
Optimum Diffraction-Corrected Frequency-Shift Estimator of the 
Ultrasonic Attenuation Coefficient

Kayvan Samimi [Student Member, IEEE] and Tomy Varghese [Senior Member, IEEE]
Department of Electrical and Computer Engineering, College of Engineering, and the Department 
of Medical Physics, School of Medicine and Public Health, University of Wisconsin–Madison, 
Madison, WI 53705, USA

Abstract

The ultrasonic attenuation coefficient is an important parameter that has been studied extensively 

in Quantitative Ultrasound and Tissue Characterization. There are various methods described in 

the literature that estimate this parameter by measuring either spectral difference (i.e., decay) or 

spectral shift of the backscattered echo signal. Under ideal conditions, i.e., in the absence of abrupt 

changes in tissue backscattering, Spectral Difference methods can produce estimates with high 

accuracy and precision. On the other hand, diffraction-corrected Spectral Shift methods (e.g., the 

Hybrid method) are better suited for application in practical settings using clinical ultrasound 

scanners. However, current Spectral Shift methods use inefficient frequency shift estimators that 

ultimately degrade the quality of attenuation coefficient estimates. In this paper, a probabilistic 

model of the backscattered radiofrequency (RF) echo is used to derive the Cramér-Rao lower 

bound (CRLB) on estimation variance of the spectral centroid. Next, an efficient correlation-based 

shift estimator is presented that achieves the CRLB. Used in conjunction with a well-characterized 

reference phantom to correct for diffraction and other system-related effects, this estimator greatly 

improves the accuracy and precision of Spectral-Shift attenuation estimation. A theoretical 

analysis of this method is provided, and its performance is quantitatively compared with that of the 

Hybrid method using simulated and experimental phantom studies. A minimum of 3-fold 

reduction in the standard deviation of attenuation coefficient estimates is observed using the new 

method.

Index Terms

Ultrasonic Attenuation Coefficient; Maximum Likelihood Estimation; Correlation-Based Centroid 
Estimator; Spectral Shift; Tissue Characterization; Quantitative Ultrasound

I. Introduction

Accurate estimation of the ultrasonic attenuation coefficient has numerous clinical and non-

clinical benefits. In addition to providing potentially valuable diagnostic information, 

localized estimation of the attenuation coefficient and compensation for it can significantly 

improve the quality of estimation for other acoustic parameters of interest in Quantitative 
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Ultrasound (QUS) and Tissue Characterization [1], [2]. The attenuation coefficient has been 

studied as a classifier of normal and pathological conditions in fatty liver [3]–[7], breast 

tissue [8], [9], myocardial tissue [10]–[12], carotid artery plaques [13]–[15], osteoporosis 

[16], [17], and deep vein thrombosis [18], [19].

Spectral methods of attenuation estimation are favored over time-domain methods because 

they allow for easier correction for equipment-related diffraction effects and frequency-

specific estimation. These methods estimate the change of spectral content with depth. 

Spectral Difference methods measure the log-intensity decay at each frequency point [20], 

[21], and Spectral Shift methods measure the frequency downshift of the spectral centroid 

[22], [23].

The challenge with estimating the attenuation coefficient is that attenuation is not the only 

mechanism by which the spectral content evolves with depth. Diffraction effects due to 

ultrasound field inhomogeneity and scattering effects due to propagation medium 

inhomogeneity also alter the echo signal spectrum. These effects may be both frequency- 

and depth-dependent. In order to improve the quality of attenuation estimation, many 

investigators have introduced methods that attempt to account for or eliminate these spectral 

effects [24], [25]. The Reference Phantom Method (RPM) is a widely used approach to 

eliminating system-related diffraction effects [26]. However, it does not account for the 

scattering effects associated with sample medium inhomogeneity, and this limits the 

applicability of Spectral Difference methods in clinical settings. Spectral Shift methods are 

also affected by scattering variations in the medium, but only if these variations change the 

frequency dependence of the spectral profile. In other words, unlike the Spectral Difference 

category, a simple frequency-independent amplitude gain or loss is not enough to introduce 

bias to estimations of the Spectral Shift category. Kim, et al. [27] combined the use of a 

reference phantom with spectral shift estimation in their Hybrid method and reported 

improvements on attenuation estimation in inhomogeneous sample media compared to either 

Spectral Difference or conventional Spectral Shift methods.

Despite these improvements, the estimation variance is still too high to provide reliable 

attenuation coefficient maps with acceptable spatial resolution that could be implemented on 

clinical scanners. Some authors have focused on optimizing the periodogram-based 

estimation of the echo signal power spectrum by investigating various gating window 

functions [28], thus improving subsequent QUS parameter estimations. However, it can be 

argued that the most critical step for attenuation estimation using Spectral Shift methods is 

to accurately determine the spectral centroid and its shift. Different approaches to finding the 

center frequency are described in ultrasound and Doppler radar literature [29], [30]. These 

range from the simple zero-crossing technique to energy balancing [30], centroid detection 

using the method of moments [22], and correlation-based techniques [29], [30], [25]. Many 

researchers in the field of ultrasound have used the method of moments for centroid 

detection. While this method is computationally inexpensive, it is not an efficient estimator 

of the spectral shifts. Kim et al. [25], [27] used a correlation-based shift estimator for their 

Hybrid method, claiming that it provides more accurate and robust estimations than the 

method of moments. Other authors have implemented the Hybrid method with minor 
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adjustments [31] or by replacing the cross-correlation step with the method of moments [32] 

and reported improvements.

