solution pH 9, for antigen retrieval, scanned and de-stained. By 

following the same workflow, the same slides were then sequentially stained for CD68 

(clone KP1) and CD66b (clone G10F5) using 10 mM citrate buffer pH 6 and Target 

Retrieval Solution pH 9 for antigen retrieval, respectively.

LA-ICP-MS analysis

A New Wave Research NWR-193 laser ablation system was connected to an Agilent 

Technologies 8800 ICP-MS by Tygon® tubing. A flow of 0.8 L min−1 He gas carried 

ablated material from the ablation chamber and was mixed with 0.65 L min−1 Ar via a y-

piece prior to the ICP-MS. A 40 μm diameter laser beam was rastered at a speed of 100 μm 

s−1. ICP-MS isotope dwell times for manganese (55Mn), iron (56Fe), zinc (66Zn), cadmium 

(111Cd) and lead (208Pb) were adjusted to maintain sample dimensions27 (data points that 

correspond to a pixel size of approximately 40 × 40 μm). Laser fluence and repetition rate 

was optimized for ablation of the tissue whilst preventing ablation of the underlying glass 

slide (0.5 J cm−2, 40 Hz). A 3.0 mL min−1 flow of H2 in the ICP-MS octopole reaction 

system (ORS®) was used to minimize interferences and improve signal stability.28 In the 

absence of suitable tissue standards, the certified reference material NIST612 glass was used 

to correct signal variation between analyses and provide indicative concentration values. 

LA-ICP-MS quantification is dependent on sample matrix;29 therefore, the concentration 

values provided in this study are considered semi-quantitative.
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LA-ICP-MS data processing

Following LA-ICP-MS imaging, ablation line-specific .csv files generated by the 

MassHunter Workstation software (Agilent) were read into RStudio (version 0.98.1102),30 

and CPS values for each element were coerced into a list of m by n element-specific 

matrices, where m = number of ablation lines and n = number of ablation spots per ablation 

line. For each matrix, row-specific gas blank CPS medians—which here corresponded to the 

median values in pixels (ablation spots) collected during the first 10 s of each ablation line—

were subtracted from each pixel in the corresponding row. Gas-blank corrected matrices 

were converted to the RasterStack format using the R package ‘raster’,11 where each Xm x n 

matrix was converted to a RasterLayer with spatial extent (xmin = 0, xmax = n, ymin = 0, ymax 

= m).

Image segmentation and background removal

Image segmentation into target and background pixels is often achieved using histogram-

based thresholding of grayscale images, such as Otsu’s method.31 Here, we designed a 

histogram-based global thresholding algorithm that could be applied to LA-ICP-MS 

multidimensional imaging data. In an elemental imaging stack, element CPS values follow a 

finite mixture distribution with two component distributions,

(1)

where ptissue(x) and pback(x) represent the probability density functions for tissue and 

background pixels, respectively, and w = weights where wi ≥ 0 and wtissue + wback = 1. 

Additionally, there is a varying level of shot (background) noise, which follows a Poisson 

distribution that can be approximated by a Gaussian distribution,

(2)

Our algorithm derives a global threshold cutoff value from a single composite image created 

from an element RasterStack, with a method designed to (i) identify and remove elements 

with high background noise and (ii) place more weight on elements with higher tissue to 

background signals (xtissue/xback). First, CPS values for each element were scaled and 

centered to generate standardized scores (z-scores), and elements with high background 

noise (high z-score variability in gas-blank regions based on a user-defined cutoff; here, 

standard deviation (s) > 0.15) were removed from the element stack. Next, a single 

composite layer (CL) was created by calculating the mean z-score for each pixel among all 

remaining element layers in the stack, with elements weighted by the squared z-score mean 

in pixels located in their gas-blank region, such that
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(3)

where n = number of RasterLayers in the stack, (xi j)k = z-score for pixel (i,j) in RasterLayer 