In this paper, we present an optimum frequency shift estimator that significantly improves 

the stability of the Hybrid method for attenuation estimation using clinical scanners. The 

following background section presents fundamental information on efficient centroid 

detection using a correlation-based estimator from the literature [30]. The materials and 

methods section applies these ideas in the context of ultrasonic attenuation coefficient 

estimation using a reference phantom. The result is a maximum-likelihood (ML) attenuation 

estimation method that combines the benefits of spectral normalization using a reference 

phantom with the robustness of Spectral Shift estimators of the attenuation coefficient. 

Finally, we quantitatively compare the performance of our method with the Hybrid method 

as well as with an improved implementation of the Hybrid method. The comparisons use 

simulated and experimental Radio Frequency (RF) data.

II. Background

A. Spectral Centroid Estimation Preliminaries

Consider the ultrasonic echo signal received by the transducer and sampled at a period of Ts 

to form the complex vector:

x = x 0 , x 1 , …, x M − 1 , (1)

where x is an M-point segment of an RF A-line and is assumed to constitute a complex, 

Gaussian, zero-mean, and stationary process. The discrete Fourier transform (DFT) of x, 

therefore, constitutes a complex, Gaussian, zero-mean process, X. Due to stationarity of x, 

the spectral samples X[i] are mutually uncorrelated.

X = X 0 , X 1 , …, X M − 1 . (2)

Since the phase of X contains no information about the center frequency, it is sufficient to 

consider the power spectrum, S, in order to estimate the spectral centroid.

S = S 0 , S 1 , …, S M − 1
= ∣ X 0 ∣2, ∣ X 1 ∣2, …, ∣ X M − 1 ∣2 . (3)

The expected value of the power spectral sample S[i] is given by (4).

E S i = A i ⋅ Δ f − f c , (4)

where A(f) is the nominal power spectrum and is periodic with frequency Fs = 1/Ts. Under 

diffuse scattering conditions, X is a complex Gaussian process. Therefore, each sample of 
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the power spectral density, S[i], will have an exponential (chi-squared with two degrees of 

freedom) probability density function (pdf) given by (5) which results in typical speckle 

statistics [33]. The variance of S[i] is thus written as (6).

p S[i]; f c = 1
A i ⋅ Δ f − f c

⋅ exp − S i
A i ⋅ Δ f − f c

, (5)

Var S i = A2 i ⋅ Δ f − f c . (6)

B. The Cramér-Rao Lower Bound for Centroid Estimation

It is known from estimation theory [34] that the variance of any unbiased estimator of the 

centroid frequency has a lower bound given by the Cramér-Rao inequality:

Var f c ≥ 1

E
∂ ln p S; f c

∂ f c

2 , (7)

where p(S; fc) is the joint pdf for all S[i] with parameter fc. This lower bound can easily be 

evaluated for the centroid estimation problem defined above. The resulting CRLB is given 

by (8) in terms of the nominal power spectrum, A. Integration is performed over one spectral 

period, Fs.

Var f c ≥ Δ f

∫ A′ f
A f

2
d f

. (8)

C. Correlation-Based Centroid Estimators

This category of centroid estimators relies on correlating the power spectrum, S, with some 

weighting function, B, centered at a trial centroid, f c, and looking for a zero.

C f c = ∑
i = 0

M − 1
S[i] ⋅ B i ⋅ Δ f − f c . (9)

The value of f c with C f c = 0 is taken as the centroid estimate. It is clear that the 

performance of such an estimator is dependent on the choice of weighting function B.

In order to derive the variance of the centroid estimate f c, we study the statistics of the 

correlation function of (9). C f c  is a weighted sum of uncorrelated power spectral samples 
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S[i]. Therefore, C f c  is a random process with a distribution that approaches a Gaussian 

distribution, due to the Central Limit Theorem, as M increases. Its expected value can be 

written as (10).

E C f c = ∑
i = 0

M − 1
A i ⋅ Δ f − f c ⋅ B i ⋅ Δ f − f c

≃ 1
Δ f ⋅ ∫ A f − f c ⋅ B f − f c d f ,

(10)

Using (6), the variance is given by (11).

Var C f c = ∑
i = 0

M − 1
A2 i ⋅ Δ f − f c ⋅ B2 i ⋅ Δ f − f c

≃ 1
Δ f ⋅ ∫ A f − f c ⋅ B f − f c

2d f .
(11)

In the vicinity of f c = f c, a first-order Taylor series expansion can be written for E C f c  as 

seen in (12).

E C f c = k ⋅ f c − f c + ⋯ (12)

with

k =
d E C f c

d f c f c = f c

≃ −1
Δ f ⋅ ∫ A f ⋅ B′ f d f

= 1
Δ f ⋅ ∫ A′ f ⋅ B f d f .

(13)

The last equation in (13) holds due to periodicity of A and B with period Fs which is also the 

integration interval. Therefore, the variance of the centroid estimate is given by (14). The 

centroid estimate, f c, is also Gaussian distributed if the number of data points, M, is 

sufficiently large.
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Var f c ≃
Var C f c

k2

= Δ f ⋅ ∫ A f ⋅ B f 2 d f
∫ A f ⋅ B′ f d f 2

= Δ f ⋅ ∫ A f ⋅ B f 2 d f
∫ A′ f ⋅ B f d f 2 .

(14)

D. The Optimum Centroid Estimator

It has been shown in the literature [30] that the maximum-likelihood estimator of the 

centroid that achieves the Cramér-Rao bound is a correlation-based estimator as defined in 

(9) that uses the following weighting function:

B( f ) = − d
d f

1
A f = A′ f

A2 f
. (15)

Note that inserting the weighting function from (15) into (14) results in an estimation 

variance equal to the CRLB from (8).

The maximum-likelihood estimator looks for the zero of the correlation between the 

measured power spectrum and the derivative of 1/ A(f). This is equivalent to minimization of 

the correlation between the measured spectrum and the reciprocal of the nominal power 

spectrum. Intuitively interpreted, this means that areas of the power spectrum with high 

energy, and therefore with high speckle noise, get a smaller weight in the correlation step 

than low-energy areas of the power spectrum with low speckle noise. This concept explains 

the superior performance of this estimator for signals, such as ultrasound echo, that 

experience multiplicative noise.

III. Materials and Methods

A. Statistical Analysis of the Normalized Power Spectrum

In order to estimate ultrasonic attenuation with use of a reference phantom, frames of RF 

data are acquired using the exact same scan settings (i.e., depth, focus, gain, transmit power, 

etc.) from both the sample and a well-characterized reference phantom. The RF data frames 

are partitioned into blocks consisting of data from several adjacent echo lines that have been 

windowed at each depth point using a time-gating window function of appropriate length. 

These windowed data segments are then Fourier transformed, squared, and averaged to 

obtain estimates of the signal power spectrum from each block. The power spectrum 

corresponding to a block at depth z of a homogenous sample is modeled as (16).
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SS f , z = St f D f , z BSCS f , z e
−4αS f z

. (16)

In this equation, St(f) represents the transmit pulse and transfer functions associated with the 

boundary between the transducer and sample. D(f, z) denotes the diffraction effects that are 

linked with transducer geometry and beam-forming. BSCS(f, z) is the backscatter coefficient 

spectral profile of random scatterers in the sample medium. e−4αS(f)z is the cumulative 

attenuation at frequency f and depth z. Similarly, the power spectrum from a block at depth z 
of the reference phantom is modeled as (17).

SR f , z = St f D f , z BSCR f , z e
−4αR f z

. (17)

Since system settings for both data acquisitions are identical, transmit and diffraction terms 

are the same in (16) and (17). Therefore, normalizing the sample power spectrum by the 

reference power spectrum cancels these terms out. The ratio of power spectra is given in 

(18).

RS( f , z) =
SS f , z
SR f , z

=
BSCS f , z e

−4αS f z

BSCR f , z e
−4αR f z

. (18)

We will assume a linearly frequency-dependent attenuation profile, α(f)=β·f, for both 

sample and reference materials.

The backscatter spectral term is modeled as a Chi-square distributed random process [35]–

[37] with a pdf given by (19).

p BSC f , z = 1
σ2exp − BSC f , z

σ2 , BSC f , z ≥ 0 . (19)

Therefore, it will have mean E[BSC(f, z)] = σ2 and variance Var(BSC(f, z)) = σ4. If the 

spectra from multiple (N) adjacent A-lines are averaged prior to normalization, the averaged 

backscatter term will be Gamma distributed, as shown in (20).

BSC f , z = 1
N ∑

i = 1

N
BSC i f , z ∼ Γ N

2 , 2σ2

N . (20)
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For a sufficiently large N, this Gamma distribution can be approximated by a Normal 

distribution. Therefore, the averaged backscatter terms for sample and reference spectra are 

modeled as (21). This approximation can also be directly made according to the Central 

Limit Theorem.

BSCS f , z ∼ 𝒩 σS
2,

2σS
4

NS
,

BSCR f , z ∼ 𝒩 σR
2,

2σR
4

NR
.

(21)

The ratio of the uncorrelated non-zero mean Gaussian random variables from (21) has a 

complicated distribution and pdf. Therefore, going forward, we make the assumption that 

this “ratio random variable”, RB(f, z), is normally distributed about its mean value. The 

validity of this approximation can be verified by comparing it to the ratio of two Gamma-

distributed random variables of the form given in (20) as N grows. The verification has been 

performed but is not presented, as it is beyond the scope of this paper. We approximate the 

mean value and the variance using first or second order Taylor expansions of the ratio 

function. Using a first-order Taylor expansion of the ratio function, the mean value is given 

by (22).

μRB = E RB f , z ≈
E BSCS f , z
E BSCR f , z

=
σS

2

σR
2 . (22)

Using a second-order Taylor expansion of the ratio function, the mean value is given by (23).