Xk, and wk = squared z-score mean in the gas-blank region of Xk, since elements with a 

better ability to differentiate between tissue and background will have z-scores in gas-blank 

pixels that deviate further below the overall image z-score mean of 0. From the vectorized 

values in this composite layer, the kernel density function was estimated using the R 

function density. The basic kernel density estimator can be expressed as follows,

(4)

where K = kernel and h = bandwidth; here, our algorithm uses a Gaussian kernel and the 

“nrd0” bandwidth selector, which defaults to Silverman’s “rule of thumb”,32

(5)

where R = the interquartile range X[0.75n] − X[0.25n]. The cutoff value for background 

masking (ncutoff) was calculated by finding the first-occurring local minimum value from the 

n = 512 equally-spaced points at which the density was estimated. Background pixels (BP) 

were classified by thresholding the weighted mean z-scores in the composite mask layer 

based on the criterion

(6)

All corresponding BP pixels in the mask layer were set to null (NA), while values in non-BP 
pixels were not changed.

After background thresholding, remaining pixels in the background region were removed 

using an automated clump deletion algorithm. First, unique ‘clumps’, or patches of 

connected pixels, were detected and assigned unique IDs using the clump function in the 

‘raster’ package, with cells considered adjacent based on the Rook’s case contiguity rule. 

Next, all unique clumps in the mask layer that were comprised of less than a user-defined 

number of pixels (here, all clumps of ≤3 pixels) were assigned null (NA) values. A small 

group of remaining background clumps in the LBW sample mask was removed by manually 

drawing a polygon around the region using a region-of-interest selection tool (the drawPoly 

Niedzwiecki et al. Page 9

Metallomics. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



function in the ‘raster’ package) and setting pixels within this polygon region to NA. In the 

final step of the creation of the mask layer, tissue edges were identified based on Rook’s 

case contiguity using the boundary function in the ‘raster’ package. Pixels in the final mask 

(FM) layer were represented by values

(7)

Masked element stacks were created by assigning NA values to all pixels identified as 

background (NA) pixels in the mask layer, uniformly across each layer in the stack.

Outlier identification and spatial smoothing

We designed a local outlier detection algorithm to identify and replace local extreme, right-

tail outliers that were likely to result from random shot noise and/or other instrumentation-

related issues. Since LA-ICP-MS is a scanning technique, adjacent pixels in the y-axis are 

not collected sequentially, but are instead separated by a time overhead as the laser is 

rastered across the sample in x-axis rows. Thus, outliers that cluster along both the x- and y-

axes are less likely to be due to random instrumentation fluctuation and more likely to 

reflect true biological variance. First, outliers were identified in masked element grids using 

a moving-window (user-defined dimensions; here, 7 × 7 pixels) method, where the median 

absolute deviation

(8)

was calculated for 7 × 7 moving windows using the focal function in the ‘raster’ package, 

and pixels with values deviating from the local median at a user-defined magnitude greater 

than the MAD (here, 5 times) were classified as outliers. Next, a cluster identification 

algorithm identified outliers that were present in clusters occurring in ≥ 2 rows, which were 

reclassified as non-outlier pixels. Remaining outliers were assigned null values and replaced 

using a user-defined filter (here, a 3 × 3 median filter), which only replaced values in tissue-

associated (non-background) pixels with null values. Finally, all non-null pixels in the 

masked images were spatially smoothed using a Gaussian smoothing operator,

(9)

where σ = 2/3; the default radius in the focalWeight function in the ‘raster’ package, which 

was used here for spatial smoothing, is 3σ. The masked and smoothed elemental images 

were the final images used for all subsequent statistical analyses. (Note: prior to spatial 
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smoothing, the shinyImaging application replaces outliers using a weighted mean 7 × 7 filter 

[Gaussian filter: σ=1, r=3] rather than a median filter).