μRB = E RB f , z

≈
E BSCS
E BSCR

−
Cov BSCS, BSCR

E2 BSCR
+

Var BSCR E BSCS

E3 BSCR

=
σS

2

σR
2 − 0 +

2σR
4σS

2

NRσR
6 =

σS
2

σR
2 1 + 2

NR
.

(23)

For large N, (23) gives approximately the same value as (22). Using the definition of 

variance and first-order expansion of the ratio function, the variance is approximated in (24).
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σRB
2 = Var RB f , z

≈
E2 BSCS

E2 BSCR
⋅

Var BSCS

E2 BSCS
− 2

Cov BSCS, BSCR
E BSCS E BSCR

+
Var BSCR

E2 BSCR

=
σS

2

σR
2

2
NS

− 0 + 2
NR

= 2
σS

4

σR
4

NS + NR
NSNR

.

(24)

B. Optimum Correlation-Based Centroid Estimator

Following normalization, a Gaussian filter with a bandwidth similar to the transmit pulse is 

applied. This step transforms the attenuation estimation process to a centroid detection 

problem, as shown in (25).

GRS f , z = G f ⋅ RS f , z

= exp −
f − f t

2

2σt
2 ⋅

BSCS f , z
BSCR f , z

⋅ exp − 4 βS − βR f z

= RB( f , z) ⋅ exp −
f − f t − 4 βS − βR zσt

2 2

2σt
2 ⋅ exp

f t − 4 βS − βR zσt
2 2 − f t

2

2σt
2

const .

.

(25)

It is suggested by (25) that the normalized and Gaussian-filtered power spectrum, GRS(f, z), 

will have a Gaussian form centered at f c = f t − 4 βS − βR zσt
2. Estimation of this centroid 

leads to estimation of the sample attenuation coefficient.

In order to determine the optimum estimator, we consider the expected value and variance of 

GRS(f, z):

E GRS f , z = E RB f , z ⋅ exp −
f − f c

2

2σt
2 ⋅ const .

= μRB ⋅ exp −
f − f c

2

2σt
2 ⋅ const .

= A f − f c ,

(26)
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Var GRS f , z

= Var RB f , z ⋅ exp −
f − f c

2

2σt
2 ⋅ const .

= 2
σS

4

σR
4

NS + NR
NSNR

⋅ exp −
f − f c

2

2σt
2 ⋅ const .

2

= 2
NS + NR

NSNR
⋅ μRB ⋅ exp −

f − f c
2

2σt
2 ⋅ const .

2

= 2
NS + NR

NSNR
⋅ A2 f − f c .

(27)

(26) and (27) are comparable to (4) and (6), respectively. Therefore, the optimum centroid 

estimator is a correlation-based estimator that uses the following weight function:

Bopt f = − d
df

1
A f = A′ f

A2 f

∝ −
f − f c

σt
2 ⋅ exp

f − f c
2

2σt
2 .

(28)

Correlation with the weight function from (28) and searching for the zero is equivalent to 

correlation with 1/A(f−fc) and searching for the minimum. The latter approach is selected 

for practical implementation of this algorithm. Also, in our implementation, correlation is 

performed over a limited frequency range [fL, fU] where both sample and reference power 

spectra are above the noise floor. This minimizes any instability due to exponentially high 

weights at the far ends of the power spectrum where there is little spectral information. With 

these considerations, and using (14), variance of the centroid estimate is written as (29).

Var f c = 2
NS + NR

NSNR
⋅ Δ f

∫ f L

f U A′ f − f c
A f − f c

2
df

= 2
NS + NR

NSNR
⋅ Δ f

∫ f L

f U f − f c
2

σt
4 df

= 2
NS + NR

NSNR
⋅

3σt
4Δ f

f − f c
3

f L

f U
.

(29)
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In (29), we can reasonably approximate fc with ft and take fL = ft−3σt and fU = ft+3σt. 

Therefore, an approximate theoretical expression for variance of the centroid estimate can be 

written as (30).

σc
2 = Var f c

≅ 2
NS + NR

NSNR
⋅

3σt
4Δ f

2 ⋅ 3σt
3

=
NS + NR

NSNR
⋅

σtΔ f
9 .

(30)

In order to estimate the attenuation coefficient for an ROI, we perform a linear regression 

over L consecutive centroid estimates within the ROI along depth, as seen in (31). The slope 

of the fitted line gives the attenuation coefficient for the ROI. In this linear equation, we 

model the estimation uncertainties as additive zero-mean Gaussian random variables ε(n), 

with variance σc
2, given by (30).

f c n = Fc − 4 βS − βR ⋅ nΔz σt
2 + ε n

ε n ∼ 𝒩 0, σc
2

n = 0, 1, …, L − 1 .

(31)

We assume the intercept of the linear equation, Fc, to be unknown as well. Variance of the 

maximum-likelihood estimator of the attenuation coefficient is therefore written as (32).

Var βS =
3σc

2

4σt
4Δz2L L2 − 1

Np
cm ⋅ MHz

2
. (32)

C. Comparison with Performance of the Hybrid Method

Following normalization and Gaussian-filtering of the estimated power spectra, the Hybrid 

method determines frequency downshifts with depth by cross-correlating two power spectra 

from axially adjacent windows and searching for the frequency shift that maximizes this 

correlation [27]. We shall label this approach as Consecutive Power Spectral Shift Estimator 

(CPSSE). It is clear that CPSSE is not an efficient estimator of the spectral shift. The reason 

is that each of the estimated power spectra to be cross-correlated is distorted by independent 

multiplicative speckle noise. These distortions will accumulate during the cross-correlation 

step and affect the estimated shift. A better approach would be to maximize the cross-

correlation between the estimated power spectrum at each depth point and the nominal 

power spectrum in order to find the spectral centroid. The centroid estimates from adjacent 

depth points would then be compared to determine the spectral shifts. We shall label this 
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improved approach as Nominal Power Spectral Shift Estimator (NPSSE). To express it in a 

manner consistent with the notations of this paper, NPSSE correlates estimated spectra with 

the following weight function and searches for a zero.

Bnom f = d
df A f = A′ f

∝ −
f − f c

σt
2 ⋅ exp −

f − f c
2

2σt
2 .

(33)

Inserting the weight function of (33) in (14) gives the variance of centroid estimates for this 

improved implementation (NPSSE) of the Hybrid method as seen in (34) below. Of course, 

the Optimal Power Spectral Shift Estimator (OPSSE) would be the one described above 

using the weight function of (28).

Var f c

= 2
NS + NR

NSNR
⋅ Δ f ⋅

∫ f L

f U A f − f c ⋅ A′ f − f c
2 df

∫ f L

f U A′ f − f c
2 df

2

= 2
NS + NR

NSNR
⋅ Δ f ⋅

∫ f L

f U f − f c
2

σt
4 ⋅ exp −

2 f − f c
2

σt
2 df

∫ f L

f U f − f c
2

σt
4 ⋅ exp −

f − f c
2

σt
2 d f

2

= 2
NS + NR

NSNR
⋅ Δ f ⋅

1
16σt

2 ⋅

2π ⋅ σt ⋅ erf
2 f − f c

σt

−4 f − f c ⋅ exp −
2 f − f c

2

σt
2

f L

f U

1
16σt

4 ⋅

π ⋅ σt ⋅ erf
f − f c

σt

−2 f − f c ⋅ exp −
f − f c

2

σt
2

f L

f U
2 .

(34)

Employing the same approximations as was used for (30), we can simplify (34) and write it 

as (35).
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Var f c ≅ 2
NS + NR

NSNR
⋅ Δ f ⋅

1
16σt

2 ⋅ 2 2π ⋅ σt − 24 ⋅ σt ⋅ exp − 18

1
16σt

4 ⋅ 2 π ⋅ σt − 12 ⋅ σt ⋅ exp − 9 2

≅ 2
NS + NR

NSNR
⋅

σtΔ f
2π

.

(35)

Clearly, this theoretical expression for variance of the centroid estimates using the NPSSE is 

larger than variance of the centroid estimates using the OPSSE given in (30) by about a 

factor of seven. In order to practically compare the performance of the new method (OPSSE) 

with the original implementation of the Hybrid method (CPSSE) as well as with our 

improved implementation of the Hybrid method (NPSSE), a series of simulated and 

experimental phantom studies were performed. Localized estimation of the attenuation 

coefficient was carried out according to the three methods and attenuation maps were 

generated from these estimates. Estimation statistics were measured and plotted against 

various processing parameters as presented in the results section.

D. Simulated Phantom Study Design

For the simulated study, two uniformly attenuating phantoms with attenuation coefficients of 

0.7 and 0.5 dB/cm/MHz were created using software based on classical linear diffraction 

theory that was previously developed in our laboratory [38]. The simulated phantoms were 

10 cm deep, 16 cm wide, and 1 cm thick. Scatterers were glass beads with a diameter of 50 

μm and had densities of 20 and 15 per cubic millimeter for the 0.7 and 0.5 phantoms, 

respectively. The speed of sound in the phantoms was set to 1540 m/s. These conditions 

ensure Rayleigh scattering and fully developed speckle. These phantoms would serve as 

sample and reference media to be used with the three methods. Frames of RF data consisting 

of 800 A-lines were acquired using a simulated linear array transducer with 128 rectangular 

elements with 0.2 mm spacing. The transducer was focused at a depth of 40 mm and 

sampling was performed at the rate of 40 MHz. The transmit pulse had a Gaussian spectral 

form centered at 10 MHz.

According to (30) and (32), the variance of the attenuation coefficient estimate depends on 

processing parameters such as the data block length, Δz; the number of data segments per 

block, NS and NR; the number of axially consecutive data blocks used for the linear 

regression step, L; and the standard deviation of the Gaussian filter, σt, determined by the 

transmit pulse bandwidth. Therefore, attenuation estimation was performed using various 

combinations of these parameters, and estimation statistics, i.e., mean and standard deviation 

of the estimated attenuation coefficients across the entire RF frame, were calculated for each 

combination to produce the plots. The parameter ranges that were investigated are as 

follows. The data block length, Δz, ranged from 4 to 10 mm. The standard deviation of the 

Gaussian transmit pulse was varied from 0.5 to 1.5 MHz. The number of data segments (i.e., 

A-lines) per data block, NS and NR, ranged from 10 to 100. Since dependence of the linear 
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regression on the number of regression points is trivial, estimation of the attenuation 

coefficients was performed using only one value for this parameter, i.e., L = 5.