Integration of data from elemental imaging and immunohistochemistry

Cell surface marker (AEC) images (.vsi files) were imported into ImageJ 1.49v and 

converted to RGB color images. The images were background subtracted, compiled into a 

stack, and aligned using 2D rigid body image registration with the StackReg plugin.33 After 

unstacking the images, positive AEC pixels were identified by separating the hematoxylin 

and AEC stains with the “H AEC” vector in the Color Deconvolution 1.7 plugin, then 

applying a global threshold (using Tsai’s method34) to the 8-bit AEC-separated images. The 

registered original images and segmented AEC-positive images were saved as .tif files, 

which were each imported into QGIS 2.10.116 as raster layers within a project file. To 

register the element maps to the cell surface marker images, the tissue mask (.asc file) was 

opened in the QGIS Georeferencer, tie points (corresponding features) were manually 

selected between the tissue mask and the stain images, and the mask was aligned to the 

stains using a thin plate spline transformation. Tie point coordinates were saved and used to 

register the element .asc files, which were saved as raster layers in the project file.

Statistical analysis of analyte colocalization

We used a Getis-Ord Gi* hotspot analysis35 for an objective method to identify statistically-

significant areas of high and low element accumulation. Here, the Getis-Ord Gi* statistic 

was calculated for each element raster using the lisa function in the ‘usdm’ R package36, 

using a local neighborhood size corresponding to 175 μm, and pixels with z-scores ≥ 1.96 or 

≤ −1.96 were classified as significant ‘hotspots’ or ‘coldspots,’ respectively. To assess the 

degree of overlap between element hotspots and immune marker-positive regions (AEC-

positive regions) using a method similar to the Manders overlap coefficient37, we calculated 

three scores originally proposed by Nawaz et al.38:

1. Cell surface marker fractional (fCDx): fraction of AEC-positive regions 

that were also element hotspots;

2. Element hotspot fractional (felement): fraction of element hotspots that 

were also AEC-positive regions; and

3. Overlap fractional (foverlap): fraction of AEC-positive regions and/or 

element hotspots that were both AEC-positive regions and element 

hotspots (different from the colocalization statistic proposed by Nawaz et 
al.35).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Overview of LA-ICP-MS imaging workflow
(a) Formalin-fixed, paraffin-embedded placental tissues, sampled from the fetal aspect, were 

sectioned (5-μm thick) and affixed to glass slides. Spatial distribution of multiple elements 

was determined using LA-ICP-MS, and data was read into R as a grid stack for image 

processing. (b) Background pixels were masked using a global thresholding algorithm. A 

raw mask file was created by converting the elements in the grid stack to z-scores, removing 

elements from the stack with high background noise, and finding the mean pixel z-scores 

across all elements in the stack, weighted on the squared gas-blank z-score means for each 

element. A threshold cutoff value was determined from the first-occurring local minimum 

value from the kernel density estimate of the weighted mean grid, and pixels with values 

below the cutoff were set to null values. Then, the algorithm removed small clusters of 

remaining background pixels and identified tissue edges. (c) Extreme outliers were detected 

using a focal median absolute deviation algorithm that ignored outliers in biologically-

relevant clusters, and these outliers were replaced using a 3×3 median filter. After outlier 

replacement, images were smoothed using a Gaussian filter (σ = 2/3, r = 2).
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Fig. 2. Metals and inflammation in a low-birth-weight placenta
(a) Left: immunohistochemical stains for inflammatory cell surface markers (CD3, CD8, 

CD66b, and CD68) in placentas from normal-weight and low-birth-weight pregnancies 

(scale bar = 100 μm). Right: low-resolution stains in low-birth-weight placenta for CD66b 

and CD68 (scale bar = 2 mm) with higher-resolution images from sites of CD66b- and 

CD68-positive staining (Site 1 and Site 2, respectively; scale bar = 500 μm). (b) Element 

maps for Fe, Mn, Pb, and Zn from adjacent serial section in low-birth-weight placenta. Scale 

bar = 1 mm. (c) Immunohistochemical stains and element maps were overlaid by registering 

the tissue mask to the stain image, then creating a multilayered map with stain images, stain-

positive pixels, and element maps registered to the same spatial coordinate system. (d) 
Overlay of CD66b- and CD68-positive regions with Getis Ord Gi* hotspot and coldspots for 

Fe, Mn, Pb, and Zn.
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