E. Physical Phantom Study Design

For the experimental study, two uniform tissue-mimicking (TM) phantoms that were 

constructed in our laboratory were employed. Both phantoms consist of microscopic glass 

beads and graphite powder in an agar gel background. The reference phantom has glass 

beads with diameters ranging from 5 to 43 μm in concentration of 4 grams per liter, and a 

uniform attenuation coefficient of 0.5 dB/cm/MHz (±2%). The sample phantom has glass 

beads with diameters ranging from 75 to 90 μm in concentration of 2.8 grams per liter, and a 

uniform attenuation coefficient of 0.8 dB/cm/MHz (±2%). The speed of sound in both 

phantoms is 1540 m/s. RF data acquisition was performed using an Acuson S2000 

ultrasound system, equipped with a 9L4 linear array transducer (Siemens Medical Solutions 

USA Inc., Mountain View, CA). The imaging depth was set to 6 cm with the transmit focus 

at 5 cm. The transmit center frequency was 6 MHz.

Similar to the simulation study, attenuation coefficients were locally estimated across the 

entire RF frame using different values of the processing parameters in order to measure 

estimation statistics for the three methods. However, unlike the simulated study, changing 

the transmit pulse bandwidth of the scanner was not an option. Therefore, the measured 

value of 1 MHz for the standard deviation of the transmit pulse spectrum, σt, was assumed 

for all experimental analyses. Data block length, Δz, was varied from 4 to 15 mm. Number 

of data segments (i.e., A-lines) per data block, NS and NR, were varied from 10 to 85. 

Number of axial regression points, L, was fixed at 5.

F. Processing the RF Data

RF data frames were loaded into MATLAB (MathWorks, Inc., Natick, MA) and divided into 

blocks of size Δz along the axial direction, each containing N laterally adjacent A-lines. 

Data segments within each block were multiplied by a Hann window function in order to 

lower the sidelobes and limit spectral leakage artifacts. The windowed data segments were 

then Fourier transformed using the fast Fourier transform (FFT) algorithm, and their 

absolute values were squared and averaged to arrive at the power spectral estimate for each 

data block.

The default values of the processing parameters used for attenuation estimation are given in 

Table 1. These values were used for processing both simulated and experimental phantom 

data unless one of the parameters was under investigation for its effect on estimation 

statistics, in which case the value of that parameter would sweep the investigational range 

and other parameters would remain at their default values. The default block size parameters 

are large enough to provide stable estimates of the power spectrum with adequate frequency 

resolution. Given the large default block length, a 65% axial overlap between data blocks 

was utilized in order to increase the number of attenuation coefficient estimates, and 

therefore, the spatial resolution of the resulting attenuation coefficient maps. Welch [39] 

showed that when using a tapered window, such as a Hann or Hamming window function, 

two adjacent windows with an overlap of 50% of the window length are nearly uncorrelated. 
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In the case of our study, the assumption that estimated power spectra from adjacent 

overlapping data blocks are independent is valid for large block lengths. However, bias 

artifacts may be introduced for smaller block lengths.

IV. Results

A. Simulated TM Phantom Results

RF data from the simulated phantoms were processed according to the three methods 

described above, and attenuation coefficient maps were generated. These maps and the B-

mode image of the simulated sample phantom (0.7 dB/cm/MHz) are presented in Fig. 1. 

Since the transmit pulse had a 10 MHz center frequency, the maximum penetration depth of 

the ultrasound signal was less than the 10 cm depth of the simulated phantom. It was 

observed, in this case, that the ultrasound signal gets attenuated to levels below the additive 

white noise at about a depth of 5 cm, and the B-mode image was unresolvable beyond a 

depth of 6cm. As a result, the visualized depth in Fig. 1 was limited to a range that allows 

for attenuation estimation. Statistical analysis of the attenuation coefficient estimates was 

also performed in this depth range, i.e., up to 45mm.

It is clear from this figure that NPSSE and OPSSE estimate attenuation coefficient with 

progressively smaller variances compared to CPSSE (i.e., the Hybrid method). Furthermore, 

unlike the Hybrid method, there were no negative attenuation estimates with these new 

methods up to the depth of 45 mm. The following plots quantitatively compare the three 

methods as well as the theoretical expressions derived above.

1) Data Block Length—The block length parameter, Δz, was varied from 4 to 10 mm in 1 

mm steps. Smaller window lengths do not provide stable power spectral estimates with high 

enough spectral resolution [26], and larger window lengths do not produce a statistically 

significant number of attenuation coefficient estimates in this depth range. Attenuation 

estimation was repeated at each step using the new parameter value, and mean and standard 

deviation of the estimates were measured for each method. Fig. 2 shows the mean value of 

the attenuation coefficient estimates, with error bars indicating the observed standard 

deviation. Fig. 3 shows the measured standard deviations as well as the theoretically 

predicted standard deviations for the new methods. Note that the new methods proposed in 

this paper (NPSSE and OPSSE) provide estimates with much lower variance, and without 

any significant bias.

2) Transmit Pulse Bandwidth—Bandwidth of the transmit pulse (centered at 10 MHz) 

was varied by changing the standard deviation of its Gaussian spectral form, σt, from 0.5 to 

1.5 MHz in 50 KHz steps. At each point, RF data acquisition was simulated using the new 

transmit pulse and the resulting RF frame was processed according to the three methods. 

Mean and standard deviation of the attenuation coefficient estimates were measured for each 

method. Fig. 4 shows the mean value of the attenuation coefficient estimates, with error bars 

indicating the observed standard deviation. Fig. 5 shows the measured standard deviations as 

well as the theoretically predicted standard deviations for the new methods. Observe that the 

new methods (NPSSE and OPSSE) provide estimates with considerably lower variance, 
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without any significant bias. However, the Hybrid method (using CPSSE) underestimates the 

attenuation coefficient at lower bandwidths and exhibits higher estimation variance.

3) Number of Data Segments per Block—The number of data segments per block, N, 

was varied by changing the number of adjacent and independent A-lines that are included in 

each data block from 10 to 100 A-lines in steps of 5. Attenuation estimation was repeated at 

each step using the new parameter value, and mean and standard deviation of the estimates 

were measured for each method. Fig. 6 shows the mean value of the attenuation coefficient 

estimates, with error bars indicating the observed standard deviation. Fig. 7 shows the 

measured standard deviations as well as the theoretically predicted standard deviations for 

the new methods. In addition to greatly reduced variance, NPSSE and OPSSE appear to 

provide a more stable estimation with respect to the variable number of data segments per 

block. The OPSSE method slightly underestimates the attenuation coefficient when 

compared to NPSSE in this case.

B. Physical TM Phantom Results

Experimentally acquired RF data from the physical phantoms were processed according to 

the three methods and attenuation coefficient maps were formed. These maps and the B-

mode image of the sample phantom (0.8 dB/cm/MHz) are presented in Fig. 8. Similar to the 

simulated results, NPSSE and OPSSE estimate attenuation coefficient with progressively 

lower variances when compared to CPSSE (i.e., the Hybrid method). Also, negative 

attenuation coefficient estimates only appear in the map created using the original Hybrid 

method. The following plots quantitatively compare the three methods as well as their 

corresponding theoretical expressions.

1) Data Block Length—The block length parameter, Δz, was varied from 4 to 15 mm in 1 

mm steps. Attenuation estimation was repeated at each step using the new parameter value, 

and mean and standard deviation of the estimates were measured across the entire frame for 

each method. Fig. 9 shows the mean value of the attenuation coefficient estimates, with error 

bars indicating the observed standard deviation. Fig. 10 shows the measured standard 

deviations as well as the theoretically predicted standard deviations for the new methods. 

Note that the new methods (NPSSE and OPSSE) provide estimates with lower variance and 

higher stability compared to the Hybrid method. The OPSSE slightly underestimates the 

attenuation coefficient for small block lengths, but converges to the true value with longer 

blocks.

2) Number of Data Segments per Block—The number of data segments per block, N, 

was varied by changing the number of adjacent and independent A-lines that are included in 

each data block from 10 to 85 A-lines in steps of 5. A new attenuation coefficient map was 

estimated at each step using the new parameter value, and mean and standard deviation of 

the estimates were measured across the entire frame for each method. Fig. 11 shows the 

mean value of the attenuation coefficient estimates, with error bars indicating the observed 

standard deviation. Fig. 12 shows the measured standard deviations as well as the 

theoretically predicted standard deviations for the new methods. Similar to the simulated 

results, the original Hybrid method provides unstable estimates with respect to the number 

Samimi and Varghese Page 16

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2017 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of data segments per block. NPSSE and OPSSE provide more consistent estimates. 

However, OPSSE somewhat underestimates the attenuation coefficient.

V. Discussion

The new spectral shift estimators proposed in this paper appear to have significant 

advantages when compared to the original implementation of the Hybrid method. Namely, 

they provide greatly reduced estimation variance and increased estimation stability. The 

theoretical variance expressions derived for OPSSE and NPSSE show acceptable agreement 

with observed variance in both simulated and experimental data. The only exception is with 

small data block (i.e., window) lengths, where spectral broadening effects lead to 

degradation of the assumption that spectral samples are uncorrelated.

Derivation of the theoretical variance expressions for our new methods was performed under 

the assumption of diffuse scattering conditions, which was used to arrive at (22)-(24). 

Deviation from diffuse scattering could potentially lead to disagreements between the 

theoretical expression and observations. However, optimality of the new spectral shift 

estimator does not depend on a particular probability density function such as the one we 

assumed for RB(f,z). Rather, it only depends on the mean and variance of the estimated 

power spectrum and whether they are related in a fashion similar to (4) and (6).

Special care must be taken while implementing the optimum estimator described in this 

paper. Exponential weights of (28) can lead to arithmetic overflow at far ends of the power 

spectrum. Therefore, it helps to limit the spectral search band to a frequency range that 

contains all of the spectral information. Additionally, choice of this search band and its 

width determines the goodness of agreement between theoretical prediction and observed 

variance. More specifically, we assumed that a ±3σt frequency band contains all of the 

spectral information and used it to derive (30). Assuming a wider frequency band will drive 

down the variance predicted by our theoretical expression further, but no experimental 

improvement will be observed since there is no added spectral information in the wider 

band. The theoretical expression for variance of the NPSSE, on the other hand, does not 

shrink with increased search width. Rather, it asymptotically approaches the approximation 

of (35).

VI. Conclusion

We have introduced an optimum frequency-shift estimator of the attenuation coefficient 

using a reference phantom, and theoretically demonstrated that it achieves the CRLB. We 

derived theoretical expressions for estimation variance of this method in terms of processing 

and system parameters such as window length, number of data segments per block, transmit 

pulse bandwidth, and number of regression points used per attenuation estimation ROI. 

Simulated and experimental phantom studies validated the superior performance of this 

method compared to other prevalent methods. The standard deviation of estimates given by 

the OPSSE and the NPSSE were observed to be at least 3 and 2 times smaller than that of 

the Hybrid method, respectively.
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Traditional Spectral Shift methods prior to introduction of the Hybrid method were very 

difficult to implement on array systems, particularly due to diffraction effects that distort the 

power spectra. Using a reference phantom to correct for diffraction and other system-related 

effects, the Hybrid method made it possible to generate spectral-shift attenuation maps on 

clinical array systems. However, the Hybrid method was not stable enough to provide 

reliable attenuation coefficient images. The reduced estimation variance and near 

elimination of the negative attenuation coefficient estimates achieved by the optimum 

estimator of this paper make it possible to realistically pursue mapping of attenuation 

coefficient as a new ultrasonic imaging modality.
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Fig. 1. 
B-mode image of the simulated uniform TM phantom with an attenuation coefficient of 0.7 

dB/cm/MHz (Upper Left). Estimated attenuation coefficient maps created using the OPSSE 

(Upper Right), the NPSSE (Lower Left), and the CPSSE (Lower Right).
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Fig. 2. 
Mean value of the attenuation coefficients estimated over an RF frame of the simulated 

uniform TM phantom using the three methods. True value of the attenuation coefficient for 

this phantom is 0.7 dB/cm/MHz. Error bars indicate the observed standard deviations.
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Fig. 3. 
Standard deviation of the attenuation coefficients estimated over an RF frame of the 

simulated uniform TM phantom using the three methods. Solid lines indicate measured 

values and dashed lines indicate theoretically predicted values.

Samimi and Varghese Page 24

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2017 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Mean value of the attenuation coefficients estimated over an RF frame of the simulated 

uniform TM phantom using the three methods. True value of the attenuation coefficient for 

this phantom is 0.7 dB/cm/MHz. Error bars indicate the observed standard deviations.
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Fig. 5. 
Standard deviation of the attenuation coefficients estimated over an RF frame of the 

simulated uniform TM phantom using the three methods. Solid lines indicate measured 

values and dashed lines indicate theoretically predicted values.
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Fig. 6. 
Mean value of the attenuation coefficients estimated over an RF frame of the simulated 

uniform TM phantom using the three methods. True value of the attenuation coefficient for 

this phantom is 0.7 dB/cm/MHz. Error bars indicate the observed standard deviations.
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Fig. 7. 
Standard deviation of the attenuation coefficients estimated over an RF frame of the 

simulated uniform TM phantom using the three methods. Solid lines indicate measured 

values and dashed lines indicate theoretically predicted values.
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Fig. 8. 
B-mode image of the physical uniform TM phantom with an attenuation coefficient of 0.8 

dB/cm/MHz (Upper Left). Estimated attenuation coefficient maps created using the OPSSE 

(Upper Right), the NPSSE (Lower Left), and the CPSSE (Lower Right).
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Fig. 9. 
Mean value of the attenuation coefficients estimated over an RF frame of the physical 

uniform TM phantom using the three methods. True value of the attenuation coefficient for 

this phantom is 0.8 dB/cm/MHz. Error bars indicate the observed standard deviations.
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Fig. 10. 
Standard deviation of the attenuation coefficients estimated over an RF frame of the physical 

uniform TM phantom using the three methods. Solid lines indicate measured values and 

dashed lines indicate theoretically predicted values.
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Fig. 11. 
Mean value of the attenuation coefficients estimated over an RF frame of the physical 

uniform TM phantom using the three methods. True value of the attenuation coefficient for 

this phantom is 0.8 dB/cm/MHz. Error bars indicate the observed standard deviations.
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Fig. 12. 
Standard deviation of the attenuation coefficients estimated over an RF frame of the physical 

uniform TM phantom using the three methods. Solid lines indicate measured values and 

dashed lines indicate theoretically predicted values.
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TABLE I
Default Values of Processing Parameters

Symbol Quantity Value

Δ z data block length 10 mm

NS number of data segments per block of
sample data

40

NR number of data segments per block of
reference data

40

σ t standard deviation of the transmit pulse
spectrum and the Gaussian filter

1 MHz

L number of axially consecutive data
blocks used for linear regression of the
frequency shifts

5
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